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Abstract

Segmentation of 3D articulated objects into a small number of parts is an
important step for recognition of objects in 3D space. Range data provides
ready-to-use information to derive a reasonably stable and accurate differen-
tial structure of the surfaces, which allow us to track discontinuities between
these parts. We present a mixed and comprehensive approach to segmenting
and extracting prototypical parts from 3D articulated objects. Disconti-
nuity points detected from the images are combined using a “snake-type”
minimization technique, and deformable superquadric models are fitted to
the resulting regions afterwards. We compare our approach with others for
part-based segmentation.

1 Introduction

One of the key questions in Computer Vision research is how to segment a scene
in meaningful chunks which have stable visual interpretation and can be extracted
in a reliable way. This segmentation process is important as a first stage of a
system which aims to reason about and recognize 3D articulated objects based on
the notion of prototypical parts.

To do this we present a mixed and comprehensive approach to identifying
separate parts of a natural articulated object by relying on stable estimates of the
differential structure of the object’s surfaces which prevents from smoothing across
discontinuities, followed by a dynamic grouping of the detected discontinuities on
the surface and a fitting of deformable superquadric models for the segmented
regions.

The final aim of the segmentation is to get a set of 3D deformable superquadric
models where each model of the set is related to only one part of the object. Our
assumption is that three types of discontinuities (depth, orientation, and loci of
negative minima of the Principal Directions) detected upon the local differential
structure of the object’s surface can be grouped together in a way to become the
boundaries of important salient parts of an articulated 3D object. This grouping
1s formulated as an energy-minimization process of deformable curves which are
placed at the discontinuity points are attracted to paths of minimum changes in
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the Principal Directions (around a fixed neighbourhood) until they reach other
discontinuities. After this stage the set of final curves will indicate the regions on
the object’s surface to be represented as separate parts. We propose that globally
deformable superquadrics can capture well this notion of an object’s parts, and
in our solution we fit deformable superquadrics to each of the segmented regions
to get a final extracted model of the object suited for identification of its overall
shape and position.

We work with range data acquired by a laser striper set up in our laboratory.
From the range image we need a stable and accurate way of estimating Gaussian,
Mean, and Principal Curvatures as well as Principal Directions for identifying and
grouping the discontinuities.

The approach uses a mix of techniques which provides a tailored solution to
parts-based segmentation of 3D objects. The overall structure of the approach
bears similarities to recent work done by Ferrie et al [7] and it differs from their
work by the inclusion of discontinuity preserving conditions for smoothing and
curvature consistency calculations, dynamic grouping of all the detected discon-
tinuities and by the use of deformable superquadric models for representing the
objects’ parts. One of the motivations of our work is to establish a direct way
to extract a large set of deformable prototypical parts for articulated 3D objects
in order to be able to reason about the shape and the location of natural and
man-made objects.

Section 2 describes the calculation of stable estimates of the differential struc-
ture of the surfaces. Section 3 is on the partitioning of the object by allowing
a dynamic grouping of the discontinuities guided by the Principal Directions on
the surface. The Superquadric representation and the fitting of globally deformed
models are discussed in Section 4. Section 5 shows some images of the segmenta-
tion. Section 6 gives some conclusions.

2 Differential Structure of 3D Objects

The use of differential geometry techniques to model and segment range images
has become a major topic of investigation in Computer Vision [1]. One approach
taken is to derive qualitative surface descriptions by using the signs of the Gaussian
and Mean Curvatures estimated from the surface patches. There are eight different
surface shapes that can be classified by the signs of Gaussian and Mean Curvatures
[6]. This curvature-based segmentation has been applied with some success to 3D
curved objects [2], [17].

The local structure of a 3D surface is richer though, and instead of using only
the Gaussian (K) and the Mean (H) Curvatures one can also obtain from a local fit

the Principal Curvatures (1, k2) and Principal Directions (J},d}). The problem
with these estimates is that they are very unstable, and not very accurate. In order
to overcome these problems we combine a discontinuity preserving smoothing with
a two step consistency algorithm to get reliable estimates for the local structure
of the surface.

Noise smoothing of the raw range data prior to the computation of the surface
curvatures is an essential module due to the effects of quantization. Gaussian
smoothing is known to blur discontinuity points on the surface that are important
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to preserve in our case. Cai [5] has suggested that diffusion smoothing is an elegant
solution to gaussian smoothing, and it can be made to prevent smoothing across
the discontinuities. Trucco and Fisher [17] have improved on that by imposing an
adaptive boundary condition on the diffusion equation and we use their algorithm
to smooth our input data preserving the discontinuities.

The initial estimates of the local structure of the surface, or the Darboux
Frames D(P) = (P, kip, k2p, Np, dip; tfgp), is similar to other approaches
where for each point P € S we locally fit a paraboloid of the form g(u, v) = au?
+ buv + cv? to the surface. The local structure D(P) can then be computed from
g(u, v). Two particulars of the fit we adopted are: 1) The origin of the parametric
coordinate frame < u, v, ¢ > is placed at the point P aligning the g axis with the
normal, and 2) an updated map with depth and surface orientation discontinuities
is kept and checked at each pass of the estimation in order to provide a more
precise local structure of the surface at the end.

The Darboux Frame estimates obtained from the first stage are good for the
purpose of HK classification of the surfaces; however, they are not good enough
for reliable and consistent Principal Directions. For this we use a method which
was first developed for applications in medical imagery by Sander and Zucker [14].
The method is an iterative constraint satisfaction technique where at each point P
on the surface the Darboux Frames D() of its neighbouring points are extrapolated
from D(P). From this new set of D() in a neighbourhood of P, a functional is set
up to minimize the variation in D(P) using the error measures:

Ey=miny o _ [INp — Npall® + (K1 = K1()pa)? + (K2 — K2()Pa)’+

.X((Np .N(]pa — 1).

(1)

Ey =ming Y. _,[1 — (d1p(0).d1pa)?]. (2)
where a indexes over the neighbourhood.

The minimization is subject to these constraints on the Principal Directions
(dip, d2p) and the normal (Np):

(dip.Np)=0; (Np.Np)=1; (dip.dip)=1 (3)

The algorithm to achieve this is rather complex (see [14] for more details).

Either of the Principal Directions can be used in the Fy measure. The conver-

gence is controlled by a composite measure Ug] of Ey and E5, where a minimum
change in the measure throughout the iterations is required.

sy = Y Ex9+E,Y;  Pjes @)
i

A map of the discontinuities is kept and checked at each iteration in order to
avoid distortion of the Darboux Frame values during the minimization. We believe
the use of this map improves the reliability of the original curvature consistency
algorithm (see [7]), resulting in a more precise final local structure of the surface.
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3 Parts of Objects

The problem of defining what constitutes a part of an object is very important
and yet can be hard to solve. We perceive regularities from our visual world, and
these regularities help us to organize chunks of the image into meaningful parts.
A set of these parts would constitute a rough model of the object.

Important evidence for defining the extent of an object part is some sort of
discontinuity on the surface. Two types of discontinuities useful here are depth
discontinuities and orientation discontinuities. As first argued by Hoffman and
Richards [8], another important principle for parts decomposition is the transver-
sality regularity, which refers to the loci of negative minima of each principal
curvature as part boundaries.

The depth discontinuities are found by simply thresholding the range image
looking for abrupt (> threshold) changes between pixel values in a small neigh-
bourhood. The orientation discontinuities are detected as the place where the
angle made between the calculated normals to the surface in a small neighbour-
hood is bigger than a prescribed value. This prescribed angle in our case is set to
7/6. The discontinuities on the Principal Curvatures are the points where [8]:

ki(z,y) |2, 0 AND k1(z,y) <0. (5)

or,

k5(z,y) lz, = 0 AND ka(z,y) < 0. (6)

All of the three kinds of discontinuities, depth, orientation and the negative
minima points (referred from now on as nmp points) are important in determining
the extent of an object’s part. The problem we face now is how to combine them
to isolate the very salient parts the articulated objects suggest [11].

A suitable framework for deriving these contours is the notion of energy-
minimizing curve fitting, or snakes [9]. Here, fixed length snakes are placed initially
at the discontinuity points detected above (depth, orientation, and nmp points)
and they grow to follow the direction of a local tangent field [18] model derived
from the differential structure of the 3D surface (Section 2).

The formulation of the problem as energy-minimizing curve fitting gives us
a dynamic way of combining the segmentation points of the object. The local
structure of the surface enters as an important constraint in the minimization. For
a more detailed discussion about the snakes minimization and the equations please
see [9]. The process can be seen as a minimization of the following deformable curve

{s,t) = (2(s,1);y(s,1)). 0<s<1 (7)
with kinetic energy functional T'(¢):
1
() = 1] ul b2 ds. 8)
2 Jo

where p is a constant. The potential energy functional U(€) is:

1
0O = 5 [ @) 18P +uas) [ P 410 + 5©)ds 9)

where:
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e wi(s)z, is the tension of the curve

e wy(s)z,, is the rigidity of the curve

I(¢) is the potential field from the surface local structure

S(0) is the force between curves in close proximity

The solution we look for are the curves z(s,t) and y(s,¢) for which

/82 () - U(6)dt. (10)

(31

1s a minimum.

4 Superquadrics Representation

Volumetric primitives capture well the notion of parts in natural [11] and man-
made objects [3]. They are also well suited for indexing since they have a relatively
small number of parameters compared to other primitives. Basically two types of
volumetric primitives have been used in Computer Vision, Generalized Cylinders
([11], [4]) and recently Superquadrics ([12]). Superquadrics are a family of para-
metric shapes that can be globally deformed, and with this represent a wide range
of prototypical parts.

A superquadric surface can be defined by the following vector in 3D space

a; cos1(n) cos?(w)

z(nw) = az cos®!(n)sin“?(w) (11)
ag sin* (1)
where,
—-m/2<n< w2 (12)
—nrT<w<T. (13)

The parameters a;, as, and az define the size of the superquadrics in the coor-
dinates z, y, and z respectively. €; and €3 are the squareness parameters. The
capabilities of the superquadrics for modeling can be enhanced by introducing ta-
pering and bending deformations to them. Cavity [15] and local deformations [16]
are also possible, but they require different methods for recovering the parameters
from the depth data.

For the purpose of recovering a superquadric surface from the data, equation
(11) can be manipulated in order to get the following implicit equation

2,’67 2,’5: ngfl 2;{51
(@)@ e
ajz s g

Based on this equation we can define the inside-outside function [15]

T 2,’6] y 2{{2 Ez!(l P 2![1 fl
S = ((—) o] ) Hg) ) w
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Function (15) determines whether a given point [z,y, z] lies relative to the
superquadric surface

e F(z,9,2) = 1, point (z,y,2) is on the surface
e F(z,y,2z) > 1, point (z,y,2) is outside the surface

e F(z,y,2) < 1, point (z,y,2) is inside the surface

Equation (15) defines the superquadric surface in an object centered coordinate
system (zy, ys, 25). By using a world coordinate system (with origin at (p,: i Pys Pa))
and Euler angles (¢,0,1) we can express the inside-outside function in general
position

F(rw:yw:zw) o F(l'w,!,"w' zwiaha2:a&:ﬁﬂ?;én&w:pm?’yr?’Z)- (16)

The expanded function F, equation (16) has now 11 parameters without the
inclusion of tapering and bending deformations. Once we include the deformations
the number of parameters to be recovered go up to 15

F(xw' yw.zw) = F(xm, Yw,y Tws Oy oony a”,b,ﬂ,Tx,Ty). (17)

where,

e (Zy, Yw, zw) 1s a point on the surface of the superquadric
e ay,...,ay; are the 11 parameters of an undeformed superquadric
e b, 3 are the bending parameters along axis z

e T., T, are the tapering parameters along axis 2

Following Solina [15] we estimate the 15 parameters using the Levenberg-
Marquardt method for nonlinear least squares minimization of the expression

N

Z{R(r,-,y,-,z,-;a;,...,am)]zA (18)

i=1

where,

R = aazas(F-1). (19)

and N is the number of observed points. In our case, we use all of the range data
points in each surface patch found by the isolating discontinuity boundaries found
in Section 3.

To include the deformations there has to be a priority in the order of recovery
imposed on them. According to studies by Leyton [10] the following order preserves
better the structure of the object

Translation(Rotation(Bending(Tapering(z)))). (20)
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5 Examples

This Section includes examples of the segmentation of an articulated 3D object.
Figure (1) shows the range image of the object and the discontinuities initially
detected. Figure (2) shows respectively the extension of the discontinuities (using
the snakes) in order to segment the parts of the object, where regions between the
connected boundaries become the segmented surface patches, and the recovered
superquadrics for the object. The rendering of the superquadrics was done using
the Thingworld Modeling System [13].

(a)

Figure 1: (a) Raw range image of a wooden doll; (b) Image of the discontinuities
detected

6 Conclusions

Segmentation of 3D objects in prototypical parts provides a vision system the pos-
sibility of reasoning about the location, shape and function of complex natural and
man-made objects with articulations. The differential structure of the object’s sur-
face gives useful information on where an articulated object might be segmented.
A mixed approach which produces a stable estimate of the local structure of the
surface without smoothing across discontinuities is presented. This allows a char-
acterization of the local structure more precisely than simple curvature consistency
alone. The use of globally deformable superquadrics as a representation for the
segmented parts is especially appealing because of their great capability to capture
the notion of 3D parts in natural form.

Initial tests based on the segmentation approach described here show promising
results. We propose to use the segmentation in a 3D object recognition system
for natural and man-made articulated objects. This class represents a wide set of
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Figure 2: (a) Contours of segmented regions; (b) Globally deformable su-
perquadrics fitted

objects dealt with in many practical situations, and segmenting the objects in a
small set of 3D parts is a step in the direction of locating and identifying their
shapes by means of a vision understanding system. Investigations on these issues
are being carried out by us in our laboratory.
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