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This paper describes the development of an object
inspection system for use in flexible manufacturing
systems for the inspection of complex machined
components. During operation the system first locates
and identifies instantiations of the object in the
field of view of a camera system. A robot arm is then
used to manipulate the object in the field of view of
a sensor in order to check for manufacturing defects
e.g. surface finish, dimensions, part integrity. Robot
manipulation is necessary to enable all views of the
object to be interrogated. Much of the information
required to plan these operations is obtained from the
CAD model of the object (a CSG representation) e.g.
possible instantiations, potential gripping points
etc.

1.0 INTRODUCTION

The use of automatic inspection in industrial
applications has been restricted to custom systems
mainly for inspecting essentially 2-dimensional
objects (11). The problem of inspecting 3-D solid
objects for guality assurance presents considerable
problems if simple static camera systems are used.
Obtaining appropriate "ideal" views of particular
features on the object would require a multiplicity of
cameras in order to derive the views. To overcome this
problem we could consider obtaining the appropriate
views by one of two ways: either by moving the camera
around the object or by moving the object under the
camera. Obviously, one advantage of moving the object
is that it allows the complete inspection in
situations where moving a camera might be restricted.
For example, if the object were resting on an opague
surface, then the underside of the object would be
hidden from view. In some situations it would not be
feasible to move the object (e.g. for very large
objects) and hence a moving camera might be more
suitable. However many manufactured components are of
a size where they could be picked-up and manipulated
by a robotic arm in order to perform the inspection
task.

A number of advantages can be derived from using
a robot manipulator to present the necessary views of
the object to an inspection sensor of some kind (1).
In particular, the control of the local environment
(e.g. lighting) and the selection of "ideal" views. In
addition, the object can be positioned by the robot
for alternative inspection methods using different
sensors e.g. into a coordinate measuring machine for
the accurate measurement of manufacturing tolerances
or under a camera to assess surface finish and

The overall aim of our research is the
development of an inspection workstation capable of
recognising and performing pre-determined inspection
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strategies on a wide variety of manufactured
components. This pre-determined strategy would be
generated either automatically or interactively from
analysis of the 3-d components, the requirements of
the inspection, environmental constraints etc. and of
course cost. It is envisaged that the inspection
workstation would be used within a flexible
manufacturing system (FMS) to perform appropriate
checks on the successful completion of previous stages
of manufacture. In such a system the identification of
the objects may be managed by simple tagging, or by
keeping track of the object as it moves between
separate manufacturing workstations. However, we have
adopted a more general solution to this problem and
assumed that it is necessary for us to recognise the
object before the inspection task can proceed.

Our approach to the recognition and inspection of
the object is based mainly on information extracted
from the CAD model of the component. From this model,
all of our knowledge of the part is derived. This is
mainly based on a wire-frame description of the
object. From this information we can determine those
edges that will be visible from a particular view and
those surfaces with which the robot manipulator can
grasp the object. An imaged view of the object is then
matched against transformed views of the edge model in
order to perform the recognition. To simplify this
matching task we introduce a simple constraint: we
assume that the object is resting on a flat surface.
This allows an enormous reduction in the number of
possible views of the object that we would otherwise
need to consider.

The currently envisaged implementation of the
inspection system uses a single TV camera positioned
vertically above the object with the object resting on
a flat surface. Recognition is accomplished using
either binary or grey scale processing or a
combination of both depending on the constraints that
can be applied to the environment or those present in
the environment. Processing methods currently being
used are based on boundary analysis and Hough
transform processing.

Following successful recognition and location of
the part a robot is used to pick up the part and begin
the inspection task. This is achieved by manipulating
the object with the robot and an additional gripper.
This sequence is repeated until all the required views
of the object have been inspected.

This paper is mainly concerned with the
recognition methods that have been developed. As these
rely heavily on information provided by the CAD data
base, the way we use this data is outlined including
the prediction of possible instantiations of the
object in the image and identification of features
that are used for recognition. The binary and grey
scale processing methods that have been developed are
described and results presented.
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20 UTILIZATION OF THE CAD MCDEL

The CAD system we used to design our solid models
is BOXER, an implementation of the Leeds University
Solid Modeller NONAME (2) by Pafec Ltd. (3). BOXER
represents solids as "constructions" or "combinations"
of solid "primitives"™ such as blocks cylinders etc,
via regularised set operations, i.e. by employing
Constructive Solid Geometry (CSG) (4). A model is
built with a series of symbolic declarations obeying a
specific syntax. At any stage the model may be
displayed as a 2-dimensional projection from any
desired viewpoint: BOXER forms the wire-frame
description of the model, projects it and removes the
hidden lines if desired.

Although BOXER and CSG are convenient tools for
designing solids, they are not particularly suited to
model-based vision work: generally speaking CSG
representations do not give direct access to the
boundary of the model (its geometry and topology).
BOXER in particular gives a very redundant and loosely
structured description of the model. A very concise
representation of the topology of the boundary (wire-
frame representation) of polyhedra is given by the
Doubly Connected Edge List (DCEL) (5). The DCEL is a
list of the oriented edges of the polyhedron
represented as pairs of vertices. Each entry in the
list also contains pointers to the two faces adjacent
to the edge as well as pointers to edges incident to
the two vertices. The advantage of this representation
is that the ordered loop of edges or the ordered set
of vertices of a particular face or the ordered set of
edges incident to a particular vertex is easily
obtained with a single pass along the DCEL by
following the appropriate pointers. The geometry of
the polyhedron is complete with an additional list of
the coordinates of the vertices. The DCEL was
originally developed to describe convex polyhedra.
However it is suitable to describe any complex
polyhedron if the curved surfaces are approximated by
flat polygonal patches, Holes in a faces can be also
catered for by using more than one edge loop for the
face in which the hole is present.

Software has been written that takes the standard
output of BOXER and generates the DCEL. The software
copes with objects constructed from blocks and
cylinders but it cannot cope with surfaces that are
curved in more than one direction because BOXER cannot
supply information describing these as planar patches.
However the techniques developed can be generalised to
surfaces that are curved in more than one direction as
these can be described by the DCEL although this would
be larger than one for planar objects.

The following sections utilise the BOXER output
and DCEL representation to extract alternative
descriptions of the CAD model, which are to be used
later for matching the model with the image data.

2,1 Stable Orientations

A solid lies on a flat surface in one of a
(usually finite) set of Stable Orientations (S80). This
fact can be exploited to facilitate identification of
a solid if the viewing angle is known. Each stable
orientation defines a stable "view" of the solid i.e.
a 2-d model and is the result of the projection of the
3-d model in a direction given by the SO. Lieberman
(6) found the set of stable orientations from solid
models by first evaluating the Convex Hull (CH) of
its vertices and subsequently projecting the centre of
mass onto each of the faces of the CH. A face of the
CH and hence the corresponding orientation is stable
if the projection lies inside the face. The SO is
clearly defined as the unit normal vector of the face
of the CH. The set of all SO's therefore defines the
set of the 2-d models (resulting from the projection
of the 3-d model along the corresponding SO) of all
the expected "views" of a particular solid. The energy
reguired to tip over the solid when lying on a stable
face is used to rank the set of SO's in order of
decreasing stability. Gift-Wrapping (7) is the most
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commonly used algorithm for the evaluation the CH of a
set of points. Our implementation of this algorithm
(8) efficiently evaluates the DCEL of the CH of parts
designed on BOXER and copes with problems arising from
the fact that the CH of typical industrial parts are
very seldom simplicial polytopes. Figure 1 shows an
object designed using BOXER and figure 2 shows the
convex hull of this object. The set of S0's is fed to
BOXER to evaluate the corresponding projections i.e.
to generate the view of the object for each of the
SO's for the object sitting on a flat surface with the
observer directly above.

Table (1) shows the stable orientation view
vectors for the object of figure 1. Seven of these
objects lying in stable positions are shown in the

Figure 3. Table-full of widgets in their most likely
stable orientations (1-7 from table 1).



Figure 4, Plan view of widgets in fig. 3 (from camera
position).

scene of figure 3 which also includes an additional
object. Figure 4 shows the corresponding top view
with all the visible edges. The numbers correspond to
those of the table (the object marked X is not a
stable view of the object of figure 1). The order of
the SO's in table (1) is critical as they are ranked
in order of stability with the most stable at the top.
This information is useful in the recognition stage as
the most stable orientation is most probable and hence
will be hypothesised first. The last two SO's are
impossible and result from the polygonal approximation
of the curved edges such that there is a face (very
narrow and of small area) upon which the object will
sit. An insight into this can be gleamed from
examining the convex hull of figure 2. These SO's
will, of course, not occur in reality.

View Stability X Y 4
1 0.,1240E+01 0.0000E+00 0.1000E+01 0,0000E+00
2 0.1157E+01 0.0000E+00 -0.1000E+01 0.0000E+00
3  0.6486E+00 -0,5547E+00 0.0000E+00 -0.8321E+00
4 0.3500E+00 0.1000E+01 0.0000E+00 0.0000E+00
5 0.2018E+00 0.0000E4+00 0.0000E+00 0.1000E+01
6 0.1745E+00 0.5547E+00 0,0000E+00 0.8321E+00
7 0.1642E+00 -0.1000E+01 0.0000E+00 0.0000E+00
8 0.1043E+00 0.2594E+00 -0.5718E+00 0.7783E+00
9 0.7001E-01 0.2594E+00 0.571BE+00 0.7783E+00
10 0.3024E-01 0.4080E+00 -0.2945E+00 0.8642E+00
11 0.2620E-01 0.4080E+00 0.2945E4+00 0.8642E+00

Table 1. View wvectors for stable orientations ofthe
object.

2,2 Extraction of object descriptions for matching.

The silhouette matching process requires a
description of the occluding boundary of each
instantiation (stable orientation) of the object
consisting of an ordered set of vertices (in an
anticlockwise sense) with straight lines between
adjacent corners. The grey level processing approach
requires a description of all the corners and straight
lines that are visible on the object for each stable
orientation. Presently, these descriptions are
extracted from files produced by BOXER for plotting
the CAD output as line drawings, Each one of these
contains the end coordinates of each straight line to
be plotted (arcs etc. are described by a polygonal
approximation). Hidden line removal has been performed
by BOXER so that only visible lines are in the plot
file.

The first stage of processing consists of removal
of multiple lines and the generation of phantom
vertices., Multiple lines occur where the edges of a
plane are superimposed because the plane is normal to
the image plane. Fhantom vertices are generated by one
plane occluding another part of the object. In the
second stage the occluding boundary is found by
boundary following around the object from a known
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Figure 5 Silhouette boundary extracted from BOXER
output (SO 9 in table 1).

vertex on the outer boundary (the first corner found -
by raster scanning through the plot file). At each
vertex, all the lines at that vertex are examined and
the one that forms the outer boundary followed. This
process continues until the first vertex is again
reached. For grey level processing the output of the
first stage is in the correct form. Figure 5 shows an
example of a silhouette boundary of one of the views
of the object shown in figure 1 and referenced as view
9 in table 1.

2.3 Determining object gripping points

To facilitate grasping of the object by the robot
gripper, suitable surfaces on the object must be
identified. These gripping points are currently
selected by matching pairs of opposing faces on the
model and calculating the size of the overlapping
surface (orthogonal to the face direction). Comparing
the size of this overlap with the gripper faces allows
us to identify and locate suitable gripping points on
the model. After successful matching of object and
model, the most appropriate grip point for that view
is selected and passed on to the robot. For each valid
gripping point, the relative orientation (normal to
the paired faces) and centre X,Y coordinates are
stored for later user. Although this is a rather
simple scheme is has been fairly effective on the
planar objects we have considered to date, but would
certainly be unsatisfactory for more complex objects,
in particular those with significant concavities or
without parallel faces.

3.0 OBJECT RECOGNITION

In order to able to pick-up an object for
inspection we must first be able locate the object in
the image field, determine its orientation and then to
recognise it. Recognition will be accomplished in a
variety of ways dependent on the nature of the
object(s) to be recognised and the environmental
constraints. Binary processing will be used where good
segmentation of the scene is possible (using
backlighting or structured lighting) and each
instantiation of the object is distinct. Ambiguities
will be dealt with by further processing either using
other binary methods or grey scale methods to examine
the internal structure of the object. In this case
binary processing will reduce the search space to only
a few instantiations. If necessary purely grey scale
processing will be used in situations where binary
processing is not possible e.g. an opaque supporting
surface preventing back-lighting.

In general, the binary processing techniques are
more efficient than the equivalent grey-scale ones and
might be preferred in industrial applications where a
major is that operations be performed in "real-time".

3.1 Binary Processing

Where high=-contrast images and uniform
illumination are available, the first stages of
recognition are based on entirely binary methods of
image analysis. A number of advantages accrue from
employing binary processing. The position and



orientation of the object can be accurately
determined; gross features (area, perimeter length
etc.) can be easily extracted; efficient boundary
analysis methods, which reduce the 2-D image to a 1-D
sequence of ordered vectors, may be used; and finally,
the operation of these binary-based algorithms is
quick and efficient.

Object recognition is achieved by a three-stage
process: size features (area and perimeter length) are
used to search the model/view database and select a
subset of views which approximately match. Corners
detected on the object boundary are then matched
against the vertices of this subset of model views to
further reduce the subset. Finally, internal edges in
the object are searched for, based on expected
positions of such edges in each model view. If
ambiguities remain (i.e. more than one model view in
the subset) then these must be resolved by picking up
and manipulating the part to identify features not
visible to the overhead camera.

A high contrast image of the object is obtained
using either backlighting or an appropriate high-
contrast background. This silhouette image is then
thresholded, based on an automatic analysis of the
grey-level histogram in order to provide a well-
defined image for locating the object in the image
field. Binary objects in the image field are uniquely
located and the boundary of each object (if there is
more than one) is encoded using a simple 4-way
curvature code (the first difference of the Freeman 4-
way chain code(l12)). In addition, the area and
perimeter length of the objects are measured. Since
the digitised image has been calibrated (i.e. there is
direct correspondence between inter-pixel distances
with real world dimensions) we can directly compare
these features with those calculated from the model
SO's. These features are compared with the pre-
computed set of features for each model view in order
to identify potential matches. From this operation a
subset of possible matches is derived.

The second stage of recognition proceeds by
processing the extracted curvature code of the binary
object. The curvature code is filtered in order to
identify points of high positive and negative
curvature (points of inflection on the boundary -
corners), The filter is triangular-shaped and is
calculated by convolving two rectangular (box-car)
filters, which is computationally efficient as it
allows a filter (of any length) to be updated with
only 4 additions/subtractions. Figure 6a shows a plot
of the output of the filtered curvatures (box-car
length of 15) from the binary object in figure 6b.
From this data corners are detected by thresholding
and local peak detection (Table 2). A threshold value
of 10 was used for case.

Corner No. Distance Size
1 1 18
2 257 11
3 339 17
4 507 =17
5 752 =17
6 915 11
7 997 16
8 1076 -18
9 1116 =12

10 1196 11
11 1270 17
12 1347 =17

Table 2. Corner detection based orfilteredchain
codes, Distance given in pixels from start.

A simple structural description of the object is
then derived which encodes the object silhouette shape
as a string of primitives which represent the type
(straight line segment, arc segment), length and its
relative orientation to the next primitive in the
boundary sequence (note: currently only straight line
segments are detected). This description is then
matched to each view in the model/view subset (which
has been similarly encoded) by correlating object and
model corners in boundary sequence. Possible errors in
the correlation due to invalid or undetected corners
in the object are reduced by performing the
correlation from a fixed reference point (the first
vertex) when comparing successive corners from the
image and model. Only those corners which are
approximately equal distances (around the perimeter)
from this reference are compared, and a count of
matched corners and a cumulative error are used to
rank possible matches with each model view. This
matching also determines the relative orientation
between model view and image, enabling the actual
orientation of the part to be determined.

The third stage of processing takes each
model/view from the subset (in ranked order - highest
first) and attempts to detect internal lines (which
are explicitly marked in the model) in the object. For
this purpose a SOBEL operator is applied to the
original grey-level image, and internal edges are
detected by searching in the SOBEL image along a line
between appropriate pairs of vertex points in the
model which mark the endpoints of the edge. Results of
the matches of these internal lines are used to update
the second stage rankings. The final selection of the
best matched model/view will be based on that which
achieves the highest-ranking which exceeds a pre-
determined threshold. If two or more such views are
found which have equal ranking, then this would
indicate that the view was non-unigue, and the object
can only be uniquely identified by selecting a unigue
view for the object using the robot manipulator.

Figure 6. (a) Filtered curvature code for binary
object in (b).
(b) Binarised image of widget.
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The three-stage hierarchy allows an efficient
means of pruning the search of the model database. The
ordered sequence of corners derived from the boundary
code reguire only a maximum of (n x m) corner
comparisons (n model corners, m image corners). The
current implementation does not deal explicitly with
curved segments of the boundary, though the matching
algorithm at the second stage of processing can skip
over the polygonal segments in the model, comparing
only corners. Whist this strategy seems to work where
corner features predominate, models with significant
curves would probably cause the matching process to
fail. Work is currently in hand to include arc
descriptions in the boundary encoding.

3.2 Grey level processing

The recognition of the object and it's stable
orientation is obtained by matching features obtained
from the image with those generated from the model.
These features consist of corners and straight line
segments that are obtained using the following two
stages of processing.

In the first stage of processing the features are
obtained from the image by firstly detecting edge
points using the Sobel edge detector followed by
thresholding the magnitude at a low level (to detect
the majority of edge points at the expense of noise).
A low level description of the object to be identified
(line segment description) 1is generated by using the
radius-theta Hough transform (9) on small regions of
the image in which there are a significant number of
edge segments. The description then consists of a
number of straight lines found in each of these
regions each described by end coordinates. The use of
small regions has the following advantages over using
the Hough transform on the whole image. These are (1)
a reduction in the size of the accumulator and (2) a
reduction in time taken to search that space because
there will only be a small number of lines present in
each region. In fact the lines are detected by
searching for maxima in the accumulator that are a
significant distance apart. It also enables the
straight line Hough transform to detect components of
circular arcs because in the region the arc
approximates to a straight line. However this only
works for curves of large radius. Figure 7 shows the
grey level image for SO 9 and figure 8 shows, overlaid
on the image, the regions in which the Hough transform
is computed and the lines corresponding to the most
significant peaks in the accumulator space. These
lines, which extend right across the regions, are
matched with the thresholded Sobel image to determine
the extent of the lines resulting in the description
shown in figure 9a.

Figure 7. Photograph of the digitised widget in one
of its stable orientations (S0 9).
- 256 x 256 pixels, 6 bits/pixel.
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Figure8, Photograph showing result image cells and
lines corresponding to peaks in the
accumulator.

The second stage of processing extracts a higher
level description of the image by detecting lines and
corners in the low level description obtained from the
above processing. Initially the line segments are
pairwise examined and combined into a longer straight
line segment if two conditions are satisfied: (1) the
ends are close together and (2) the angle between them
is close to zero. Both these conditions use
heuristically derived thresholds to give reasonable
results on the images so far examined. A number of
iterations of the algorithm produces a description of
the image consisting of a small number of lines that
reasonably describes lines in the image. Finally
corners of approximately 90 degrees are detected using
similar conditions for linking line segments. These
are: (1) the ends are close together and (2) the angle
between is approximately 90 degrees. Again
heuristically derived thresholds give reasonable
results on images. The result of this processing is a
description of the image consisting of a list of lines
(with the coordinates of the ends) and a list of
corners (with the coordinates). The corner list also
contains pointers to the two lines forming the corner
so that it is an easy matter to move between the
corner and the line list. The result of performing
this processing on typically images results in an
incomplete description of the image with lines and
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Figure 9. (a) Image lines from Hough transform output.
(b) Result of detecting straight lines.
(c) Corners and all lines.
(d) Corners and corresponding lines.



corners missed because of noise in the image, poor
line detection in the Hough transform etc. However
the sparse description is adequate for recognition
using the method described below. Processing the data
of figure 9a results in figure 9b that shows the
detected straight lines, 9c the corners and 94 the
corners and those straight lines that form the
corners.

The description of the views for each of the
stable orientations of the model can be obtained
using the same processing as for the image. In this
case only the corner detection process is needed as
the line description is already available with each
straight line joining two corners already described as
one line. Figure 10a shows the lines for SO 9, 10b the
corners and 10c the corners and lines that form the
corners, As can be seen this is the model that
corresponds to the image data of figure 9.

The matching algorithm works in image space by
transforming the model description in terms of
translation, rotation and scale to align it with the
image. The transformation parameters are determined by
initially hypothesising that a particular model
feature matches with a particular image feature. The
feature considered is a straight line connecting a
pair of corners. Then the degree of match is
determined by counting the number of one-to-one
correspondences between the positions of image and
model corners and lines. A match occurs if a model
feature is closer to an image feature than a pre-
defined distance. The best match is then simply that
model and transformation with the largest percentage
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Figure 10.(a) Model lines for SO 9.
(b) Corners and all lines.
(c) Corners and corresponding lines.

of model features matched. A reduction in processing
time is obtained by only transforming the model data
shown in fiqure 10c i.e. the corners and those lines
that form the corners.

The above strategy has been shown to work on
various objects that can be described mainly by
straight lines and corners. Figure 11 shows two
examples of the results of matching for two SO's of
one object. The circles at two of the corners indicate
the pair of corners and connecting line of the model
matched with those of the image. As can be seen there
is a reasonable match with inaccuracies caused by the
fact that errors in the initial match of one part of
the model to the are magnified across the image. The
correct stable orientation is determined for each of
the possible images. Work is currently in hand to
improve the matching by considering curved segments
and other features e.g 'Y' junctions and other
corners, that can be obtained from the image. The
matching is an exhaustive search algorithm that
computes a match for each model line matched to each
image line in turn i.e. of order M*I where M is the
number of model lines and I is the number of image
lines. The search space can be significantly reduced
by only allowing transformations that produce a
feasible scaling of the model. This assumes that the
size of the object is known in advance.

Figure 11. Results of matching, showing model
scaled and transformed onto image lines
for two examples.

4.0 ROBOT MANIPULATION

The task for the robot arm is to present a
sequence of views of the object to the inspection
sensor. The choice of gripper and arm is very problem
dependent, based on the type of objects that must be
grasped and the associated set of movements that the
arm must perform. In our case we are using an enhanced
SCARA robot manufactured by the UK company UMI Ltd.
The arm has 6 degrees of freedom (up/down, shoulder,
elbow, wrist pitch, wrist yaw and wrist roll) and
simple pincer gripper.

Due to the primitive manipulator of the robot
arm, it is necessary to select the required segquence
of inspection views by releasing and re-grasping it
from a different position. It is possible to rotate
the object through several axes (about the wrist),
release onto a flat surface and then pick it up again
at a new gripping point, thus reorientating the object
in the gripper. However, this does require that the
object is placed on the surface in one of its stable
positions, otherwise it will fall into one of these
positions and its exact position may no longer be
known. In addition, placing the object onto a surface
restricts the range of approaches that the arm can
make in grasping the object, and hence to achieve a
particular view transformation may take several such
moves .



A better alternative is to allow the arm to
"pass" the object to another gripper in free space -
this could be another arm, or more simply (and
cheaply) just a gripper. This arrangement allows much
greater access of the arm to the object and also means
that the objects' position and orientation (relative
to the original grasping point) does not change until
the object is re—gripped.

The task of planning the seqguence of movements in
order to achieve the required sequence of inspection
views is complex. Currently we are investigating the
planning of the robot movements from within a Prolog
environment.

5.0 SUMMARY AND FURTHER WORK

This paper has been concerned with recognition
algorithms developed for use in an inspection strategy
for inspecting complex 3-d manufactured components.
These rely heavily on information obtained from a CAD
data base and modelling system used to provide stable
views of the components etc. Binary and grey scale
based recognition methods have been developed that can
recognise the various orientations of the objects.
Binary methods have been developed that enable the
object to be described structurally as a sequence of
line primitives. By matching these to those obtained
from the CAD model, the stable position and location
of the object is ascertained and valid grasping points
determined. Grey scale processing has enabled a
primitive structural description of the object to be
obtained that is then matched with the model via
corners and line segments. This is performed in image
space by transforming the model onto the image.

Future work is aimed at improving the recognition
methods in terms of performance and speed as well as
integrating the methods into a single system. These
will need to work in a wide range of environments and
be robust and general purpose. The automatic
generation of the robot strategy remains essentially
unsolved and will require major effort. The inspection
tasks to be performed are problem dependent and we are
currently investigating the application of previously
developed techniques (10) for this. These do not need
to be vision based and in some cases e.g. dimensional
tolerancing, tactile sensors are necessary to obtain
the required accuracy.
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