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Abstract
It is shown how multiple occurrences of a planar shape in a single plane
or parallel planes can be used to extract information about their common
orientation and to consequently deproject the image. This special case of
shape-from-contour is coined "shape-from-copies". In particular, pseudo-
orthographic projections of planar contour segments related by a similarity
are considered. Skewed rotational and mirror symmetries are special cases.
One of the major outcomes is that in general considering similarities with
an even number of reflections is preferable, in contrast to the popular use of
skewed mirror symmetry.
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1 Introduction

When assuming orthographic projection, skewed mirror symmetry yields a 1-
parameter family of slant-tilt combinations in order for the deprojected shape to
have mirror symmetry [6, 1, 2, 4]. The perspective case yields stronger constraints
[11, 3], but is not considered here. In this paper, the skewed symmetry instance
of what has become known as the "non-accidentalness" approach [9] is generalized
towards the deprojection of parallel occurrences of a planar shape. This shape
might be unknown, i.e. no fronto-parallel view of the shape has to be given, or,
equivalently, no view of known orientation. Such knowledge would yield much
stronger information of course [7, 5]. Assuming many occurrences in all kinds of
directions to be present, Naito and Rosenfeld [10] suggested techniques for the
selection of a fronto-parallel view, thereby bypassing the need for such model to
be given. Here it is shown that a few parallel copies of a further unknown planar
shape might strongly constrain their planar orientation.

2 Parallel copies of a planar shape

In this section the theoretical underpinning for the deprojection algorithm in the
next section is presented. As explained before, the problem under consideration is
the following: an image (oblique view) is given of a scene in which several parallel
instances of the same planar shape are identified. The question then is: find out
the relative position (slant and tilt) of the plane with respect to the camera and
consequently derive an orthogonal view of the object plane.

First, we will more rigorously define what "copy" is supposed to mean. Then,
deformations by oblique viewing are discussed.
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ianpos!2 original inage, spline contours and inflection points

Figure 1: Original image named kamposl2 with spline contours and inflection
points.

2.1 Definition of copy
Consider a perpendicular view of two parallel, planar shapes. We say that one
shape is a copy of the other if there exists a similarity transformation mapping
one onto the other. In particular, we will consider the contours of the objects.
"Shapes" can then be complete outlines or contour segments. Choosing a reference
frame, a similarity transformation sends a point x = (a:, y)* to a point x' = (x', j/)*
as follows:

( ? ) • ( (1)

with scaling factor s = \Zs\ + s\ ^ 0. The group of similarity transformations
includes rotations, translations, scalings, mirror reflections, and any combination
thereof. They come in two categories: those comprising an even number of reflec-
tions + scaling, and those with an odd number of reflections + scaling. We'll refer
to these types as even and odd similarities, resp. Note that even similarities have
a positive determinant, whereas odd similarities have a negative one. Shapes that
can be matched by such transformations are called even copies and odd copies.

Fig. 1 shows an oblique camera image of four objects with equal shapes. Ob-
jects o, b and d have the same size and c is twice as large (in area). Shapes a, c
and d are even copies of each other, whereas a and b, b and c, and b and d make
odd copy pairs. The extracted contours and their inflections are highlighted, since
they are used for the detection of the similarities.
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Figure 2: Relation between contour plane and image plane coordinates (see text).

2.2 Copies under oblique viewing conditions
When copies are viewed obliquely, they are no longer mathematically similar in
the image. In this section we investigate the type of transformations that emerge.

It will be assumed that the objects are rather small compared to their distance
to the camera. In that case, the pseudo-orthographic projection model, i.e. ortho-
graphic projection followed by scaling to mimic the perspective effect of distance,
can be used. Assuming the same scale factor for the whole scene and appropriate
choices for the world coordinate system, the transition between 3-D coordinates
(X, Y, Zy to image coordinates (x, y)' reduces to x = XX and y = XY with A a
positive constant.

Suppose that in the plane of the contour segments, the similarity

(2)

holds between two contours, where coordinates (xp, yp) are taken with respect to
some Euclidean reference frame in the contour plane P; and with S and T as in
equation (1).

If the plane P containing the contour segments is not parallel to the image
plane /, then these two planes intersect along a straight line. Assume that this
line makes an angle 9 with the Cartesian coordinate frame in P and an angle
•0 with the Cartesian coordinate frame in /, as is illustrated in fig. 2. If both
these frames would be rotated and translated so as to align their se-axis with the
line of intersection and to make their origin coincide in an (arbitrary) point on
this line, then going from contour plane coordinates to image plane coordinates
under orthographic projection is a matter of simply scaling the y-contour plane
coordinates while maintaining the se-coordinates unchanged. Put differently, the
effect of the contour plane's slant is a compression along the new y-direction.
Image coordinates are then obtained in a 4-step process:
step 1 Rotate the contour plane frame over the angle 9 and translate the rotated
frame to the new origin. This yields the multiplication of the contour plane coordi-

cos 9 — sin 9
nates by the matrix Rp with Rp — sin 9 cos 9 , followed by a translation
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over the vector Tp (represented by a column vector whose components are the
coordinates of the old origin with respect to the reference frame with the line of
intersection as z-axis). The new ap-axis is now aligned with the line of intersec-
tion.

step 2 Perform a compression C along the new yp-axis, with C = I ft , I.
V " * /

step 3 Translate over the vector —Ti (where Tj is the column vector expressing
the coordinates of the origin of the image reference frame with respect to the frame
in / with the line of intersection as as-axis) so as to bring the temporary origin on
the intersection line to the origin of the image plane frame. Then rotate back over
the angle —ij> so as to align the as-axis with the a;/-axis of the original image plane
. . i n -ii. r> / c o s V1 -sinip \frame, i.e. apply Rj with Rr — \ • ] , .' vv J 1 J \̂  sin y> cos y> J
step 4 Finally scale with the pseudo-orthographic factor A.

Together this yields

Note that there exist simple relationships between k and ip on the one hand, and
<r and r — the so-called slant and tilt — on the other hand1.

Now let us assume that the original contour segments are related by the simi-
larity (2). Then the image coordinates are related by

where

A* - Ri C Rp1 S RP C"1 RJ1 and (5)

T* = \Ri C Rp1{(S-I)RP(C-1Ti-Tp) + T) , (6)

with primes indicating coordinates for the second contour segment. Transforma-
tions of this type form a group when fixing the plane P, which is isomorphic to the
group of 2D similarities (this subgroup of the 2D affine group is actually conjugated
to the group of similarity transformations). We'll refer to these transformations
as skewed similarities.

Note also that the determinant of the linear part of the transformation (4)
equals the determinant of the matrix 5 of the corresponding similarity:

det A* = det (RjCRJ^SRpC^RJ1) = det 5 . (7)

Consequently, the scaling factor between the original shapes and the even or odd
character of the similarity present transpires through the value and the sign of the
determinant of the resulting affine transformation.

lThe slant is the angle which the planes I and P make, the tilt is the angle between the
normal to the line of intersection lying in / and the image x axis. Then the normal to P has
(X, y, Z) components (sin<r COST, sin<r sin T, COS<T). Taking the vector product of this normal and
the normal (0,0,1) to / yields as direction for the line of intersection (sina sinT, — sin<r COST, 0).
4> is given as the negative angle between the projection of this direction and the x-axis and is
easily found to be | - T. k is immediately found as cos a.
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3 Skewed similarities and deprojection

If the skewed similarity (4) relating the image contours of two copies is known, it
can be used to extract information about the orientation of the plane P containing
these contours. The degree to which this orientation retrieval, i.e. the deprojection,
is possible, depends on the type of skewed similarity. Depending on the sign of the
resulting transformation determinant, each skewed similarity yields constraints on
the possible orientations of the contour plane. Odd skewed similarities yield one-
parameter families of solutions, whereas even skewed similarities typically yield a
pair of mirror orientations as is explained now.

3.1 Even skewed similarities
First suppose that the skewed similarity is even. Deprojection will be performed
when the values of the rotation angle r/> corresponding to Rj and the compres-
sion factor jfe in C are found. To this end, consider the relation between these
parameters and the skewed similarity matrix A*:

a" a i 2 )=Rrc( Sl °2 ) C-'RJ1 (8)
a21 o22 ) \ - « 2 «i J x

Equating the corresponding entries, one gets

on = «i + «2(cosV|sinV'(fc — 1/k)) , (9)

oi2 = s2(cos V'/Jt + sin V'Jfe) i (10)

o2i = -s2(cos2 ipk + sin2 ip/k) and (11)

<»22 = «i -s 2 (cosV>siny>(Jfe - 1/k)) . (12)

We now proceed along the following steps:
From (9) + (12) we obtain

(13)

Equating s2 in (9) and (10) yields

s2

a n — 8\) sin ip •

On the other hand, eliminating s2 via (10)/(ll) yields

, 2 _ a2i cos2 ij) + a i 2 sin2 V>

a2i sin2 V> + ai2 cos2 t(>

Equating k2 obtained from the two previous steps gives

1 / _ \
tan 2̂ > = or ip = - arctan I 1 + n— (16)

a2i "H Gi2 2 \O2i "t" o,\2) 2
with ra an arbitrary integer.
As we are only interested in ^-values in [0, ir[, we find two possible solutions, let's
call them ipi and V>2 = ^ l + f- Using the expression (15) for k2, we find jfe2 and Jk|-
One can see that k2 = \/k\. As the compression factor has to be a positive number
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smaller than or equal to 1, only the one k value smaller than 1 is acceptable (see
also remark 1). The i]>-value to be selected corresponds to the accepted k value.
Finally, now that we have values for «i, tj>, and k, we can use e.g. (10) to calculate
g2:

82 = * i/k + i 2 # 'i/ sin2 #

Remarks
1 When the image and the contour plane happen to be parallel, the equations
above become degenerate in the sense that the value of ip (and possibly also that
of k) is undetermined. This was to be expected, since in that case no intersection
line can be found between the two planes, and the skewed similarity is already a
Euclidean similarity.
2 Numerical unstability may occur when the rotation angle between the different
objects is almost 0 or 180 degrees. In that case, «2 = 0, thus yielding a diagonal
A*-matrix (a similarity!), and consequently undetermined values of-0 and jfc.
3 When searching for coplanar or parallel copies, afRne invariants can be used
[12, 13, 14]. These techniques yield the correspondence between all points on the
contour. The affine transformation (4) can then be obtained by a least-squares
fit once the corresponding contour segments have been matched. One should be
careful, however, to add additional tests for the parallelism, since afRne invariants
allow the copies to have arbitrary relative positions.

3.2 Odd skewed similarities

In the case of an odd skewed similarity, we look for a decomposition of the form

a i 2 )=R!C( 8l *2 ) C^RJ1 , (18)

yielding the following relations between the entries:

on = «i(cos2 V> - sin2 V") - 82cosipsiaip(k + 1/k) , (19)

«12 = 2«i cos V>sin tj> + «2(cos2 ij>/k — s in2 ij)k) , (20)

<*2i = 2»i cos V>sin V" — «2(sin2 il>/k — cos2 ij)k) and (21)

a22 = - o u • (22)

For odd skewed similarities we thus have 3 equations in 4 unknowns. Therefore,
unique deprojection will not be possible on the basis of one such similarity. It is
a well-known result that this case leads to a 1-parameter family of solutions. We
now proceed with the following steps:
From (20) - (21), we see that

0-12 — «21 /o,x

«2 = — 7 - • (23)
k ~ K

Subsequently, using (20) + (21) we find that

_ (a i2 + «2 i ) (y -k)- (q 1 2 - q 2 i ) ( £ + k) cos 2j>
81 ~ 2(i-fc)sin2Y> • [ '
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Using both (23) and (24) and substituting si and s2 i
n (19) gives

(2on sin 2V> - (012 + o2i) cos 2V>)(£ - k) + (a12 - a21)(£ + k) - 0 . (25)

Interpreting k as a parameter to choose freely in the [0,1] interval, this equation
expresses a 1-parameter family of solutions indeed. Once k has been chosen, one
finds the solution for ij) from this equation. Then «i and s2 follow.
Combining two skewed odd similarities
When several skewed odd similarities are present, each gives rise to a 1-parameter
family of possible deprojections. In general, the intersection of any two of these
families then fixes the right fc-value, and consequently permits unique deprojection.
We now describe how to extract the appropriate Js-value in this case.

Suppose that two skewed odd symmetries are detected with linear parts given

by the matrices A = ( O u fll2 ) and B = ( J11 J12 ^ respectively. Each

matrix gives rise to an equation of the form (25). First rewrite these equations as
rtj -I j2

functions of t — t an V> by using sin 2rj> — —==-y and cos 2̂ > = ».
l + i 1 + i

For the .A-matrix this yields the following formula (after multiplication with
the nonzero factor k(l + t2)):

(a12 + a21)(l - *2)](1 - k2) + (a12 - a21)(l + <2)(1 + k2) = 0 . (26)

Solving for k yields

k2 = a i2* + 2 a i l * a 2 1 , (27)
a2it + 2auf - au

and a similar formula for the matrix B. Equating both these expressions, yields,
after factoring out the non-zero factor [t2 + 1), a quadratic equation for t:

(ai2&2i - «2iM[*2 - 1] + 2[an(&2i - M + M « i 2 - «2i)]* = 0 • (28)

Note that this equation has non-negative determinant, and thus we get two real
solutions for t = tanV>, except when di2&2i — a2i&i2 = 0 and aii(62i — &12) +
1̂1(012 — 021) = 0, since in that case all t satisfy the constraint. It is easy to check

that this case only occurs when the matrices corresponding to the two odd skewed
similarities are equal up to a scaling, i.e. when both include a reflection over axes
that are parallel. In that case, the two 1-parameter families coincide. Otherwise,
as only V'-values in [0, TT] occur, equation (28) gives two possible values for i/>. Let
us call them -01 and V>2, respectively. Substituting these values into equation (27),
we find two values for k (ki and k2, say), only one of which is smaller than 1. This
value of Jfe together with its corresponding value of if> permits a unique deprojection
of the planar shapes.
Remark
A simple test to distinguish the skewed odd similarities from more general affine
transformations is an = —022-

4 Implementation

Using affine invariants [14] we find the skewed even similarity between the contour
points of b and c in image kamposll and consequently the deprojection of the
contours in the image is obtained (fig. 3).
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Figure 3: Contours for kamposll in the image plane and the deprojected contours
obtained using copies b and c.

image

kamposlO

kamposll

kamposl2

symmetry || k
a.b
c.d
a.d
a.c
b.c
b.d
b.c
a.d

a\b+c\d
a\c + b\d

a.c
c.d
a.d

a\b+d\b
b\c+d\b

0.3316
0.7535
0.7642
0.8314
0.7481
0.7879
0.7828
0.7741
0.8003
0.7688
0.7926
0.7635
0.7712
0.8048
0.7890

s
0.9788
1.3782
1.0193
0.7393
0.7545
1.0401
0.7549
1.0367

0.9647 1.3930
0.7173 1.0295

0.7414
1.3937
1.0358

0.9616 0.9766
0.7470 0.9766

7.2
18.6
22.3

6.1
3.9

20.6
25.5
23.0
17.6
19.3
21.3
17.7
22.7
18.6
18.3

Table 1: Camera scaling factor k, similarity scaling factor s and image rotation
angle rp for the images kamposlO, kamposll and kamposl2.

In table 1 we show some experimental results derived from three images (see
also fig. 4) of coplanar objects taken with the same camera positioning. A dot
indicates a rotational symmetry, the vertical bar a mirror symmetry. The combi-
nation of a pair of mirror symmetries gives us two estimates for the scaling factor
(one for each pair). Object c is twice as large as the others, i.e. a scaling factor
of v̂ 2 or it's inverse is expected. The results obtained by this method are in gen-
eral quite good, although some examples of (nearly) degenerate solutions can be
found in the table. KamposlO rotations a.b, a.c and b.c are nearly multiples of 180
degrees, resulting in worse results for the angle if) and the compression factor k.

In table 2 we show some distances measured on the original image kamposll
and on the deprojected one. The deprojection was done using the rotation from
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Figure 4: Contours in the images kamposlO and kamposl2.

kamposll
contour

a
b

c/s/2
d

original
inside
5.0
5.85
4.95
5.3

outside
5.25
4.2
3.85
3.75

deprojected
inside
4.3
4.3
4.0
4.25

outside
3.85
3.8
3.45
3.9

Table 2: Length of longest bitangent line (outside) and distance between the two
sharpest tips (inside) for the contours on image kamposll.

object b to object c. The normalized values for the darker object c are somewhat
smaller than the others because of border and shadow effects in the edge detection
step. The deprojected distances are more or less equal, the distances from the
original image are of course distorted by the projection.

5 Conclusions
The problem of similarity-based deprojection was discussed. Skewed odd similari-
ties give rise to a 1-parameter family of solutions, generalizing the results obtained
earlier for skewed reflections. Skewed even similarities were shown to often yield
unique deprojection (up to the usual mirror ambiguity). It seems justified to pref-
erentially use even skewed similarities for deprojection, since in general a single
such match suffices for complete deprojection, whereas at least two odd similarities
would be needed. Two main exceptions have to be mentioned though:
1 When there are no even similarities one of course has to resort to odd similarities.
Complete deprojection can still be realized when there are two odd similarities be-
tween pairs of different copies (otherwise an even similarity is implied).
2 When the even similarity between two copies doesn't allow deprojection (i.e.
one has a scaling + translation or halfturn + scaling + translation), but there is a
third, reflected copy, then the use of the two odd similarities allows deprojection
if the axes of reflection intersect.
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