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Within RCAq one can prove that [weak Konig’s lemmal is equivalent to each of the
following ordinary mathematical statements:

1. The Heine/Borel covering lemma |...]|.

2. Every covering of a compact metric space by a sequence of open sets has a finite

subcovering |...].
3. Every continuous real-valued function on [0, 1], or on any compact metric space, is
bounded [...].
12. Every countable formally real field has a (unique) real closure |[...].

13. Brouwer’s fixed point theorem [...].
14. The separable Hahn/Banach theorem |...].

Stephen Simpson [8, Theorem 1.10.3]

3.1 The Ackermann interpretation

We prove the theorems stated at the end of last lecture. They can be paraphrased as saying
induction and collection are equivalent to separation in set theory.

Theorem 2.7 (Harvey Friedman). For all n € N and all M = IAq + exp, the following are
equivalent.

(a) M =1%,.
(b) Sta € Cod(M) for every S € ¥,,-Def(M) and every a € M.
Proof. Recall from Lemma 2.6 that nonempty coded sets have least elements. Hence (b) implies

M =LY, as shown in Figure 3.1, so that we get (a) from Theorem 2.3.

Conversely, suppose M | 1%,,. Takea € M and S = {x € M : M = 6(z)}, where 6 € X,,(M).
By considering ¢ =2 —1 =11---15, we see that
——

M = 3e Vz<a (@ — x € Ack(c)). (%)

—_———
Zn AU

H’IL

Let ¢ be a least witness to this, which exists by LII,, from Theorem 2.3. If we can find = € Ack(c)
such that M = —6(x), then ¢ — 27 would be smaller witness to (*), contradicting the minimality
of ¢. Thus Sla = Ack(c). O

In particular, the previous theorem tells us that all bounded Ag-definable sets are coded in
models of IAg + exp. In a sense, this provides a base step for the next theorem, and is one of the
reasons why IA( should be included in the BX,,’s.
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Figure 3.1: Proof that the coding of bounded 3.,,-definable sets implies LY,

Theorem 2.8 (folklore). For all n € N and all M = IAq + exp, the following are equivalent.
(a) M = BX, 1.
(b) Sta € Cod(M) for every S € A, 1-Def(M) and every a € M.

Proof. For (a) = (b), we proceed by strong induction on n. Suppose M = BX,;; and the
implication is true for all smaller indices. Let ¢ € II,,(M) and ¢ € £,,(M) such that

M vz (3y o(x,y) < Yy ¥(z,y)). (1)
Then S={x e M : M =3y o(z,y)} € Apy1-Def(M). Let a € M. Notice line (1) implies

M EVa<a 3y (p(z,y)V (. y)).

o, I,

Using BX,, 11, find b € M such that
M | Va<a Jy<b (p(z,y) vV ~¢(2,y)). (2)
Now, if x < a, then M satisfies

e Jy<b p(z,y) = Iy p(z,y);

e Jy p(z,y) = Vy ¥(z,y) by (1);
o Yy Y(x,y) — Yy<b ¥(x,y);
o Vy<b Y(z,y) = Jy<b o(z,y) by (2).

Since M E BY,, it follows that
Sla={x<a:MEIy<bp(z,y)}={x<a: M EVy<b (z,y)} € Ap-Def(M).

If n > 0, then the induction hypothesis implies STa € Cod(M). If n = 0, then the previous theorem
gives us the same conclusion.

Conversely, suppose (b) holds. Then as shown in Figure 3.1, we see that M = LII,. So
M satisfies 13,, by Theorem 2.3, and thus also B, by Theorem 2.2 if n > 0. Let a € M
and ¢ € X, 41(M) such that M = Va<a Jy p(z,y). Contracting quantifiers, we may assume
¢ € II,,(M). (This is stated separately as Proposition 6.2 in the Further reading section.) Set
f(z) = (miny)(¢(z,y)), which exists in M for every « < a by LII,,. Consider the formula

x < aAVr'€[x,a] f(2') < fx),
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Figure 3.2: Proof that the coding of bounded A,,;i-definable sets implies BX,, 11

which we will denote by 6(z). This is equivalent in M to both

x<aAJy (o(z,y) AVy' <y —~p(x,y") AV €[z, a] Jy'<y (', y))
—— —— ——

I, 3n IL,

3, over BX,, II,, over BXY,,

Y41 over BY,,

and
v <aAVy (p(z,y) AVY' <y —o(z,y') = Va'€lx,a] Fy'<y ¢(z,y)).

We do not need BX,, above when n = 0, but in any case, the formula 6 is A, ; over M. So
S={zr <a:ME 6x)} € Cod(M) by (b). Since M = 6(a), this set is nonempty and
thus has a minimum, say w, by Lemma 2.6. Let b = f(w) as evaluated in M. We claim that
M | Ve<a Jy<b o(x,y). If x € [w,a], then as M | 0(w), we know f(x) < bin M. So suppose

M = Jr<w Yy<b —~p(z, y).
———

Xn
N——
3, over BX,,

By (b), the set of witnesses to this assumption is coded in M. So, being nonempty, it must have
a maximum, say z, by Lemma 2.6. Splitting into points before and after w, one can verify that
M |= 6(x). This contradicts the minimality of w. O

The Ackermann membership makes a model of arithmetic into a model of set theory. These two
theorems demonstrated how we can get the separation scheme. We will see in the Further exercises
that all axioms of ZFC except the axiom of infinity hold in a sufficiently strong model of arithmetic
under the Ackermann interpretation. Conversely, every model of set theory in which the axiom of
infinity fails interprets arithmetic in a natural way, for example, via the ordinals. These lead to the
slogan

arithmetic = finite set theory.

As a consequence, we can import the coding apparatus for finite objects from set theory. This
provides one way to code sequences, formulas, proofs, etc. in arithmetic. Although there are usually
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more arithmetic ways of coding these objects, it will not matter which coding method we choose
as long as certain nicety conditions are satisfied, for example, regarding the complexity of the
definition, and the size of codes.

3.2 The Weak Konig Lemma

Combinatorics come up very naturally in the model theory of arithmetic. The most prominent
example is via cuts, a concept that goes back to Dedekind’s definition of real numbers [2].

Definition. A cut of M = PA™ is a nonempty initial segment with no maximum. Write I C, M
for ‘I is a cut of M.

If I is a cut of M, then we may alternatively view M as an end extension of I. This explains the
subscript e in C,. Different papers may have different definitions of cuts, e.g., they may additionally
require cuts to be proper, or be closed under addition, multiplication, etc. Unless otherwise stated,
we only require cuts to be closed under successor.

Definition. An exponential cut is a cut that is closed under x — 2%,

In general, there may be some ambiguity in saying a cut is closed under a certain definable
function f when the cut itself is a model of arithmetic, because f may be interpreted differently in
the cut and in the universe. We will see in the next lecture that this ambiguity does not arise if the
graph of f is Ag-definable.

Example 3.1. Every M |= PA™ contains the standard cut N. This is because such M realizes all
the closed Za-terms 0,1,1+ 1,1+ 14 1,... and the following lemma holds.

Lemma 3.2. PA" FVa,y (y>x -y >z +1).

Proof. Let y > x. Then we find z such that y = x + z+1 by axiom (xii). Since z > 0 by axiom (xv),
we conclude y > x + 1 by axiom (xi). O

One of the most basic facts about cuts is that proper cuts can never be definable in models
with induction.

Proposition 3.3. The following are equivalent for all M | PA™ and all n € N.
(a) M =1%,.
(b) No proper cut of M is ¥,,-definable.

Proof sketch. For (a) = (b), recall I3, says every ¥,,-definable set that contains 0 and is closed
under successor must contain all numbers. Every cut contains 0 (because it is nonempty and closed
downwards) and is closed under successor (because it has no maximum). So if a cut is X,,-definable,
then it cannot be proper under I¥,,.

For (b) = (a), when given 6 € %,,, consider the usual %,, formula equivalent to Vz'<z 0(2)
over BY,,. O

Remark 3.4. This proposition remains true if we replace ¥, by II,,, with essentially the same proof.

We usually use Proposition 3.3 in the form of overspill.

Overspill (A. Robinson [6]). Let n € Nand I Ce M =1%,,. If § € X,,(M) such that
M = 6(z) for all z € I,

then M = 0(z) for arbitrarily small x € M \ I.
Proof. Otherwise z < b A 6(z) defines I for some b € M \ I. O
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Figure 3.5: Coding of 0-1 sequences

It is customary to use the word overspill both as a verb and a noun. Overspill is sometimes
called overflow. It admits many variants. For example, some versions only have cofinally many x
in the cut satisfying 6 in the hypothesis [3]. An upside-down version, commonly referred to as
underspill or underflow, infers from the satisfaction of a formula above the cut to satisfaction within
the cut. We will see underspill in Lecture 6.

The non-definability of cuts turns out to be less negative than it sounds. Recall from Lemma 2.6
that nonempty coded sets always have maximum elements. In other words, they are bounded or
‘finite’. As a result, we cannot use coded sets per se to model unbounded or ‘infinite’ object. One
way round this problem is to restrict coded sets to a cut.

Definition. Let I Co M |=1Aq. If ¢ € M, then Ack(c/I) = I N Ack(c). A set of this form is called
a coded subset of I in M. Set Cod(M/I) = {Ack(c/I):ce M}.

In the literature, there are many alternative names for Cod(M/I), including SSy;(M) and
R (M). The acronym SSy comes from standard system.
We will use the coded subsets of cuts to formulate the Weak Kdnig Lemma.

Weak Ko6nig Lemma. Every infinite 0-1 tree has an infinite branch.

This is ‘weak’ in the sense that the usual Konig Lemma allows the tree to be finitely branching.
We may use the coding from set theory for trees, but in this particular case, it would be much
more convenient to use binary expansions of numbers. Logarithms are always to the base 2.
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Figure 3.6: Proof that the coded subsets of an exponential cut satisfy the Weak Konig Lemma

Definition. Let I C, M = TA,.
e lenz = |logz]. In other words y = lenx stands for 2Y71 > x A 2¥ < x, or more precisely
Jw (w=2YA2w >z Aw< z).

We do not define len 0.

o C, T means ‘o is an initial part of 77, i.e.,

leno < lent AVi<leno (i € Ack(o) > i € Ack(r)).

o[£ denotes ‘the restriction of o to £’. Alternatively, we can define o[¢ by
Ack(oll) = {£} U {i € Ack(o) : i < ¢}.

o T'C I is a binary tree if 0 C, 7 € T implies 0 € T..

A branch in a binary tree 7" C I is a binary tree B C T such that ¢ C, 7 or 7 C,, o for all
o,T € B.

e A binary tree is unbounded (in I) if {lenT:7€ T} = 1.
With all these coding, we can now formulate the Weak Konig Lemma for cuts.

Theorem 3.5 (essentially Scott [7]). Let M = IAq + exp and I be a proper exponential cut of M.
If T is an unbounded binary tree in Cod(M/I), then it has an unbounded branch B € Cod(M/I).

The idea of the proof is as follows. Since T is unbounded, it has a node at every level £ € I. By
overspill, it must also have a node, say 79, at some level above I. Then B = {7 € I : 7 C}, 7o} must
be an unbounded branch in 7. We need the cut to be exponential because the size of a node of
length ¢ is exponential in ¢, so that to have such a node in I, we must also have 2¢ in I.

On the contrary, it is not necessary to require M = exp in this theorem, but our proof will
invoke Theorem 2.7, which needs exponentiation as stated. To eliminate this redundant hypothesis,
we simply need to keep our minds clear about which exponentials need to exist while going through
the proof of Theorem 2.7. Fact 3.6(c) below will help.

We will see the proof of Theorem 3.5 in detail in the next lecture, together with a converse.
Some properties of our coding will be needed then. Let us first list some facts about exponentiation
that we will need to establish these properties.
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Fact 3.6. 1A proves

(a)
(b)
()

Ve, y (y=2" >y >0Ay > x);
Va,y,a' Y (y=2"Ay =27 Az <2’ —y<y); and
Vo, y (y =2% 5> Va'<z 'y (v = 250/)).

Proof. All straightforward Ag-inductions. A very useful observation when applying induction is
that the string of quantifiers VZ ... is equivalent to Vb VZ<b ... over PA™. O

Lemma 3.7. (a) y=lenz is Ay.

(b)
(c
(d
(e
(f

(g

)
)
)
)
)
(h)

IAg - Vz>0 3% (¢ =lenx).

IAg V2 (lenz < z Az < 2iHene),

0 Cp7and 7 =0l are Ay.

1Aq F Vo, 37 (1 = o).

IAgFVo,l (¢ <leno — len(o[l) =L Aol Cp, 0).

IAg F Vo1,09,05 (01 Cp 02 Ao Cp 03 — 01 Cpp 03 A o1 < 03).

IAg F VT Voi,09C,T (01 Cp o2 Voa Cp 01).

Essentially, these are all we need to know about the coding of finite sequences. To put it in
another way, our results will not be affected if some other coding method is adopted as long as it
satisfies these properties. As a consequence, the actual proof of this lemma, being specific to our
coding, is not so important. So I only include an outline of it here.

Proof.  (b) Uniqueness is straightforward using Fact 3.6(b). For existence, notice the set {y <

x:2Y < o} is nonempty since z > 1 = 2°. Imitating the proof of Lemma 2.6(b), one finds a
maximum of this set, which must be equal to len x.

This is a reformulation of Lemma 3.7(a).

Uniqueness follows from extensionality in the Further exercises. For existence, follow the
proof of Theorem 2.7, but use Fact 3.6(c) instead of exp to ensure enough exponentials exist.

As { € Ack(a[f), we know 2° < o[¢. Notice Ack(c[¢) C Ack(2F! —1). So Further exercise (d)
implies o[£ < 2/T1 — 1 < 2¢F1, Putting these together gives len(o[¢) = £. The remaining part
is straightforward.

Proceed directly.
Without loss, suppose 01 < o3. Then for all i < lenoq,

1€E01 & 1ET &  1E€o0s. O

Further exercises

Let us look at some set-theoretic axioms in a model M |=IA( under the Ackermann interpretation.

(a)
(b)
()

Show that M = 3z Vi (i € Ack(x)). This is the axiom of empty set.
Let > 0 in M. Recall from Lemma 3.7(b) that len x must exist. Show lenz € Ack(z).

Deduce that M [=Va,y (Vi (i € Ack(z) Ai & Ack(y)) — = =y). This says there is at most
one set that is empty.

Show by Ag-induction that M |= Va,y (VieAck(x) ¢ € Ack(y) — = < y). This implies the
axiom of extensionality. Lemma 2.6(a) and the comment in the proof of Fact 3.6 may help.

Show M = -3z (Ji (i € Ack(z)) A VieAck(z) Fj€Ack(z) i € Ack(j)) using Lemma 2.6. This
refutes the axiom of infinity.
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Further comments

We ignored BYg in our analysis of collection schemes because it is actually equivalent to BX;. This
is a special case of a more general observation.

Proposition 3.8. Fix n € N. Denote by Coll(II,,) the set of all sentences of the form
Vz Va (VZ<a 3§ (2§, 2) — 3b Vi<a 3y<b ¢(Z,7, 7)),
where ¢ € II,,. Then Coll(X,,41) is equivalent to Coll(IL,).

It is known [5] that 1A ¥ BXq, and BX; ¥ exp. The following is one of the major open questions
in weak arithmetic.

Question 3.9 (Wilkie-Paris [9]). Does IAg + —exp - B3, ?

See Adamowicz—Kolodziejczyk—Paris [1] for the most recent status of this question and the
connections with complexity theory.

Further reading

We mentioned near the end of Section 3.1 that arithmetic and finite set theory are bi-interpretable.
If one formulates finite set theory more carefully, then actually the two are synonymous. See my
paper with Kaye [4] for a precise formulation of this, including the definition of bi-interpretability
and synonymy.
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