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Einem Modell M von [PA] ist in natürlicher Weise eine additive Struktur GM zuge-
ordnet: GM ist die additive Gruppe von M . [. . . ] Unser Ziel ist die Charakterisierung
der Gruppen G, welche in der Rolle als Gruppen GM auftreten.

Mac Dowell and Specker [6]

By Remark 8.7 and Theorem 7.4, whenever n ∈ N and M is a countable (nonstandard) model
of PA, we can find a proper n-elementary end extension of M . In fact, an omitting types argument
shows that every countable model of PA has a proper elementary end extension. The types one
needs to omit when end extending a model M |= PA are those of the form

pb(v) = {v < b} ∪ {v 6= a : a ∈M},

where b ∈ M . If M is countable, then provided we can make each pb non-isolated, we can omit
all of them in a single model by the Omitting Types Theorem. Surprisingly, this countability
condition is actually not necessary, although one cannot omit uncountably many non-principal
types simultaneously in general.

Mac Dowell–Specker Theorem [6]. Every model of PA has a proper elementary end extension.

Remark 9.1. The assumption that the ground model satisfies PA is necessary by Theorem 6.3.

Remark 9.2. The analogous question about cofinal extensions (of nonstandard models) has an easy
answer by the Splitting Theorem.

The reason why we can omit uncountably many non-isolated types in this situation is that the
least number principle provides a definable witness to every true existential statement. This gives
us models which omit all non-isolated types, however many there are. These models are called
atomic. In fact, we will get models that are prime, but primeness is not needed for this lecture.

Proposition 9.3. Let L ∗A ⊇ LA, and T ⊇ PA− that is complete, consistent as an L ∗A-theory, and
includes the induction axiom

∀z̄
(
θ(0, z̄) ∧ ∀x

(
θ(x, z̄)→ θ(x+ 1, z̄)

)
→ ∀x θ(x, z̄)

)
for every θ ∈ L ∗A. Then T has a unique prime model in which every element is

(minx)(η(x))

for some η ∈ L ∗A.

Proof sketch. Notice our proof of Theorem 2.3 actually works for all languages that extend LA.
So T has the least number principle for all L ∗A-formulas. Let

L̂ ∗A = L ∗A ∪ {cη : T ` ∃x η(x), where η ∈ L ∗A},

where the cη’s are new constant symbols. Define the L̂ ∗A-theory T̂ by

T̂ = T ∪ {η(cη) ∧ ∀x<cη ¬η(x) : T ` ∃x η(x)}.

58



Then T̂ is essentially just T with some new names for definable objects. Hence, since T is complete
and consistent, so is T̂ . Moreover, the theory T̂ is Henkinized, because the new symbols can all
be replaced by their definitions. Let K̂ be the term model of T̂ . Then the reduct K of K̂ to L ∗A
is what we want. Notice for each c ∈ K, there is η ∈ L ∗A such that

tpK(c) =
{
θ(v) ∈ L ∗A : T ` ∀v

(
η(v) ∧ ∀x<v ¬η(x)→ θ(v)

)}
.

Alternatively, one can prove this proposition by taking the definable closure (of the empty set)
in any model of T .

The plan for getting an end extension is to add an ‘ideal element’ on top of the ground model.
We control the type of this ‘ideal element’ so that it does not entail the existence of any new
element below an old element. This reduces the problem of building an end extension to that of
building a suitable type.

Definition. Let M be a structure for a language L .

• Denote by Def(M) the set of parametrically definable sets in M .

• A complete M -type is a type p(v̄) over M such that for all θ(v̄) ∈ L (M),

either θ(v̄) ∈ p(v̄) or ¬θ(v̄) ∈ p(v̄).

• A complete M -type p(v̄) is definable if for every ϕ(v̄, z̄) ∈ L ,

{z̄ ∈M : ϕ(v̄, z̄) ∈ p(v̄)} ∈ Def(M).

• An extension K ⊇M is conservative if for every X ∈ Def(K),

X ∩M ∈ Def(M).

Remark 9.4. One sees that allowing parameters in the formula ϕ in the definition of definable
types does not change the notion.

Intuitively speaking, a type is definable if and only if the ground model knows every slice of it
in a definable way. Similarly, an extension is conservative if and only if the ground model knows
every definable set in the extension in a definable way. It thus seems apparent that the two notions
should be closely connected to each other. In fact, the extension obtained by adjoining an ‘ideal
element’ to a model of PA is conservative if and only if the type of this ‘ideal element’ is definable.

Definition. Let M |= PA and p(v̄) be a complete M -type. Then M(p) denotes the LA-reduct of
the prime model of p(d̄) as given by Proposition 9.3, where d̄ are new constant symbols.

Such M(p)’s are elementary extensions of M because p(v̄) ⊇ ElemDiag(M).

Proposition 9.5. Let M |= PA. Then the following are equivalent for a complete M -type p(v̄).

(a) p is a definable type.

(b) M(p) is a conservative extension of M .

Proof. Let d̄ ∈M(p) realizing p such that M(p) is the prime model of p(d̄).
For (a)⇒ (b), suppose p is a definable type. Consider

X = {z̄ ∈M(p) : M(p) |= θ(c, z̄)},

where θ ∈ LA and c ∈M(p). Find η ∈ LA(M) such that

c = (minx)(η(x, d̄)).

This is possible because of the definition of M(p). Then

X ∩M = {z̄ ∈M : M(p) |= θ(c, z̄)}
=
{
z̄ ∈M : M(p) |= θ

(
(minx)(η(x, d̄)), z̄

)}
=
{
z̄ ∈M : θ

(
(minx)(η(x, v̄)), z̄

)
∈ p(v̄)

}
∈ Def(M)

since p is a definable type, cf. Remark 9.4. So M(p) is a conservative extension of M .
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Conversely, suppose (b) holds. Now if ϕ(v̄, z̄) ∈ LA, then

{z̄ ∈M : ϕ(v̄, z̄) ∈ p(v̄)} = {z̄ ∈M : M(p) |= ϕ(d̄, z̄)} ∈ Def(M)

by conservativity. Thus p is a definable type.

Recall that we actually want end extensions.

Proposition 9.6. Every conservative K ⊇M |= PA with K |= PA− is an end extension.

Proof. Let a ∈ K \M . Then by conservativity,

{z ∈M : z < a} ∈ Def(M).

This set contains 0 and is closed under successor. So it is M by induction. Hence M < a.

In view of these two propositions, to show the Mac Dowell–Specker Theorem, it suffices to find
a definable type over a given model of PA. This slight detour is, in a sense, inevitable, because
there are models of PA all of whose elementary end extensions are conservative [5, Section 2.2.2].
It is not necessary to work within second-order arithmetic, but it is definitely nicer to do so.

Definition. ACA0 is the LII-theory axiomatized by

• the axioms of PA−;

• the induction axiom

∀X
(
0 ∈ X ∧ ∀x (x ∈ X → x+ 1 ∈ X)→ ∀x (x ∈ X)

)
;

• arithmetical comprehension (ACA): for every arithmetical formula θ,

∀z̄, Z̄ ∃X ∀x
(
x ∈ X ↔ θ(x, z̄, Z̄)

)
.

Notice ACA0 has an induction axiom rather than an induction scheme. The amount of com-
prehension thus determines how much induction it possesses. It follows that PA and ACA0 have
essentially the same amount of induction.

Proposition 9.7. (a) For all LA-structures M ,

(M,Def(M)) |= ACA0 ⇔ M |= PA.

(b) If (M,X ) |= ACA0, then (M,A)A∈X satisfies full induction, where the A’s are all considered
as new predicates.

(c) ACA0 `WKL0.

Proof sketch. (a) For the ⇒ implication, notice every element of Def(M) can be replaced by the
formula that defines it.

(b) Observe there is no set quantification in the first-order language for (M,A)A∈X .

(c) The leftmost unbounded branch in an unbounded binary tree is arithmetically definable over
the tree.

We employ some combinatorics from recursion theory to help us build definable types. Recall
from Lemma 2.1 that every first-order object in a model of RCA0 can be considered as the code of
a pair of numbers. So every set R can be viewed as the code of a sequence of sets (R)0, (R)1, . . .,
where (R)x denotes ‘the xth column’ of R.

Definition. Let (M,X ) |= RCA0. For R ∈X and x ∈M , set

(R)x = {y ∈M : 〈x, y〉 ∈ R}.

If X,Y ⊆M , then X ⊆∗ Y means X \ Y 6⊆cf M , and Xc = M \X.
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Figure 9.1: Constructing an R-cohesive subset of S

Lemma 9.8. ACA0 ` COH, where COH says

for all unbounded S and all R, there exists H ⊆cf S such that for every z,

either H ⊆∗ (R)z or H ⊆∗ (R)cz.

Such H is said to be R-cohesive. It is known [2] that RCA0 +COH is much weaker than ACA0.

Proof sketch. Put x ∈ H if and only if

there exists a sequence s0, s1, . . . , sk such that x = sk, and for all j 6 k, if

Sj = S ∩
⋂
{(R)i : i < j ∧ si ∈ (R)i} ∩

⋂
{(R)ci : i < j ∧ si ∈ (R)ci}

has unbounded intersection with (R)j , then sj = min
(
(Sj ∩ (R)j) \ {si : i < j}

)
, else

sj = min
(
(Sj ∩ (R)cj) \ {si : i < j}

)
.

Remark 9.9. It can be seen from the proof sketch above that given S and R, we can define an
R-cohesive H ⊆ S in a uniform way without having to refer to further parameters. In particular,
if both S and R are parameter-free definable in M , then we can also make H so.

Theorem 9.10 (Gaifman [4], Phillips [8]). Every M |= PA admits a definable type p(v) such that
M(p) 6= M .

Proof. Work in (M,Def(M)). We will find

M = S0 ⊇cf S1 ⊇cf S2 ⊇cf · · ·

in Def(M). Let θ0(v), θ1(v), θ2(v), . . . ∈ LA(M) define S0, S1, S2, . . . respectively. Our definable
type p(v) will be the deductive closure of

p0(v) = ElemDiag(M) + {θi(v) : i ∈ N}+ {v > a : a ∈M}.

This set is consistent by compactness. If p is complete, then clearly M(p) 6= M .
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Suppose Si is found. Consider ϕi(v, z) ∈ LA, which comes from some fixed enumeration (ϕi)i∈N
of LA-formulas. Notice we do not allow parameters to appear in ϕ here, because otherwise we
may not be able to enumerate all such formulas in a countable sequence. Let

Ri = {〈z, v〉 ∈M : M |= ϕi(v, z)} ∈ Def(M).

Apply COH to find Si+1 ⊆cf Si in Def(M) such that for all z ∈M ,

either Si+1 ⊆∗ (Ri)z or Si+1 ⊆∗ (Ri)
c
z.

Now for each z ∈M , the following chain of implications holds.

• Si+1 6⊆∗ (Ri)
c
z ⇒ Si+1 ⊆∗ (Ri)z by the choice of Si+1.

• Si+1 ⊆∗ (Ri)z ⇒ M |= ∃a ∀v>a
(
θi+1(v)→ ϕi(v, z)

)
.

• M |= ∃a ∀v>a
(
θi+1(v)→ ϕi(v, z)

)
⇒ ϕi(v, z) ∈ p(v) by the definition of p(v).

• ϕi(v, z) ∈ p(v) ⇒ ¬ϕi(v, z) 6∈ p(v) since p(v) is consistent.

• ¬ϕi(v, z) 6∈ p(v) ⇒ M 6|= ∃a ∀v>a
(
θi+1(v)→ ¬ϕi(v, z)

)
.

• M 6|= ∃a ∀v>a
(
θi+1(v)→ ¬ϕi(v, z)

)
⇒ Si+1 6⊆∗ (Ri)

c
z.

Therefore, all the clauses above are equivalent. This makes p(v) complete because ¬ϕi(v, z) 6∈ p(v)
implies ϕi(v, z) ∈ p(v) for all z ∈M . It also says

{z ∈M : ϕi(v, z) ∈ p(v)} =
{
z ∈M : M |= ∃a ∀v>a

(
θi+1(v)→ ϕi(v, z)

)}
∈ Def(M).

So p(v) is a definable type.

Remark 9.11. A careful examination of the proof above reveals that, in view of Remark 9.9, every θi
can be made parameter-free. So essentially the same type works for all models of PA.

To prove the Mac Dowell–Specker Theorem, combine Proposition 9.5, Proposition 9.6, and
Theorem 9.10.

Further exercises

There is currently no consensus about what an end extension of a model of second-order arithmetic
means. Our definition here has the advantage of allowing the Mac Dowell–Specker Theorem to
generalize naturally.

Definition. Let (M,X ), (K,Y ) |= PA−. We say that an embedding i : (M,X ) → (K,Y ) is an
end extension if i(M) ⊆e K. It is arithmetically elementary if it is elementary for all arithmetical
formulas. It is proper if i(M) 6= K.

Theorem 9.12. The following are equivalent for a countable (M,X ) |= RCA0.

(a) (M,X ) |= ACA0.

(b) (M,X ) has a proper arithmetically elementary end extension i : (M,X ) → (K,Y ) such
that X = {X ∩M : X ∈ Def(K)}.

Proof. Let L ∗A be the language obtained from LA by adding a new unary predicate symbol for
each element of X . Then M∗ = (M,A)A∈X is an L ∗A-structure.

First suppose (a) holds.

(1) Imitate the proof of Theorem 9.10 to find a complete M∗-type p(v) such that

(i) {z ∈M : ϕ(v, z) ∈ p(v)} ∈X for every ϕ ∈ L ∗A; and

(ii) M∗(p) 6= M∗, where M∗(p) denotes the L ∗A-reduct of the prime model of p(v) as given
by Proposition 9.3.
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Suppose we have such a type p(v). Let K be the LA-reduct of M∗(p), and let i(x) = x for every
x ∈M . Set Y = {i(A) ⊆ K : A ∈X }, where i(A) is the interpretation of the predicate symbol A
in M∗(p).

(2) Show that i : (M,X )→ (K,Y ) is a proper arithmetically elementary end extension in which

X ⊇ {X ∩M : X ∈ Def(K)}.

Notice M∗ satisfies full induction in the language L ∗A. The proof of Theorem 2.7 then generalizes
to show that S�a ∈ Cod(M) for every S ∈ Def(M∗) and every a ∈M . This transfers to M∗(p).

(3) Deduce that X ⊆ {X ∩M : X ∈ Def(K)}.
Conversely, suppose (b) holds, as witnessed by i : (M,X )→ (K,Y ). It is a fact that the proof

of Theorem 6.3 can be adapted to show that M∗ satisfies full induction in L ∗A. This transfers to
K∗ = (K, i(A))A∈X .

(4) Using the aforementioned generalization of Theorem 2.7, or otherwise, show that (a) holds.

(5) Where was the countability of (M,X ) used?

Further reading

Stability theory

Although the notions of definable types [4] and conservative extensions [8] originate from the model
theory of arithmetic, they have now become central notions in stability theory. See Baldwin’s
book [1] for more information.

Further comments

End extensions elementary for bigger languages

The Further exercises show how the Mac Dowell–Specker Theorem generalizes to structures that
satisfy full induction in a countable language extending LA. For uncountable languages, such
generalizations fail in general [7, 3].
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