
CONCEPT LEARNING FROM EXAMPLES
WITH APPLICATIONS TO A
VISION LEARNING SYSTEM

A L RALESCU* and J F BALDWIN

Information Technology Research Centre
University of Bristol
England

ABSTRACT

This paper describes a learning technique based on
the use of examples and counter-examples of the concept being
learned. The technique blends together the conceptual graphs
theory and the support logic programming. Each of these is
being used for both knowledge representation and inference.

An application to a vision learning system as well as a
discussion of such a system is included.

INTRODUCTION

The idea of concept learning using examples and
counter-examples of that concept has been previously
considered in cognitive psychology (Rosch and Mervis 1975,
and Medin and Schaffer 1978, Smith and Medin 1981), as well
as in Artificial Intelligence (Winston 1975).

The use of examples for defining concepts is justified
especially for those concepts which cannot be defined in terms
of necessary and sufficient conditions, or alternatively for those
concepts for which there exist individual instances which do not
share all of their features. Such concepts have long been
pointed out (Wittgenstein 1953). In fact it can be argued that,
except for a limited class of concepts (such as mathematical
concepts) most of the concepts which humans learn and use
cannot be defined by necessary and sufficient conditions. A
general learning technique from examples and counter-
examples based on the conceptual graphs theory and support
logic programming has been presented in Ralescu and Baldwin
(1987).

In the current paper the problems raised by an
attempt to apply this technique to vision are investigated. The
paper is organized around a practical example, the problem of
learning the concept "car" from photographs (examples) of cars.
Subsequently the problem of recognizing a car from
photographs is considered. A critical discussion of the system
obtained is also included.

An intelligent learning system must be able to build a model
(here called memory-aggregate, henceforth denoted MA) of a
concept based on the examples provided for that concept and
be able to update this model at any stage, whenever new
examples are provided, or old examples are disqualified (as
examples). The learning process should not allow the system to
be tricked into considering indefinitely the same example.

In the query phase the system should be able to
compare a description of a concept used as a query to the MA
of the concept being investigated. The result of this comparison
should take into account features shared by the query and the
MA, uncertainty and lack of information associated with either
one of them. The mechanism used for comparisons should be
such that it allows for comparing any two descriptions,
therefore making it possible to enforce constraints between
various examples.

The use of the conceptual graphs, first introduced by
Sowa (1984) provides a powerful means to express the
knowledge contained in the examples: each example (query,
MA) is represented as a conceptual graph, i.e. a graph
containing two kinds of nodes: concept nodes and relation
nodes. A comparison between two such graphs will take into
account not only the features (nodes) appearing in them but
also their structure.

The support logic programming is a programming
paradigm developed by Baldwin (1986). It is part of the AI
language FRIL (Baldwin, Pilsworth and Martin 1987). The
support logic theory allows for evidential reasoning under
various forms and degrees of uncertainty. In particular, for the
learning technique described in this paper, it allows for partial
matching between graphs (a query and MA, or two examples).
The effect of using the support logic inference mechanism is
that features appearing in the MA, arising from different
examples, will increase the support for a given description
(query) containing these features to represent an instance of
the concept summarised in the MA. It therefore allows for an
"interpolation" between examples, for their amalgamation.

1. BUILDING THE MEMORY-AGGREGATE

*On leave from the Computer Science Department, University
of Cincinnati, Ohio, U.S.A.
This work was carried out under contract to Marconi Command
& Control Systems, U.K.

Consider two examples of car (figures 1 and 2 in
Appendix) given as segmented photographs. Each region
obtained from segmentation is labeled by the name of the car
part to which it corresponds. For example the regions in figure
1 can be labeled as follows: "car_top" for region A,
"rear_window" for region B and "body" for region C. The result
of labeling these regions are the concept nodes to -appear in the
graph associated with figure 1: [car_top: *], [rear_window: *],
[body: *]. A concept node contains two fields: a type field, to
the left of ":" and a referent field to the right of ":" (Sowa
1984).

The relation nodes associated with figure 1 may
describe:
1. the relation of each of the concept nodes to the overall image
(or the concept being learned, [car :*X], in this case). According
to this criterion each region is part of (or contained in) this
example of a car.
2. spatial relationships (left_of, right_of, above, below)
between the regions (concept nodes).
3. other relations (properties) of these regions: shape, colour,
etc.

The conceptual graph resulting from figure 1 is then:

(1) Gl: [car: *X]-
->(eontains)->[car_top: •] -

->(left_of)->[rear_window: *],
->(right_of)->[rear_window: *],

57
AVC 1987 doi:10.5244/C.1.8

->(above)->[rear_window: *],
->(above)->[body: *],

->(contains)->[rear_window: *] -
->(left_of)->[car_top:*],
->(right_of)->[car_top: *],
->(above)->[body: *],
->(below)->[car_top: *],

->(contains)->[body: *] -
->(below)->[car_top: *],
->(below)->[rear_window: *].

A "*" in the referent field indicates a generic concept,
a "*X" identifies the being defined by the conceptual graph in
which it appears.
The following steps are taken to build the MA:

1. the referent fields of the concept nodes are modified to
accomodate sets (set coercion according to Sowa 1984).

2. each individual in the referent field of a concept is assigned a
weight reflecting the importance of that individual for that
concept; the weights assigned within one referent field form a
frequency distribution.

3. each relation node is assigned a weight reflecting its
importance to the concept node preceding it; the weights
assigned to the relation nodes corresponding to the different
branches starting out of any concept node form a frequency
distribution.

Initially, in the absence of any other information
about Gl, the relation nodes are assigned equal weights.
Similarly, the individuals within the same referent field are
assigned equal wieghts. The graph associated with Gl is now:

(1')
Gl: [car:*X]-

->(contains,l/3)->[car_top:{(*,l)}]-
->(left_of,l/4)->[rear_window:{(*,l)}],

->(above,l/4)->[rear_window:{(*>l)}],
->(above,l/4)->[body:{(M)}],

->(contains,l/3)->[rear_window:{(*,l)}]-
->(left_of,l/4)->[car_top:{(*,l)}],
->(right_of,l/4)->[car_top:{(*,l)}],
->(above,l/4)->[body:{(*,l)}],
->(below,l/4)->[car_top:{(*,l)}],

->(contains,l/3)->[body:{(*,l)}]-
->(below,l/2)->[car_top: {(*,1)}],
->(below,l/2)->[rear_window:{(*,l)}].

Note that a relation may appear more than once in a
the same position relative to a given concept node (eg the three
occurrences of the relation "contains"). However, the branches
corresponding to each occurrence are unique.

Similarly, for figure 2 the associated graph is:

(2)
G2: [car:*X]-

->(contains,l/2)->[car_top:{(*,l)}]-

(below,l)->[car_top:{(*,l)}].

The final step in building the MA is to perform a
maximal join (starting out from the node with referent field
*X) with a computational extension, of the graphs associated
with the examples provided. For the examples Gl and G2 the
resulting MA is:

(3)
MA: [car: *X]-

->(contains,2/5)->[car_top:{(*,l)}]-
->(left_of,l/5)->[rear_window:{(*,l)}],
->(right_of,l/5)->[rear_window:{(*,l)}],
->(above,l/5)->[rear_window:{(M)}],
->(above,2/5)->[body:{(M)}],

->(contains,l/5)->[rear_window:{(*,l)}]-
->(left_of,l/4)->[car_top:{(M)}],
->(right_of,l/4)->[car_top:{(*,l)}],

->(contains,l/2)->[body:{(*,l)}]-

^ A O ^ y K M) }] ,
->(below,l/4)->[car_top:{(*,l)}],

->(contains,2/5)->[body{(*,l)}]-
->(below,2/3)->[car_top:{(M)}],
->(below,l/3)->[rear_window:{(*,l)}].

The computational extension corresponds to updating
the weights within a graph according to the following formula
for updating a frequency distribution: the frequency
distribution
(4) {(xl.ml/m), (x2, m2/m), (x3, m3/m)} where

ml + m2 + m3 = m
is updated by the frequency distribution
(5) {(xl, nl/n), (y, n2/n)}, where

nl + n2 = n
to produce the frequency distribution
(6) {(xl, pl/p), (x2, P2/p), (x3, P3/p), (y, P4/p)}, where

p = m + n, pi = ml + nl,
p2 = m2, p3 = m3, p4 = n2.

The importance factors (weights) are used as follows:
- Given a branch, the importance of a relation to a

concept immediately preceding it is the weight recorded next
to the relation (eg, the importance of "contains" for the concept
[car: *X] on the branch
[car: *X]->(contains,2/5)->[car_top:{(*,l)}] is 2/5)

- Within a concept node, the importance of an
individual is the weight recorded next to the individual in the
referent field.

- The importance of a concept to another concept is 0
if there is no branch connecting the two concepts; otherwise, it
is the product of the weights attached to the relations which
are on the branch connecting the two concepts (eg, the
importance of [car_top:{(*,l)}] to the concept [car:*X] is 2/5,
(l/5)(l/4), (l /5)(l/4) and (2/5)(2/3) corresponding to the
branches starting out of [car:*X] and passing through
[car_top:{(M)}]).

- The importance of an individual, i, which appears in
the referent field of a concept Cl, to a concept C2, is equal to
the importance of i in Cl multiplied by the importance of Cl to
C2.

Other information, such as "location" of the car could
have been extracted from the photographs used as examples for
car. Suppose that the car in figure 1 is located in a garage and

58

that the car in figure 2 is located on a road. To include this
information the graph Gl would be modified as follows:
- Each occurrence of the relation "contains" will have the
weight 1/4
- A new branch,
[car: *X] -> (is_located,l/4) ->[location: {(garage.l) }]
will be included.
The graph G2 will be also modified:
- Each occurrence of "contains" will have the weight 1/3.
- A new branch,
[car:*X]->(is_located,l/3)->[location:{(road,l)}]
will be included.
These modifications will cause the following changes in the
graph for the MA:
- The relation "contains" will have the weights 2/7 for two of
its occurrences and 1/7 for the third one.
- A new branch,
[car: *X]-

->(is_located, 2/7)->[location:{(garage,l/2), (road,l/2)}]
will be included.
The total importance of the relation contains to the concept
[car: *X] is now 5/7 (previous to changes it was 1), the
importance of the individual road to the concept in which it
appears is 1/2, and to the concept [car: *X] is (2/7)(l/2)=l/7.

The MA "remembers" features, measures of
importance for these features and relations between these
features.
The process of updating the MA can be resumed at any
moment. The only thing needed is a mechanism which guards
the system from becoming biased, by the repeated use of the
same example. This problem will be treated later.

2. QUERY ANSWERING.

A segmented photograph becomes a query when the
system is asked to compare it to the MA of a given concept.
The steps taken to answer the query are as follows:
1. The photograph is translated into a conceptual graph; the
concept nodes are in terms of unlabeled "region" nodes. The
relation nodes describe spatial relationships between these
various regions.
2. The regions are labeled by the concept types appearing in
the MA for the concept being tested.
3. The graph resulted from steps 1 and 2 above, call it Q, is
compared to the MA. The result of this comparison will be a
support pair (N, P) whose meaning is :
N = necessary_support(Q represents the concept c/the model
of c is MA)
P = possible_support(Q represents the concept c/ the model of
c is MA).

The support pairs are to be consistent with the theory
of support logic (Baldwin 1986).

The computation of the support pair for comparison
(step 3) is considered first. The following algorithms are used in
this computation:

Algorithm 1: support for matching branches

Necessary support: Consider only those branches of the MA and
Q, starting out of the concept being investigated (referent field

*X) which potentially match (that is, have the same relations
and same types in corresponding concept nodes, but not
necessarily same referent fields). For each such pair of branches
let (r,c) denote the first relation/concept pair and let p denote
the importance of the relation r as it is recorded in the MA. Let
(l,u) denote the support of matching the corresponding
occurrences of c (the pair (l,u) to be calculated according to the
Algorithm 2 below). Compute p.l and multiply the result by the
necessary support of the remaining branch, which is computed
by applying this algorithm recursively. Finally, sum up the
results over all branches considered.
Possible support: a) With the same notation as above use the
previous algorithm with 1 substituted by u and "necessary
support" by "possible support". The result is the possible
support obtained from those branches in Q and M which are
potentially matching.

b) Consider the remaining branches in MA and Q.
For each such branch in MA which contains conflicting
information with one of the remaining branches in Q its
importance is subtracted from the possible support computed
so far.

c) For each branch MA which cannot be
potentially matched by a branch in Q its importance is added
to the possible support computed so far, to yield the final
possible support.

The importance of a branch from MA is computed by
multiplying the importance factors associated with the relations
along that branch. The branches in Q not considered in (a) and
(b) above are ignored.

When two branches to be matched are reduced to a
concept node then the support pair for the matching is the
support pair for concept matching.

Algorithm 2: support for matching concepts
Necessary support: Sum up the weights corresponding to
individuals which appear in both Q and the MA.
Possible support: Sum up the weights corresponding to
individuals in Q which conflict with the information in the MA.
This is the necessary support against concept matching;
subtract it from 1 to obtain the possible support for concept
matching.

Both of the above algorithms have the following
properties:

i) only information which is identical in both Q and the MA
contributes to the increasing of the necessary support.
ii) information which in the MA but not in Q will increase the
possible support (the fact that this information is not in Q does
not necessarily mean that it cannot be there).
ii) only conflicting information will decrease the possible
support.
iv) information which is in Q but not in the MA is ignored since
it is irrelevant (indeed were this information relevant it is
expected to have appeared already in at least one example and
therefore in the MA).

Note that the matching operation is not symmetrical,
that is the support to match "Q against MA" is not the same
with the support to match "MA against Q". This asymmetry is
actually desirable given the interpretation chosen for the

59

support pair. It should be noted that the matching operation
can be altered to become symmetric, if needed for other types
of applications.
It is worthwhile to note that the supports computed according
to Algorithms 1 and 2 above, derived mainly on a intuitive
basis will in fact satisfy all the requirments of the support logic
theory (Baldwin 1986).

To illustrate the process of computing supports for a
query, suppose that G2 as given by (2) is a query and that MA
is as given in (3). Suppose that the supports for concept
matching are:
(l_car_top, u_car_top) = (1, 1)
(l_body, u_body) = (1, 1)
Then

N2 = (2/5)(l)(2/5)(l) + (2/5)(l)(2/3)(l) = 44/75 = 0.4266
P2 = (2/5)(l)(2/5)(l) + (2/5)(l)91/3)(l) +

(2/5)(l)(l/5 + 1/5 + 1/5) +
(l /5)(l)(l /4 + 1/4 + 1/4 + 1/4) = 1

Next consider a query, call it G3, which is G2 plus the
information that it does not contain a rear window, i.e.:

(6) G3: [car: *X]-
->(contains)->[car_top:{*}]-

->(above)->[body:{*}],
->(contains)->[body:{*}]-

->(below)->[car_top:{*}],
->(NOT(contains))-[rear_window:{*}].
Then the supports are

N3 = 0.4266 (same as N2)
P3 = (2/6)(l)(2/5)(l) + (2/5)(l)(2/3)(l) + (2/5)(l/5 + 1/5 +
1/5)

+ (2/5)(l/3) + 1/5 - 1/5 = 0.8
Note the difference between P2 and P3.

Use of uncertain concepts:
Uncertain concepts may be present in the query as

well as in the MA (although it could be argued that the
examples, and hence the MA should not contain uncertainty).
Concepts in a query may have been themselves derived via the
learning procedure described here, applied at a different level.
In this case the process of computing the supports for matching
should be able to handle the case when a concept node appears
qualified by a support pair. For illustration purposes suppose
that the query G4 is like G2 plus the information "contains a
part which is left of, right of, below the car_top and above the
body, and has support (0.5, 0.75) to be a rear window". That is:

(7) G4: [car: *X]-
->(contains)->[car_top:{*}]-

->(above)->[body:{*}],
->(contains)->[body:{*}]-

->(below)->[car_top:{*}],
->(contains)->[rear_window:{*}](0.5, 0.75)-

->(left_of)->[car_top:{*}],
->(above)->[body:{*}],
->(right_of)->[car_top:{*}],
->(below)->[car_top:{*}].

To compute the match for the concepts [rear_window:{*}] and
[rear_window:{*}](0.5, 0.75) the following FRIL program will
be used:

((match Cl El C2 E2)(is Cl in El)(is C2 in E2)) :((1
u)(0 0))
((is ([rear_window:{*}]) in query)) :(U ul)
((is ([rear_window :{*}]) in ma) :(12 u2)

where (1 u) is the support of matching Cl and C2 computed
according to given Algorithm 2. The first clause of this program
states that the support of the match between the two concepts
Cl and C2 will be obtained from the support (1 u) and the
supports (11 ul) and (12 u2). The support (0 0) will be assigned
to the match if the conjunction ((is Cl in El) (is C2 in E2))
fails, i.e. has support (0 0). For our example (1 u)=(l 1), (11
ul)=(0.5 0.75), (12 u2)=(l 1). The final support for the match
of

[rear_window:{*}] and [rear_window:{*}](0.5 0.75) will be (as
given by the FRIL rules of computing supports):
N4 = 0.527
P4 = 0.802

Note the different values for the supports, (N2,
P2)=(0.427, 1), (N3 P3)=(0.426 0.8), (N4 P4)=(0.527 0.802).
If G5 is G4 in which (11 u l)=(l 1) then the corresponding
supports are (N5 P5)=(0.627 1).

Uninstantiated queries:
These queries correspond to the segmented

photographs (with unlabeled regions) which are presented to
the system to be recognized. The question "Does this represent
a car" rather than "What does this represent" is asked. Before a
support pair can be computed for the answer to such a question
the regions describing the photograph must be labeled (step 1
mentioned above). The labels for these regions are suggested by
the labels used in the MA for the concept being investigated.

Suppose the following is a conceptual graph
corresponding to an unlabeled photograph:
(8) Q: [c: *X]-

->(contains)->[region_l: #1]-
- > (above) -> [region_2 :#2],

->(contains)->[region_2:#2]-
->(below)->[region_l:#l].

Note that actually (8) is nothing but G2 from which
the labels (concept types) have been replaced by some general
label (region). The referents # 1 , #2 are used to indicate the
same instance of a region. The types region_l, region_2 may
be thought of as subtypes of a type region).
Various label assignments are possible for the concept nodes of
Q. Each of the regions can be replaced by car_top,
rear_window, or body types:
Case 1: [region_l:#l] is replaced by [car_top:{*}],
[region_2:#2] is replaced by [rear_window]. Then Q becomes:
Ql: [car: *X]-

->(contains)->[car_top:{*}]-
->(above)->[rear_window:{*}],

->(contains)->[rear_window:{*}]-
->(below)->[car_top:{*}].

The support of matching with MA is (NQ1 PQ1) = (0.13 1)

60

Case 2: Same as Casel for region_l, [region_2:#2] is replaced
by [body:{*}]. Then Q becomes:
Q2: [car: *X]-

->(contains)->[car_top:{*}]-
->(above)-.[body:{*}],

-> (cont ains) -> [body :{*}]-
->(below)->[car_top:{*}].

The support of matching Q2 to MA is (NQ2 PQ2)=(0.4267 1)

Case 3: [region_l:#l] is replaced by [rear_window:{*}],
[region_2:#2] is replaced by [car_top:{*}]. Then Q becomes:
Q3: [car:*X]-

->(contains)->[rear_window:{*}]-
->(above)->[car_top:{*}],

->(contains)->[car_top:{*}]-
->(below)->[rear_window:{*}].

The support pair for matching Q3 to MA is (NQ3 PQ3)=(0 1).

Case 4: same as Case 3 for [region_l:#l], [region_2:#2] is
replaced by [body:{*}]. Then Q becomes:
Q4: [car:*X]-

->(contains)->[rear_window:{*}]-
->(above)->[body:{*}},

->(contains)->[body:{*}]-
->(below)->[rear_window:{*}].

The support for matching Q4 to MA is (NQ4 PQ4)=(0.183 1).

Case 5: [region_l:#l] is replaced by [body:{*}], [region_2:#2]
is replaced by [car_top:{*}]. Then Q becomes:
Q5: [car: *X]-

->(contains)->[body:{*}]-
->(above)->[car_top:{*}],

->(contains)->[car_top:{*}]-
->(below)->[body:{*}].

The support of matching Q5 to MA is (NQ5 PQ5)=(0 1).

Case 6: [region_l:#l] same as in Case 5, [region_2:#2] is
replaced by [rear_window:{*}]. Then Q becomes:
Q6: [car: *X]-

->(contains)->[body:{*}]-
->(above)->[rear_window:{*}],

->(contains)->[rear_window:{*}]-
->(below)->[body:{*}].

The support for matching Q6 to MA is (NQ6 PQ6)=(0 1).

The answer to the query Q is then chosen to be the
description corresponding to the highest support pair obtained,
(NQ2 PQ2) = (0.4266 1), corresponding to G2.

This example of an unlabeled query hints at the
problems to be expected when such a query is to be answered.

Obviously there is a combinatorial problem: the number of
possible label assignments increases exponentially with the
number of concept nodes in Q and MA.

Looking at those combinations which have support (0
1) it is to be noted that they contained "wrong" combinations
of the parts of a car but this does not aeem to matter: a
support (0 l) can be obtained by matching any other query
which does not contain any of the features of a car.

The combinatorial problem is probably best solved by
using heuristics and/or possibly some kind of computer-human
interaction to guide the process of label assignment. For
instance an algorithm of selecting the labels to be used in an
assignment could require at each step to chose only those
concept nodes corresponding to weights greater than a
preassigned value.

The second problem mentioned above, which amounts
to the inability of the query answering mechanism to
distinguish between "wrong" features combinations and missing
features can be solved by using counter-examples.

3. USE OF THE COUNTER-EXAMPLES.

In this paper a description G, is a counter-example
for a concept C if G is a "near miss" in the sense that G may
have all (or most) of the features of C, without, however, being
an instance of C. It follows that G is either an illegal
combination of the features of C, or that it lacks some features
which are necessary features for C, or that it has additional
features which are sufficient for a concept to be in the class of
concepts different from C. The counter-examples are to be
handled also by building a memory-aggregate for counter-
examples, (Ralescu and Baldwin 1987), henceforth denoted by

MA CE. However, not all the information presented in a
counter-example is used to build the MA CE: only that
information which cannot be matched by the MA (that is, that
information which is not shared by examples).
The MA_CE is then used as follows : a query is matched
against it and a support pair, (NQ_C PQ_C), is calculated
using the Algorithms 1 and 2. The pair (NQ_C PQ_C)
represents the support for a query, given the MA_CE, not to
represent an instance of the concept investigated. Then (l-
PQ C 1-NQ C) is the support for the same query to represent
an instance of the concept investigated. Let (NQ PQ) stand for
the support pair of matching the MA. The two support pairs
are then combined, according to the support logic rule for
combining different proof paths (Baldwin 1986) into a final
support pair (N P).

For example one may consider that Q3, Q5 and Q6
correspond to counter-examples of a car (each of them
describes some impossible combination for the parts of a car).
The necessary supports for matching each of these descriptions
to the MA were 0, hence none of them has any information in
common with any of the examples of a car.
The MA_CE based on Q3, Q5 and Q6 is :
(9) MA_CE:[NOT(car): *X]-

->(contains,l/3)->[body:{(*,l)}]-
->(above,l/2)->[car_top:{(*,l)}],
->(above,l/2)->[rear_window:{(*,l)}],

->(contains,l/3)->[car_top:{(*,l)}]-
->(below,l/2)->[rear_window:{(*,l)}],

->(contains,l/3)->[rear_window:{(*,l))}]-
->(below,l/2)->[body:{(*,l)}],
->(above,l/2)->[car_top:{(*,l)}].

Suppose now that Q6 is a query. Matching Q6 to the
MA_CE the support is (0.33 1) for Q6 not to describe an
instance of a car. This is equivalent to support (0 0.67) for Q6
to describe an instance of a car. Combining the support (0 1)

61

(Case 6 above) and the support (0 0.67) the final support
obtained is (0 0.67).

Two other points are considered here:

1. It is obvious that the answer to any query will be a
support pair. A "yes/no/I don't know" type of answer is
sometimes required or desirable. A decision rule, suitable to the
application considered, may be used to obtained more definite
answers. Such a decision rule may be as follows:
Let (Nl Pi) , (N2 P2) be support pairs obtained by matching a
query, Q, against a MA, MA_CE (for a concept C),
respectively. Let (N P) denote the final support pair obtained
by combining (Nl PI) and (1-P2 1-N2). Then decide that:
i) Q is an instance of C if (N P) is in some sense greater than or
equal to (Nl PI). In the equality case (Nl PI) must also be
different from (0 1); if not, decide that it is uncertain whether
Q is an instance of C.
ii) otherwise decide that Q is not an instance of C.

2. It has been mentioned at the begining of this paper that it is
necessary to provide a mechanism which would prevent an
example from being overused (and hence producing a bias in
the system). This problem is shortly considered here. A decision
rule according to which a candidate for a new example, call it
E, is accepted or not may be as follows:

Compare E to the MA and MA_CE for the concept being
investigated. Let (Nl PI) and (N2 P2) be the support pairs
corresponding to these comparisons. Then if N2 > 0 then E
cannot be accepted as an example. Otherwise, E can be an
example if (Nl PI) satisfies some constraint, e. g. (Nl PI) is
"smaller" than a preassigned (N P).

This decision rule favors examples which bring more
new information over those which are very similar to the MA
without excluding the latter ones.

A similar decision rule may be implemented to decide
if a new candidate, call it C E, for a counter-example should
be accepted:
Compare C_E to MA . Let (Nl PI) be the support pair
corresponding to this comparison. Then if Nl = 1 (or "very
close" to 1) decide that C E cannot be a counter-example.
Otherwise extract from C_E the information which is C_E but
not in MA and the information which is conflicting to some
information in MA. This part of the C E is eventually
responsible for C_E being a counter-example. Let C_E1
denote the conceptual graph corresponding to this information
extracted from C_E. Compare C_E1 to MA_CE and let (N2
P2) be the support pair corresponding to this comparison.
Decide that C_E can be a counter_example if (N2 P2) is
smaller than a preassigned value (N P). Otherwise, C_E may
still correspond to a counter-example, but it does not bring
much novelty: it is similar to counter-examples already used.

CONCLUSIONS

A concept learning technique based on the use of
examples and counter-examples in the context of a vision
learning system has been presented. Only those parts relevant
to the vision problem have been incorporated. It should be
mentioned that no specific changes, of the general technique,

Ralescu and Baldwin (1987), have been made in order to adapt
the learning to the vision problem. Hence there may be some
deficiencies associated with it (eg the combinatorial problem of
the process of assigning labels to uninstantiated queries). It
should be stressed that these deficiencies are due to the
domain of application, and it is expected that other difficulties
may be associated to other domains of application. Solving
these difficulties, while very important for the ultimate
performance of a system, is not part of the general approach.

The idea of building a memory-aggregate used in
conjunction with a query answering mechanism based on the
support logic theory seems to provide an adequate model for
the learning process.

REFERENCES

1. BALDWIN J F (1986), Support Logic Programming,
Int. Journal of Intelligent Systems Vol. l,pp 73-104. Also in:
Fuzzy Sets Theory and Applications. Proc. of NATO Advanced
Institute, Ed. Jones A I et al., Reidel Pub. Co.

2. BALDWIN J F, PILSWORTH B W, MARTIN T P
(1987) FRIL Manual. Equipu A.I.R. Ltd., Bristol

3. MEDIN D L, SCHAFFER M M, (1978) A context
theory of classification learning, Psychological Review 85: 207-
238

4. RALESCU A L, BALDWIN J F (1987) Concept
learning from examples, University of Bristol I.T.R.C.
Technical Report 112

5. ROSCH E, MERVIS C B (1975), Family resemblance
studies in the internal structure of categories, Cognitive
Psychology 7: 573 - 605.

6. SMITH E E, MEDIN D L (1981) Categories and
Concepts, Harvard University Press.

7. SOWA J F (1984) Conceptual Structures, Addison-
Wesley.

8. WINSTON P H (1975) Learning structural
descriptions from examples, in The Psychology of Computer
Vision, (ed. P. H. Winston), McGraw Hill.

9. WITTGENSTEIN L (1953) Philosophical
Inestigations, G. E. M. Anscombe, Oxford: Blackwell.

62

APPENDIX

Fig. 1

Fig. 2

63

