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Cohen taught that truth can be approximated more easily and more completely
in the intermediate stages of a construction than any recursion theorist would have
believed possible [. . . ].

Gerald E. Sacks [10, Introduction]

The aim of this lecture is to show a conservation theorem between RCA0 and WKL0.

Theorem 15.1 (Harrington [11, Corollary IX.2.6], Ratajczyk [9], independently). WKL0 is Π1
1-

conservative over RCA0, i.e., for all sentences σ ∈ Π1
1, if WKL0 ` σ, then RCA0 ` σ.

Remark 15.2. WKL0 is not Σ1
1-conservative over RCA0, because there is an infinite recursive binary

tree with no infinite recursive branch, cf. Corollary 4.9. Nevertheless, Theorem 15.1 can still be
improved: Simpson–Tanaka–Yamazaki [13] showed that WKL0 is conservative over RCA0 for all
sentences of the form ∀X ∃!Y θ(X,Y ), where θ is arithmetical.

15.1 Adding second-order objects
There are many ways in which one can prove Theorem 15.1. Here let us follow a model-theoretic
approach similar to that we used in Lecture 6 for the conservation result between IΣn and BΣn+1.
An LII-structure is countable if both its first- and second-order parts are countable.

Theorem 15.3 (Harrington [11, Theorem IX.2.1]). For every countable (M,X ) |= RCA0, there
exists Y ⊇X such that (M,Y ) |= WKL0.

Similar to how Theorem 6.6 implies Theorem 6.1, one can quickly show Theorem 15.1 from
Theorem 15.3.

Proof of Theorem 15.1. Let θ(X̄) be an arithmetical formula such that RCA0 + ∃X̄ θ(X̄) is consis-
tent. Take a countable (M,X ) |= RCA0 +θ(Ā) where Ā ∈X . Apply Theorem 15.3 to get Y ⊇X
such that (M,Y ) |= WKL0. Notice θ(X̄) involves only first-order quantifiers. So, as (M,X ) and
(M,Y ) have the same first-order part, we know (M,Y ) |= θ(Ā) too. Therefore WKL0 + ∃X̄ θ(X̄)
is consistent.

Recall Example 4.4(2), which tells us that the LA-consequences of RCA0 is axiomatized
by IΣ1. We present a slightly more general statement here. If (M,X ) is an LII-structure, then
∆0

1-Def(M,X ) denotes the set of all parametrically ∆0
1-definable subsets of M in (M,X ). Notice

in ∆0
1-Def(M,X ) we do not include any ∆0

1-definable subset of X in (M,X ).

Lemma 15.4. Let (M,X0) |= IΣ0
1. Then

(M,X ) = (M,∆0
1-Def(M,X0)) |= RCA0.
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M X Y

Figure 15.1: Extending (M,X ) |= RCA0 to (M,Y ) |= WKL0

Proof. Notice if α(z̄) is an atomic or negated atomic LII(M,X )-formula, then we can replace a
parameter from X with its Σ0

1 or Π0
1 definition to obtain a Σ0

1(M,X0)-formula α0(z̄) such that

(M,X ) |= α(c̄) ⇔ (M,X0) |= α0(c̄)

for all c̄ ∈M . Moreover, every Σ0
1-formula is logically equivalent to one in prenex form, i.e., one

in which negations are only applied to atomic formulas, and no unbounded quantifier appears
inside the scope of a bounded quantifier. Hence for every Σ0

1(M,X )-formula θ(z̄), there exists an
LII(M,X0)-formula θ0(z̄) of the form

∃x̄ ∀ȳ1<t1 ∃ȳ2<t2 · · ·
∧∧
i

∨∨
j

αij(x̄, ȳ, z̄)︸ ︷︷ ︸
Σ0

1(M,X0)︸ ︷︷ ︸
Σ0

1(M,X0) over BΣ0
1

,

where each αij ∈ Σ0
1(M,X0), such that for every c̄ ∈M ,

(M,X ) |= θ(c̄) ⇔ (M,X0) |= θ0(c̄).

Hence IΣ0
1 in (M,X0) gives us IΣ0

1 in (M,X ). Similarly ∆0
1-Def(M,X ) ⊆ ∆0

1-Def(M,X0) = X ,
so that (M,X ) |= ∆0

1-CA.

As a consequence, if we want an extension satisfying RCA0, then it suffices to obtain an extension
satisfying IΣ0

1, because after that we can close up under ∆0
1-comprehension to get a model of RCA0.

Moreover, if (M,X0) is countable, then so is (M,∆0
1-Def(M,X0)). With this, we can further

reduce Theorem 15.3 to a simpler proposition, which says essentially that we can always add an
unbounded branch to an unbounded tree while preserving IΣ0

1.

Proposition 15.5 (Harrington [11, Lemma IX.2.5]). Take any countable (M,X ) |= IΣ0
1. Let

T be an unbounded binary tree in X . Then there is an unbounded branch B ⊆ T such that
(M,X ∪ {B}) |= IΣ0

1.

After adding a new branch using Proposition 15.5, one may get more trees, but then we can
apply Proposition 15.5 again to get another branch through another tree, etc. Since all the models
are countable, after ω-many steps, the addition of branches catches up with the increase in trees,
so that every unbounded tree gets an unbounded branch at the end. This gives us the Weak König
Lemma, as required by Theorem 15.3.

Proof of Theorem 15.3. Suppose we are given a countable (M,X ) |= RCA0. Using Proposition 15.5,
build, by recursion, countable sets

X = X0 ⊆X1 ⊆X2 ⊆ · · ·

such that for each i ∈ N,
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• (M,Xi) |= RCA0; and

• if T is an unbounded tree in Xi, then there are j ∈ N and B ∈ Xj such that B is an
unbounded branch in T .

Then (M,Y ) =
(
M,
⋃
i∈N Xi

)
|= WKL0, because each instance of IΣ0

1 and ∆0
1-CA is only about

finitely many elements in Y , and so it is determined already at a finite stage of the construction.

The Weak König Lemma and comprehension schemes such as ∆0
1-CA are often called set existence

axioms because they assert the closure of the second-order universe under certain operations. In
contrast, induction schemes such as IΣ0

1 are properties of numbers in which second-order objects
only act as parameters. This is why we can add one set to a model of second-order arithmetic
while preserving IΣ0

1, but adding one (new) set while preserving ∆0
1-CA is impossible.

15.2 Kleene Normal Form
To prove Proposition 15.5, we need a better understanding of the Σ0

1-formulas. Recall from Lecture 4
that Σ0

1-formulas can be viewed as programs, in which set parameters act as oracles. Intuitively,
if P is a program with oracle A ⊆ N and P halts on an input x̄ ∈ N, then a run of P on input x̄
can only call Prog〈x ∈ A〉 finitely many times, and so only a finite part of A is relevant for this
particular computation. The next theorem is a mathematical way of putting this. For the rest of
this lecture, we identify a set S with its characteristic function χS . Notice S and χS are mutually
∆0

0-definable. Now S�a denotes the usual restriction of the function S to a, so that it carries, in
addition to positive information, also negative information about the set S, unlike our definition in
Lecture 2. With I∆0

0 + exp, we can code S�a by a first-order object using a second-order version of
Theorem 2.7. Without I∆0

0 + exp, we can read v ∈ S�a and v 6∈ S�a respectively as

v < a ∧ v ∈ S and v < a ∧ v 6∈ S,

and set len(S�a) = a. These are the only ways in which S�a will appear in our formulas.

Definition. A ∆0
0�KNF-formula is a ∆0

0-formula η(m̄,X�`), possibly with undisplayed free set
variables, such that

PA− ` ∀X ∀`, m̄
(
η(m̄,X�`)→ ∀`′>` η(m̄,X�`′)

)
. (∗)

A Σ0
1-formula is in Kleene Normal Form if it is ∃` η(m̄,X�`) for some η ∈ ∆0

0�KNF. The set of all
Σ0

1-formulas in Kleene Normal Form is denoted Σ0
1�KNF.

The monotonicity property (∗) can be paraphrased as saying that the acquirement of (non-
contradictory) new information does not change a computation.

Kleene Normal Form Theorem [7, pages 290–292]. (1) For every ∆0
0-formula θ(m̄,X), there

exist an LA-term t∗ and a ∆0
0�KNF-formula η(m̄,X�`) such that

PA− ` ∀a ∀`>t∗(a) ∀m̄<a
(
θ(m̄,X)↔ η(m̄,X�`)

)
.

(2) Every Σ0
1-formula is uniformly equivalent to one in Kleene Normal Form over PA−.

Proof sketch. For (1), we proceed by induction on θ in prenex form. Notice, for every LA-term t,

PA− ` ∀a ∀m̄6a
(
t(m̄) 6 t(a, a, . . . , a)

)
If θ(m̄,X) is a quantifier-free formula not involving X, then we can let t∗ = 0 and η = θ. If

θ(m̄,X) is t(m̄) ∈ X, where t is an LA-term, then define t∗(a) to be t(a, a, . . . , a) and η(m̄,X�`)
to be t(m̄) ∈ X�`. Similarly, if θ(m̄,X) is t(m̄) 6∈ X, then we may let t∗(a) be t(a, a, . . . , a) and
η(m̄,X�`) be t(m̄) 6∈ X�`.
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Suppose θ(m̄,X) is θ0(m̄,X) ∨ θ1(m̄,X). Using the induction hypothesis, find LA-terms t0, t1
and ∆0

0�KNF-formulas η0(m̄,X�`), η1(m̄,X�`) such that

PA− `
∧∧
i<2

∀a ∀`>t∗i (a) ∀m̄<a
(
θi(m̄,X)↔ ηi(m̄,X�`)

)
.

Then we can set t∗ to be t∗0 + t∗1 and η(m̄,X�`) to be η0(m̄,X�`) ∨ η1(m̄,X�`). The case when
θ(m̄,X) is θ0(m̄,X) ∧ θ1(m̄,X) is dealt with in essentially the same way.

The case for bounded existential quantification is similar to that for bounded universal quantifi-
cation. So suppose θ(m̄,X) is ∀m′<t(m̄) θ0(m̄,m′, X), where t is an LA-term. Using the induction
hypothesis, find an LA-term t∗0 and a ∆0

0�KNF-formula η0(m̄,X�`) such that

PA− ` ∀a ∀`>t∗0(a) ∀m̄,m′<a
(
θ0(m̄,m′, X)↔ η0(m̄,m′, X�`)

)
.

One can then set t∗(a) to be t∗0(a+ t(a, a, . . . , a)) and η(m̄,X�`) to be ∀m′<t(m̄) η0(m̄,m′, X�`).
We know η is again a ∆0

0�KNF-formula because η0 appears only positively in η.
For (2), consider the Σ0

1-formula ∃m′ θ0(m̄,m′, X), where θ0 ∈ ∆0
0. Use (1) to find an LA-

term t∗0 and a ∆0
0�KNF-formula η0(m̄,m′, X�`) as in the previous paragraph. We claim that

∃m′ θ0(m̄,m′, X) is uniformly equivalent over PA− to the Σ0
1�KNF-formula

∃` ∃m′<len(X�`) η0(m̄,m′, X�`).

Work over PA−. Fix m̄,X. If m′ makes θ0(m̄,m′, X) true, then η0(m̄,m′, X�`) holds, where
` = t∗0(max{m̄,m′} + 1) + m′ + 1. Conversely, take `,m′ such that m′ < ` and η0(m̄,m′, X�`).
Let `′ = t∗0(max{m̄,m′} + 1) + `. Then η0(m̄,m′, X�`′) remains true as η0 ∈ ∆0

0�KNF. Thus
θ0(m̄,m′, X) holds by the choice of η0.

In the next section, we are going to construct a branch required by Proposition 15.5 as a union
of (coded sets of) coded binary sequences. The Kleene Normal Form Theorem will be important in
this construction because it tells us we can completely determine the Σ0

1-properties of our branch
using its coded initial segments.

15.3 Forcing with nonempty Π0
1 classes

This whole section is devoted to a proof of Proposition 15.5. We employ a method that resembles a
kind of recursion-theoretic forcing devised by Jockusch and Soare [6] which is usually referred to as
forcing with nonempty Π0

1 classes. Roughly speaking, a Π0
1 class is the set of unbounded branches

in some recursive tree.
Fix a countable (M,X ) |= IΣ0

1 and an unbounded binary tree T ∈X . To show Proposition 15.5,
we build by recursion unbounded binary trees

T = T0 ⊇ T1 ⊇ T2 ⊇ · · ·

in X such that B =
⋂
i∈N Ti is an unbounded branch in T and (M,X ∪ {B}) |= IΣ0

1. This can
be achieved with the help of two claims, the first of which ensures B is an unbounded branch,
and the second of which ensures (M,X ∪ {B}) |= IΣ0

1. In view of Lemma 15.4, we may assume
(M,X ) |= RCA0 without loss of generality. Define

• T = {U ∈X : U is an unbounded binary tree}; and

• U [`] = {σ ∈ U : lenσ = `} for all U ∈ T .

Claim 15.5.1. ∀`∈M ∀U∈T ∃V ∈T (V ⊆ U and ∃!σ∈V lenσ = `).

Proof of claim. Since U is unbounded, it has an element of length b for every b ∈M . By restricting
such an element to `, we see that

(M,X ) |= ∀b ∃σ∈U [`] ∀`′∈[`, b] ∃τ∈U [`′] τ ⊇p σ︸ ︷︷ ︸
Π0

1

.
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Figure 15.2: Forcing with nonempty Π0
1 classes

¬η

η

Case 0

¬η
η

Case 1

Figure 15.3: Deciding a Σ0
1-formula ∃` η(X�`) in Kleene Normal Form

Lemma 3.7(c) implies the quantifier for σ in the formula above can be bounded by 2`+1. Therefore,
since (M,X ) |= BΣ0

1,
(M,X ) |= ∃σ∈U [`] ∀`′>` ∃τ∈U [`′] τ ⊇p σ.

If σ ∈ U witnessing this, then V = {τ ∈ U : M |= τ ⊆p σ ∨ σ ⊆p τ} is what we want, observing
that V ∈X by ∆0

1-CA. a

Suppose we are given U ∈ T . Consider a Σ0
1(M,X )-formula ∃` η(X�`) in Kleene Normal Form.

Define V ⊆ U as follows.

Case 0. If {σ ∈ U : (M,X ) |= ¬η(σ)} 6⊆cf U , then set V = U .

Case 1. If {σ ∈ U : (M,X ) |= ¬η(σ)} ⊆cf U , then set V = {σ ∈ U : (M,X ) |= ¬η(σ)}.

Notice {σ ∈ U : (M,X ) |= ¬η(σ)} is closed under taking initial segments because of the mono-
tonicity property (∗) of η. So V ∈ T in either case. There are two possible scenarios. Here it
is convenient to identify an unbounded branch B ⊆ V with {v ∈ M : ∃σ∈B σ(v) = 1}, where
σ(v) = 1 stands for v < lenσ ∧ v ∈ Ack(σ). This identification makes sense because the two are
mutually ∆0

1-definable.
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Case 0, continued. Now (M,X ) |= η(σ) for all long enough σ ∈ U . So every unbounded branch
B ⊆ V makes (M,X ∪ {B}) |= ∃` η(B�`) because B�` ∈ B ⊆ V = U .

Case 1, continued. Every unbounded branch B ⊆ V makes (M,X ∪{B}) |= ∀` ¬η(B�`) because
B�` ∈ B ⊆ V .

So, in a sense, the truth of ∃` η(X�`) is already decided within V . The argument above shows that
every tree in T can be refined to one that decides a given Σ0

1(M,X )-formula in Kleene Normal
Form. With IΣ0

1, we can actually decide codedly many such formulas in one go.

Claim 15.5.2. Let a ∈M and θ(m,X) ∈ Σ0
1(M,X ). Then for every U ∈ T , there exists V ∈ T

which is a subtree of U such that whenever B is an unbounded branch in V ,

{m < a : (M,X ∪ {B}) |= θ(m,B)} ∈ Cod(M).

Proof of claim. It suffices to show the claim for those θ(m,X) in Kleene Normal Form ∃` η(m,X�`),
because the proof of Theorem 2.2 can easily be modified to show Coll(Σ0

1�KNF) from I∆0 plus
Σ0

1�KNF-separation in the sense of Theorem 2.7. The plan is to decide θ(m,X) for every m < a
in one go as anticipated in the comment before the statement of the claim, so that the ground
model (M,X ) already sees the set to be coded. We achieve this by iterating the decision method
described above a-many times internally in (M,X ). More precisely, let Seq2 denote the set of all
codes for binary sequences, and define

W =
{
〈ρ, σ〉 ∈ Seq2[a]× U : (M,X ) |= ∀m<a

(
ρ(m) = 1→ ¬η(m,σ)

)︸ ︷︷ ︸
∆0

0

}
.

ThenW ∈X by ∆0
1-CA. Notice (W )ρ = {σ ∈ U : 〈ρ, σ〉 ∈W} is a binary tree for every ρ ∈ Seq2[a]

because η satisfies property (∗). These (W )ρ’s are the 2a-many cases in defining V . To find out
which case we are in, we use IΣ0

1 as follows. Observe that

S = {ρ ∈ Seq2[a] : (W )ρ is unbounded}
= {ρ ∈ Seq2[a] : (M,X ) |= ∀` ∃σ∈Seq2[`] 〈ρ, σ〉 ∈W︸ ︷︷ ︸

Π0
1

} ∈ Cod(M)

by (a second-order version of) Theorem 2.7. We know S 6= ∅ because it contains the code for the
constant-0 sequence a→ 2. Let ρ be the (lexicographically) maximum element of S, which exists
by Lemma 2.6(b), and let V = (W )ρ. Then V ∈ T by the definition of S. Take any unbounded
branch B ⊆ V . We show

{m < a : (M,X ∪ {B}) |= θ(m,B)} = {m < a : (M,X ) |= ∃` ∀σ∈V [`] η(m,σ)︸ ︷︷ ︸
Σ0

1

},

which is sufficient for the claim, because IΣ0
1 in (M,X ) ensures the right-hand side is in Cod(M) by

Theorem 2.7. Pick m < a. If (M,X ) |= ∃` ∀σ∈V [`] η(m,σ), then (M,X ∪ {B}) |= ∃` η(m,B�`)
because B�` ∈ B ⊆ V and len(B�`) = `. Conversely, suppose (M,X ) |= ∀` ∃σ∈V [`] ¬η(m,σ).
Then {σ ∈ V : (M,X ) |= ¬η(m,σ)} is an unbounded subtree of V , and so

ρ(m) = 1 by the maximality of ρ,
∴ (M,X ) |= ∀σ∈V ¬η(m,σ) by the definition of W ,
∴ (M,X ) |= ∀σ∈B ¬η(m,σ) since B ⊆ V ,
∴ (M,X ) |= ∀` ¬η(m,B�`) since B�` ∈ B,

as required. a

Having proved these two claims, we proceed as follows. Suppose Ti ∈ T is found, where i is even.
Consider ` ∈M , which comes from some fixed enumeration of M of length ω. Apply Claim 15.5.1
to find Ti+1 ⊆ Ti in T in which there is a unique node σ of length `. Then σ ∈ B because any
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binary tree T ⊆ Ti+1 \ {σ} is bounded. By the uniqueness of σ, no other node of length ` can be
in B. Repeating this for every ` ∈M thus ensures B contains a unique node at every level ` ∈M .
Hence B is a branch.

Take a ∈ M and θ(m,X) ∈ Σ0
1(M,X ). Since (M,X ) is countable, there are only countably

many such pairs (a, θ). So we can deal with each and every of them during the construction. Using
Claim 15.5.2, find Ti+2 ⊆ Ti+1 in T such that

{m < a : (M,X ∪ {B}) |= θ(m,B)} ∈ Cod(M).

Then thanks to Theorem 2.7, the extension (M,X ∪ {B}) |= IΣ0
1 at the end. This completes the

proof of Proposition 15.5.

Further exercises
Let us repeat the arguments in this lecture for theories at the level of BΣ1 + exp. The following is
the analogue of Proposition 15.5 for BΣ0

1 + exp.

Theorem 15.6 (Simpson–Smith [12]). Take any countable (M,X ) |= BΣ0
1 + exp. Let T be an

unbounded binary tree in X . Then there is an unbounded branch B ⊆ T such that (M,X ∪{B}) |=
BΣ0

1 + exp.

Proof. We proceed as in the proof of Proposition 15.5, in which trees T = T0 ⊇ T1 ⊇ T2 ⊇ · · · are
constructed by recursion.

(a) Explain why we may assume (M,X ) |= ∆0
1-CA without loss of generality.

Using Claim 15.5.1, we can ensure B =
⋂
i∈N Ti is an unbounded branch in T .

(b) Apply part (1) of the Kleene Normal Form Theorem to show that (M,X ∪ {B}) |= I∆0
0.

In view of the Kleene Normal Form Theorem, it remains to show how to ensure (M,X ∪ {B}) |=
Coll(Σ0

1�KNF). This is achieved via the following claim, in which the meaning of T is the same as
that in the proof of Proposition 15.5. Fix a ∈M and ∃` η(m,n,X�`) ∈ Σ0

1�KNF(M,X ).

Claim 15.6.1. For every U ∈ T , there exists a subtree V ⊆ U which is in D0 or D1, where

D0 = {U ∈ T : ∃m<a ∀σ∈U ∀n6lenσ ¬η(m,n, σ)}, and
D1 = {U ∈ T : no V ⊆ U is in D0}.

(c) Explain why Claim 15.6.1 is true.

According to Claim 15.6.1, we can carry out the construction such that Ti ∈ D0 ∪ D1 for some
i ∈ N. Fix one such i.

(d) Suppose Ti ∈ D0. Show that (M,X ∪ {B}) |= ∃m<a ∀n ∀` ¬η(m,n,B�`).

(e) Suppose Ti ∈ D1. Show that Vm = {σ ∈ U : (M,X ) |= ∀n6lenσ ¬η(m,n, σ)} is a bounded
binary tree for each m < a. Then apply BΣ0

1 in (M,X ) to bound these bounds, and conclude
that (M,X ∪ {B}) |= ∃b ∀m<a ∃n<b ∃` η(m,n,B�`) in this case.

Further comments
Many different proofs of the Π1

1-conservativity of WKL0 over RCA0 are known. One can use,
for example, indicators as in Paris [8], special definable sets as in Hájek [5] or in Belanger [2],
self-embeddings as in Kaye [unpublished] or in Yokoyama [15], or the Arithmetized Completeness
Theorem as in Wong [14].

Combining Lemma 15.4 and Theorem 15.3, one sees that every countable model of IΣ1 is the
first-order part of some model of WKL0. This is actually true for uncountable models too [5,
2]. Consequently, Corollary 4.11 tells us that every model of IΣ1 has a proper end extension
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satisfying I∆0 + exp. Notice for countable (nonstandard) models, we can actually require the
extension to satisfy IΣ1; see Remark 8.7.

All these results relativize to higher levels of the arithmetical hierarchy; see Avigad [1],
Belanger [2], Hájek [5], and Paris [8]. Extensions of LII-structures that do not add new first-
order objects are sometimes called ω-extensions. They have proved to be useful in the reverse
mathematical study of combinatorial principles related to Ramsey’s Theorem for pairs [4]. As
observed by Avigad [1], one can cook up LII-theories T1, T2 such that T2 is a Π1

1-conservative
extension of T1, but some model of T1 has no ω-extension satisfying T2.
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