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Abstract

Many important image cues such as 'T"-'X"- and
‘L’- junctions have a local two-dimensional struc-
ture. Conventional edge detectors are designed for
one-dimensional ‘events’. Even the best edge oper-
ators can not reliably detect these two-dimensional
features. This contribution proposes a solution to
the two-dimensional problem.

In this paper, I address the following:

e ‘L’-junction detection. Previous attempts, re-

lying on the second differentials of the im-
age surface have essentially measured image
curvature. Recently Harris [Harris 87] imple-
mented a ‘corner’ detector that is based only
on first differentials. I provide a mathematical
proof to explain how this algorithm estimates
image curvature.
Although this algorithm will isolate image ‘L’-
junctions, its performance cannot be predicted
for ‘T’-junctions and other higher order image
structures.

e Instead, an image representation is proposed
that exploits the richness of the local differen-
tial geometrical ‘topography ' of the intensity
surface. Theoretical and experimental results
are presented which demonstrate how idealised
instances of two-dimensional surface features
such as junctions can be characterised by the
differential geometry of a simple facet model.

Preliminary results are very encouraging. Cur-
rent studies are concerned with the extension
to real data. 1 am investigating statistical
noise models to provide a measure of ‘confi-
dence’ in the geometric labelling. The richness
and sparseness of a two-dimensional structure
can be exploited in many high-level vision pro-
cesses. | intend to use my representation to
explore some of these fields in future work.

Keywords: Image Structure, edge detection,
corner detection.

1 Introduction

The purpose of low-level vision is to extract useful informa-
tion from images. To date, differential edge detectors have
proven the best tools for this purpose. However, even the
most successful, such as the Canny operator, fail to reli-
ably detect corners and intersections of edge contours (see
for example [Canny 83 Fig.6.14b]). Yet it is these image
features which have highest information content.
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The inadequacy of differential detectors stems from the
implicit assumption that all edges are essentially 1-D. That
is, the image function depends primarily on only one of
the two spatial co-ordinates defining the intensity matrix.
However, the projections of important image cues such as
surface corners and intersections give rise to 2-D surface
structure.

The simplest example of 2-D image structure is pro-
vided by the ‘L’- junction or gray-level corner, which corre-
sponds to a corner of a polyhedral surface in the real-world.
This is the gray-level structure isolated by the Plessey
algorithm described in section 2. Another important
intensity structure is the ‘“T’-junction, typically arising where
three polyhedra surfaces meet. Whereas it is possible to
write down a mathematical definition for an ‘L’-junction
[Nagel 83|, a multitude of parameters are required for a
‘T’-junction. ‘T’-junctions are relatively simple 2-D struc-
tures. Until now, modelling and subsequent use of such
gray-level structure has proven beyond the capabilities of
machine vision.

Exploiting the high information content implicit within
2-D image structure, defines a richer and sparser image rep-
resentation than provided by a scheme based on conven-
tional edge points. Such structure has been proposed as the
‘interesting’ points in the frame-to-frame correspondence,
[Barnard-Thompson 80,Ullman 79] structure from motion
[Harris 87,Spacek 84], and stereo [Moravec 77,Spacek 84].
Nagel [Nagel 83] has shown how ‘gray-level corners’ can
provide additional constraints in the complete determina-
tion of optical flow. Further, points of ‘significant curva-
ture’ have been successfully used to define a compact rep-
resentation for 2-D shape description [Asada-Brady 86,
Medioni-Yasumuto 86,Mokhtarian-Mackworth 86]. How-
ever, defining a suitable representation for 3-D shape de-
scription remains unsolved. A 2-D image representation
provides a means of achieving this goal.

Gray-level corner detection has received some atten-
tion in the past [Dreschler-Nagel 81,Zuniga-Haralick 83,
Spacek 84, Kitchen-Rosenfeld 82]. A detailed review and
discussion of these can be found in [Noble 87|. Essentially,
all have used a measure of ‘cornerness’ C, defined as the
product of gradient magnitude (a measure of ‘edgeness’)
and the rate of change of gradient direction with gradient
magnitude (a measure of ‘cornerness’). That is, declare a
corner if the cornerness is above threshold and the pixel is
an edge point.

AVC 1987 doi:10.5244/C.1.37



ie. O

Il

(Ledy + Iy 1} — 2L, 1) (12 + 1)
= 1/|VI|(xnL)

where &, is the curvature in the direction perpendicular
to the gradient. Clearly, this measure depends on second
differentials of the image function I(z,y). As such, even
with noise suppression heuristics, the probability of false
corner detection can be expected to be high.

Recently, Harris [Harris 87|, implemented a corner de-
tector which is novel in so far as the computations are
based entirely on first differential quantities. A descrip-
tion of how and why it works is presented in subsequent
sections. However, ‘L’-junctions are only a special type of
2-D image structure, The Plessey algorithm is incapable
of consistently recognising other 2-D features.

With the ultimate goal of defining a 2-D image repre-
sentation, I have been investigating some of the differen-
tial geometric properties of the intensity image structure.
I have shown how the differential geometry of a simple
facet model can characterise idealised instances of features
such as intensity junctions and corners. Recently, Fleck
[Fleck 87| has implemented an edgefinder that performs
remarkably well. The analysis given here and in [Noble 87|
provides that program with a theoretical underpinning.

2 The Plessey Corner Finder

I first outline the principles underlying the Plessey corner
detector.

The algorithm can be divided into the following stages:

Assume a window size W = (n x n). For each pixel (i, 1)
in the image,

1. Find I, and I, using (n x n) first difference approxi-
mations to the partial derivatives.

2. Calculate the three quantities 12, I7,andl.],.

3. Using a Gaussian smoothing kernel of standard devi-
ation ¢, compute the sampled means (17), (12), (I,1,)

using the (n x n) neighbouring point samples found
in (2).

4. Evaluate the eigenvalues p,, u,.

_[ (L) ]
A= v

[ (LL,) (I}

If both are ‘large’, declare a corner.

In the implementation, the ‘cornerness’ Chlessey is calcu-
lated as the ratio

TraceA/DetA
((I2) + (I /(T — (LL,)Y?)
= (m+pa)/ e @)

Cpinug- =

and a corner marked iff Cpieypey is small. The crucial part
in the computations proves to be with the method and
assumptions used to evaluate the matrix determinant

(INI) = (L1,)?
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3 Image Surface Interpretation

Having described the Plessey algorithm, I now present a
theoretical explanation of why the corner finder works on
real ‘L’-junctions. The analysis to follow is developed using
some of the results from differential geometry. The relevant
definitions are introduced as they appear in the analysis.
For more detailed treatment the reader is referred to text-
books such as [Lipschutz 69,Faux-Pratt 79].

3.1

Equation 1 included the term ((I?)(IZ) — (I.1,)?). This
section considers the case where this term is zero, which
arises when there is perfect imagery so that a point sampled
mean (I?) is identified with I? etc.

The image surface S(z,y) is described by the equation

One Point Sample Means

S(x,y) = zi+yj + I(z,y)k

where I(z,y) is a gray-level value. Taken together, the
gray-levels define a set of discrete samples of a continu-
ous bivariate function, the image function I(z,y). In the
discussions that follow I(z,y) is assumed smooth and con-
tinuous.
Using appropriate partial derivatives, the surface unit nor-
mal N can be shown to be
Pt 1
Nt

and the orthogonal projection of this vector onto the plane
z =0, given by

I:u _Iuv I}T

1

T
@)

ﬁ -
One convenient way to look at the properties of a surface
is to consider the First Fundamental Form ®,,defined as

$, = dS.dS

[d:dg]“‘: g”j;

where the coefficients £ = 8,.8,,F = 8.,.8,, and G =
S,.5,, are called the metric coefficients, and their defining
matrix G the metric or metric tensor of the surface. The
First Fundamental Form provides a measure of the change
in the surface representation |dS|?, for a small change in
(dz,dy). For an image surface, G reduces to

Ll awIE LI
G= [ LI, 1+1} ]
The eigenvalues of G are defined by the relation
1+12-2 Ll =0
LI, 1+17 -2 -

Putting A — 1 = u, shows the eigenvalues to satisfy the
quadratic

W+ D)+ 1 - (L) =0
Further, since IZI? — (I,I,)* =0 ,
W= (E+Lu=0

Hence the eigen-structure of the image surface is described
by the two eigenvalues ); and associated eigenvectors u;
where

=0 u, = {-1I,,I,}T i.e. one eigenvector lies
along the surface ortho-

gonal to the gradient



pz=|| VI |? wuy={L,I,}T ie. the other lies along

the image surface gradient

This is as expected from intuition. If W and V are the
eigenvector and dual eigenvector matrices then the eigen-
matrix defined by A = VGW is

.y

| IvI* o - -
A= [ 0 0 where, W =||VI||V = L &

At an edge, | VI || is large. (This is not strictly true
for all edges as this requirement will ignore weak but well
localised edges.) Further, no assumptions have been made
on the image structure (except assumed functional conti-
nuity), so the results hold true everywhere on the surface,
including corners. To demonstrate that the eigenvalues can
be used to isolate only corners, we need to show two things;

1. Firstly, equation 1 is approximately zero along an
edge or in a low gradient region. If this is true, then
the analysis above shows that we get a single high
eigenvalue, lying along the intensity gradient. The
Plessey algorithm rejects such pomts (step 4 of their
algorithm).

2. Secondly, equation 1 is high at a corner, or at least
not negligible. In this case, the analysis above does
not apply and both eigenvalues are large.

Consider the first problem:

1. Case 1: Low (or zero) gradient region i.e. a homoge-
neous patch, well isolated from other edges and image
features.

In this situation, I; and I, will be low throughout
the window W.

Consequently (I2), (I?), and (I.1,)?
zero and both eigenvalues are small.

, are all nearly

2. Case 2: A step edge, without loss of generality, can
be aligned with the y—axis.

For a small enough window kernel, I, ~ 0, and ev-
erywhere along the edge I, is large. Then, although
(I?) is large, {I:) and (I.I,)? are both approximately

zero. Hence (IZ)}(I?) — (I.1,)* = 0 as required.

We only need to prove that equation 1 is high at a corner.
To do this we need to consider the more general case of
sampled means.

3.2 The General Case: Sarﬁpled Means

Remember that the critical term in the Plessey algorithm
is (I2)(I?) — (I.1,)*. In the previous section where point
sample means were assumed, this factor is zero. In general,
when using real discrete data, there is no guarantee that
this condition is true. Each quantity (I?) (say), is now
dependent on the local variations of I? within the pixel
neighbourhood. Therefore (I?) represents a weighted av-
erage value of these neighbouring values. In the following
analysis, a Gaussian weight matrix o(x), is used for this
purpose, where its region of definition is over a window
xeW.
Then

(11) = er c(x)ff(x)dx

= Jw o(x)dx

The normalising weight matrix will occur several times in
the subsequent analysis. Let it be denoted by

fw o(x)dx =¥

[—
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Then
Jw o(x) I} (x)dx

Jw o(x) I7 (x)dx
W v

and,

()=

Taking the product

1212 = g5 ([, o0mzax) ([, eaziax)

which, using discrete windows, becomes

(1) =

(I3 I’ = —Zd(i}a(]]f’( }Iz(_))

the summation taken over the (n x n) pixels in the window.
Further, since

(it = 2GRt o

Has discrete equivalent

2
(L1,)* = 57 {Zﬂ(‘}IS[‘)Ir(J)}

L
It follows that

w2 (1213 — (LL.1,)*) =
Tizio(9)a ()2 () 15(5)
= 2Xic;0(0)o(N L)1) ,(5) (2a)
Here there are n(n — 1) different terms of the first sort and
n(n — 1)/2 of the second, where n is the total number of
pixels within the window W.
Re-writing equation 2a purely as a single summation (with
n(n — 1) terms)

¥ (BN - (LL)*) =
Tz 0(9)o() () L)L) 1,(5) — L(5)1,(:)}
With equation 2b in mind, consider the cross-product of

the two gradients at (z;,y;) and (z,,y,), where a is the
angle between the two gradient vector directions.

I'9I() x VIG) || = L()1,(5) = 4,(:) ()
91 I - | VI(5) || sin e

(2b)

(1) Assuming that the angular separation is small,
sina ~ a

(2) Further, for unit displacement ds between (z;,y;) and
(zj,y;), the normal curvature orthogonal to the gradient
vector x is given by x ~ sina.

Using these observations

I VIG) x vI() |I*
= L)L)+ E(0)L6) - 2L()L()1,()1,()
{II@) |1 - 11 VI(3) 1} w3 (3)

Compare this with equation 2a. By weighting equation
3 with the appropriate (normalised) product of Gaussians
and taking the summation over all (1, j), the two are equiv-
alent. Hence, the Plessey operator measures image curva-
ture.

To complete the theoretical analysis, consider the interpre-
tation of the denominator term in equation 1. Again, for
the case of discrete sampled means:

V() +(ID} = Tio() () + o (i) I5(5)
= Zio(d) || VIG) |I?

Therefore, the denominator provides a measure of the (Gaus-
sian weighted) ‘average strength’ or gradient magnitude.



4 Image Feature Characterisation
Using the Second Fundamental
Form

I have shown how the Plessey Corner Finder can be ex-
plained in terms of the First Fundamental Form. My ap-
proach uses properties of the Second Fundamental Form.

Haralick et al. [Haralick-Watson-Laffey 83] proposed
an eigen-function representation for the Topographic Pri-
mal Sketch (TPS). Gradients, first/second derivatives and
the Hessian were used to derive ten pixel labels based on
surface and edge properties. However, the calculations of
principal curvatures (a crucial part of the scheme) prove
complex. Further there is an inherent ambiguity prob-
lem with the labelling scheme. An equivalent surface de-
scription is provided by using the Gaussian (K) and Mean
(H) curvatures. Whereas the principal curvatures are the
eigenvalues of the Weingarten Mapping (defined as the ma-
trix G™'D where D is the Second Fundamental Form co-
efficient matrix defined below, G is the First Fundamental
Form coefficient matrix discussed earlier), H and K cor-
respond to the natural algebraic invariants. However, H
and K are scalar quantities. Thus a representation based
on their characteristics removes the need to consider di-
rectional quantities. Motivated by this and the success
of Haralick's TPS the representation I propose to use the
characteristics of the Second Fundamental Form.

The foundations of the scheme are derived from the image
surface description provided by the facet model [Haralick
80,Haralick 84]. The general principle behind the surface
estimation technique is given in the Appendix. Here I de-
rive the relevant differential geometric characteristics of the
model.

The Second Fundamental Form is given by,
__ o r| L M dz
®; = —dS.dN = [dzdy| [ M N ] [ dy ]

where, dS = S,da: - S,dy,ﬁ = S,xS”"|S,xSn,| the coef-
ficients L = S,;.N, N =8,.N, M =S5,,.N, and their
defining matrix usually denoted by D.

(& LWN-mMm2 < O HrYPEREBoUC FoinNT

‘4.'; kB w-m2>0

ELLIPTIC PoINT
(© WN-Mm2= O A M*INEXO
PRRABOLIC  PoineT *

Figure 1: Local Surface Classification in terms of the prop-
erties of the Second Fundamental Form
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The determinant of D can be used to provide a pixel
label describing the local surface geometry. Referring to
Figure 1 for a planar point L = M = N = 0, a parabolic
point LN — M? = 0, a hyperbolic point LN — M? < 0, and
an elliptic point LN — M? > 0.

For the noise-free case, such a geometric classification
is complete. ‘Interesting’ points are associated with neigh-
bourhoods containing strong evidence of two-dimensional
intensity variation (elliptic and hyperbolic points). For real
data, a purely geometric approach is insufficient. I propose
using a statistical analysis of noise to provide ‘confidence’
in labelling. Preliminary empirical results based on this
idea are presented in the next section.

4.1 Preliminary Results

Results are presented for running the algorithm on syn-
thetic and real data.

Figure 2 shows the characterisation of common idealised 2-
D image structures. Groups of localised 2-D (elliptic and
hyperbolic) labels correctly identify corners and intersec-
tions.

The 2-D structure identified by the algorithm for an asym-
metric chess board is shown in Figure 3a. A Canny oper-
ator assumes that a discontinuity has the local structure
of a step. Figure 3b illustrates the result of applying the
Canny algorithm to the same chess board as in Figure 3a.

For real images a purely geometric model is inadequate.
Figures 4a-e, show the pixel classification for the Cup im-
age. Clusters of hyperbolic and elliptic points appear around
object corners and at ‘T’- junctions; an observation con-
sistent with Nagel’s gray-value corner definition. Namely,
a gray-value corner lies between the local maxima of pos- .
itive Gaussian curvature (elliptic point) and local maxima
of negative Gaussian curvature (hyperbolic).

Preliminary empirical investigations suggest that a suitable
measure (C) on which to base statistical noise analysis is

c=vEG-F.lult lnl
2

This measure is closely related to that proposed for the
Kitchen-Rosenfeld and Zuniga-Haralick corner detectors.
Figure 4f shows the result of thresholding the Cup Image

hyperbolic points at a 95 % confidence level on this mea-
sure.

Conclusions

This paper has looked at the problem of finding 2-D struc-
ture in images. First it was shown how a novel corner
detector (in the sense it is based on first differentials) esti-
mates image curvature. This detector is only suitable for
‘L’-junctions, as its performance is unpredictable on other
higher order structures.

The solution I proposed is based on the geometric prop-
erties of the image surface. Future work intends to extend
the analysis to real data.



(4) (¢)

Figure 2: Characterisation of idealised 2-D image structures; 2-D structure identified
by the algorithm are highlighted on the original. (a) “Y’-junction, (b) ‘“T’-junction, (€)
‘X’-junction,(d) Corner.(e) shows the distribution of elliptics(black),hyperbolics(dark
grey) and parabolics(light grey) around the corner in (d).

(a) “ (b)

Figure 3: Chess board: (a) 2-D structure identified by the algorithm (highlighted white),
(b) a Canny operator fails to correctly mark the intersections
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In particular I intend to look at

e Statistical noise models to provide a more robust
measure of ‘confidence’ in pixel labelling.

e The topographical relationship between labels to de-
fine symbolic tokens for *“T’-, ‘Y’- and other 2-D struc-
tures.

e Model sensitive to the choice of surface function or-
der, window size, and polynomial basis set.

¢ Ultimately combining all these ideas to provide a ro-
bust 2-D image representation.

The work is very much on-going research. Progress to date
is encouraging and supports past work on 2-D image struc-
ture. More significantly I have demonstrated how by treat-
ing the gray-levels as a surface it is plausible to reliably find
2-D cues in real images.
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Appendix — 2-D Chebychev Facet
Model

To explain the general principle behind the model, the
analysis below considers the simplest case of a (3 x 3) win-
dow. The extension to larger neighbourhoods follows sim-
ilar reasoning but involves more tedious calculations.

Assume a (3x3) neighbourhood, using coordinates (z,y)
centred on the pixel of interest as shown.

(_Ii_l} (Ds"l) (11_1)

(-1,0) (0,0) (1,0)

[—191] [0‘1] (111)
Let the intensity function be given by I(z,y) as usual. The
digital image pixel values define a sampled version of the

real continuous intensity surface in 3-D space. Consider
approximating this intensity function by the

I(z,y) = éanf’n(-‘ﬂ, v)

Here, P; refers to the ith Chebychev polynomial defined
below.

PO(:'Jy) =1 Pl(z!y] =z
Py(z,y) = y Py(z,y) = z*-2/3
Py(z,y) = zy Py(z,y) = y*—2/3
Ps(z,y) = zPs(z,y) Pr(z,y) = yPs(z,y)
Ps(z;y] = Ps(x\y}Pi(z;y)

The coefficients ag, a1,...,az may be found using the or-

thogonality property

_ XXy Palz,9)(2,y)
PRIDBFS £ { ()

Gn

This implies that the fitting coefficients can be computed
as a linear combination of the data values in I(z,y) with

coefficients .5, Palzy)

X3 P3(5,J)
Solving for each of the parameters produces the following
nine convolution masks.

111 -1 01 [ -1 -1 -1

191 11| 16|/ -1 01| 1/6/ 0 0 O
111 -1 01 L 1 1 1
a b c i
1 -2 1 10 -1 1 1 1

1/6|1 -2 1{1/4] 00 3/8] =3 =2 =
1 =21 -1 0 1 L 1 1 1]
d e f )
-1 0 1 T | [ 1 -2 1

1/4| 2 0 -2f1/4| o o oOf1/4|-2 4 -2
-1 0 1 1 =2 1 | V=2 ]
g h J

Each mask may be applied independently to the image data
to determine parameter estimates for all image pixels. In
principle, this implies that it is possible to express I(z,y)
up to the fourth degree. The interpretation of the surface
is sensitive to choice of the degree of the polynomial, and
window size. The results presented here use the fourth or-
der 3 x 3 model.

Consider then the differential geometry of an image (Monge)
surface S(z,y) where

S(z,y) = zi+ yj+ I(z,y)k
The First Fundamental Form is defined by the equation,
&, = dS.dS = Edz* + 2Fdzdy + Gdy*
Assuming a fourth order Chebychev model

I(z,y) = a+bz+ecy+d(z®—2/3) +exy + f(y* — 2/3)
+gz(y® — 2/3) + hy(z® — 2/3) + j(z* — 2/3)(v* — 2/3)

the First Fundamental Form coefficients can be derived in
terms of the parameter estimates:

E = 1+L.I, = 1+(b—2/3g)’

G = 141,01, = 1+(c—2/3h)?

F = L.I, (b—2/3g)(c — 2/3h)
EG-F'=1+I'+ I =1+ (b—2/39)" + (c — 2/3h)*

The Second Fundamental Form is given by,

&, = —dS.dN = Ldz* + 2Mdzdy + Ndy*

Here N is the local surface normal.
In terms of estimated parameters ( again for the fourth

order model):

La [\1IT B+ 1 2(d - 2/37) [VEG - F*

L VI B+ = 2(f-2/3)) /VEG-F*
L,/JT+B+1T; = ¢/VEG-F

LN — M? = 4(d — 2/3j)(f - 2/3§) — € / (EG — F?)

L
N
M
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