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ABSTRACT

We address the problem of finding a consistent interpretation of an image when a number
of object features may be detected independently, but unreliably, and their relative posi-
tions are known to be constrained. Our method treats feature detection and the applica-
tion of spatial constraints as co-operating processes. We show that a Point Distribution
Model can be used to model constraints on the configuration of features and that the mod-
el parameters define a convenient configuration space in which a region representing the
set of currently feasible configurations can be maintained. We also introduce the idea of
dealing with spatially compact groups of feature hypotheses rather than single hypotheses.
We describe two reasoning strategies for dealing with hypothesis groups and feasible con-
figuration regions. These lead to an efficient and exact solution to combinatorially explo-
sive image interpretation problems. We demonstrate the feasibility of the approach by
showing results for a system designed to interpret lateral skull radiographs.

1. INTRODUCTION
It is often helpful to decompose a difficult image interpretation problem into a
number of simpler problems. Typically, this involves treating a complex object
as a collection of sub-parts, or features, which can, to a first approximation,
be treated independently. For example, a face may be taken to to be com-
posed of eyes, mouth, nose, ears, and so on. Similarly, a mechanical assembly
may be treated as a collection of plates, springs, holes, pins, gearwheels and
other parts. Generally there are known constraints both on the appearence of
individual features and on the configuration of the set of features. If the fea-
tures are sufficiently distinctive it is straightforward to achieve reliable inter-
pretation by first locating them independently, then verifying that the overall
configuration is plausible. If feature detection is less reliable, but there are still
a reasonably small number of hypotheses for each feature, it is possible to
consider all combinations of feature hypotheses and use the configuration
constraints to select those configurations which are globally plausible. There
are a number of well-known algorithms for simplifying this combinatorial
search when the constraints are rigid [1]. However, when feature location is
particularly difficult or configuration constraints are non-rigid the number of
combinations which must be considered becomes unworkably large. Unfortu-
nately, many practical applications of vision are like this.

In this paper we describe a system which overcomes some of the difficulties
outlined above, by treating feature detection and the application of spatial
constraints as co-operating processes. For each feature, a feature expert keeps
track of all currently valid location hypotheses. A geometry expert maintains
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the set of all currently feasible configurations of features, represented as a re-
gion in a configuration space. If a feature expert is able to discard one of its
location hypotheses, some configurations become impossible and the geome-
try expert can shrink the feasible configuration region. This in turn may ex-
clude some of the location hypotheses for other features. This style of distrib-
uted spatial reasoning continues until only a limited number of valid configu-
rations remain. Of these, the configuration most strongly supported by the
image evidence is selected as the best interpretation.

We have applied the system to the problem of interpreting lateral radio-
graphs of the skull (cephalograms); the objective is to find a number of bony
landmarks which form the basis of a system of measurement used in plan-
ning maxillo-facial surgery. The task is challenging and has been the subject
of previous research [2,3]. We represent the constraints on the configura-
tion of landmarks with a statistical model, constructed by observing the
locations of the landmark features in a training set of cephalograms. To
demonstrate the effectiveness of our distributed spatial reasoning strategy
we have simulated noisy feature detectors which generate many off-target
responses. Given an initial set of feature location hypotheses which com-
bine to give billions of possible configurations, the system is able to find the
correct solution by considering only a few tens of configurations.

The idea of using the locations of some features to predict the positions of
others has been reported widely [eg 4,5]. The way we deal with non-rigid con-
straints and our distributed approach to spatial reasoning are, however,
new. Several authors describe algorithms for matching under rigid configu-
ration constraints, based on manipulating the bounds of a feasible region in
pose space [6,7,8]. Our use of a bounded region in configuration space to
represent the set of currently feasible configurations is an extension of this
idea.

2. OVERVIEW OF OUR APPROACH
It is probably helpful if we give a brief overview of the elements of our
system, before describing the underlying mechanisms in detail. We have
already explained that image interpretation is carried out by a collection of
co-operating feature and geometry experts. The details of how they inter-
act to arrive at a single solution are covered later; here we outline their roles
and responsibilities.

2.1 Feature Experts

Each feature expert deals with a particular target feature; for example, the
junction in a cephalogram between the nasal bone and the forehead. It records
all current location hypotheses for the feature and maintains a rectangular
window which bounds these hypotheses. The hypotheses are generated by
running a feature detector over an initial window supplied by the geometry
expert. In the experiments we describe below a simple template-matching fea-
ture detector has been used. A feature expert may be notified by the geometry
expert that its window should be reduced in size. In general this results in
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some location hypotheses being excluded. When this happens the window is
further reduced in size to just bound the remaining location hypotheses.
When a window is resized its new bounds are passed to the geometry expert.
A feature expert may also split its window in two; this is described in more
detail later.

2.2 Geometry Expert

A geometry expert deals with the configuration of features. The underlying
constraints on the spatial relationships between features are modelled using
a Point Distribution Model (PDM) [9]. This allows any configuration of
points in real space to be represented by a single point in a configuration
space. The model is built by analysing a training set of configurations, as a
result of which initial bounds can be placed on a feasible region in configura-
tion space. Whenever a feature expert shrinks its bounding window, the geom-
etry expert modifies the feasible region in configuration space to take account
of the new constraint. The bounding window for each feature is recalculated
and passed to its feature expert. It turns out that calculating the bounding
window for a feature in real space, given the feasible region in configuration
space, is a linear programming problem.

3. REPRESENTING SPATIAL CONSTRAINTS
A Point Distribution Model (PDM) is a convenient means of representing
constraints on the spatial relationships between a set of points [9]. The
model can be constructed relatively easily by performing a statistical analysis
of the positions of the points in a set of training examples. A PDM can deal
either (trivially) with the situation where there are rigid constraints between
the points or, more generally, where the configuration is 'flexible'.

A configuration of the points is represented as a vector formed by concatenat-
ing all their ordinates x = (x0, y0, *i, )>i, • • -^-D, )Vi)) • Normally the configu-
rations in the training set are aligned prior to creating this vector representa-
tion; in the practical example presented below the cephalograms were always
presented approximately upright and centred in the field of view and we used
the raw co-ordinates of the landmark features. Given a training set of config-
uration vectors a Principal Component Analysis is performed. This pro-
duces a mean position for each point and a description of the main ways the
points tend to move together. New configurations can be generated using the
equation

X = X + P b (1)

Where: x represents the mean shape, P is a 2nxt matrix of the t most signifi-
cant unit Eigenvectors of S, S is the covariance matrix of the training vectors,
b = (bipx.-.b,) is a vector of shape parameters.

Thus b space is a configuration space. Each of the parameters 6, controls a
mode of variation of the configuration. If each b{ is limited to values less than
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Figure 1. Representing constraints in image space and b space : when b space
has more than two dimensions the limiting lines become hyperplanes.

± a few times its standard deviation measured over the training set then
the configurations generated by (1) are similar to those in the training set.

Now consider the relationship between feature windows in real space and the
feasible region in b space. The initial limits on each b{ give a bounded region
centred at the origin of configuration space. Suppose we choose one point in
real space and apply limits to its position:

By taking rows of (1) we obtain:

Xi = ^ + p a - b y, = ft

Where p̂  is the j t h row of P (a 1 x t matrix ).

The inequality (2) can therefore be written:

P2i+i b

(2)

(3)

This leads to a limiting hyperplane in b space, normal to the vector p^ . All
solutions in the half space to one side of this plane are excluded. If the plane
intersects with the current feasible region then part of the region can be
excluded. When we constrain a feature to lie within a bounding window, four
such planes are are created in b space; this is illustrated in figure 1. The
geometry expert represents the current feasible region in b space by the set of
hyperplanes which bound it. As new constraints are added they can render
existing bounding hyperplanes redundant, in which case they are discarded.

To understand how we can reason with the constraints, consider the case of a
model having only two ordinates (one point) and one mode of variation b0.
This implies that the two ordinates x0 and x1 are linearly correlated as shown
in figure 2. A limit on b0 defines a spatial limit for both ordinates. If new
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Figure 2. A simple configuration model with
two linearly correlated ordinates and thus one
mode of variation bo- A limit on one ordinate
implies a limit on the other via a limit on bo.
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Figure 3. Initial feature windows for the six
features used in the cephalogram experiment,
each with a set of initial location hypotheses.

limits are found for xx then these may be projected through b0 onto Xo
(dotted lines ) giving new limits for x0.

4. APPLYING THE CONFIGURATION CONSTRAINTS
We have seen how it is easy to take ineqality constraints in real space and
represent them in b space. We have also shown (in Figure 2) how the feasible
region in a 1 dimensional b space can be simply projected back into real space.
Unfortunately, when b space is multidimensional, it is not quite so straight-
forward to take the current feasible region and calculate the corresponding
feature windows in real space. What we need to do is find the maximum and
minimum value for each real space ordinate subject to the set of linear con-
straints in b space. Since the real space ordinates themselves can be ex-
pressed as linear functions of the b{ (see equation 3), this can be formulated
as a linear programming problem. The extreme positions of the features cor-
respond to the vertices of the polyhedron bounding the feasible region in b
space and there are well known, efficient procedures for locating them. In
our implementation we have used a gradient based linear optimisation meth-
od from the NAG library [10].

The compuational cost of the linear optimisation method is 0(min(l2, t2))
where / is the number of modes of variation in the PDM and / is the number of
linear constraints - up to 4 for each model point plus two for each PDM mode
of variation:

I < An + t

5. REASONING WITH SETS OF HYPOTHESES
We are interested in image interpretation problems where many hypotheses
are generated for each feature and the number of combinations is too large to
search directly: more than 1012 in our illustrative example. The basic idea
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which we exploit in our solution is that of reasoning with spatially compact
sets of location hypotheses rather than individual hypotheses. Configuration
constraints can be used to remove whole sets of hypotheses and by keeping the
number of sets small the combinatorics can be kept under control. Two rea-
soning strategies are used. The first involves iteration to achieve consistency
between the feature experts and the geometry expert. The second involves
splitting the sets of hypotheses handled by the feature experts, creating alter-
native 'worlds' in which consistent solutions can be sought.

5.1 Finding Consistent Hypothesis Sets

The first step involved in interpreting an image is to establish bounds on the
locations of each of the features, based solely on the configuration constraints
held by the geometry expert. Sometimes all features may be capable of ap-
pearing anywhere in the image, but often the fact that the structures of interest
are known to be completely contained within the image, perhaps at an approx-
imately known orientation, allows the geometry expert to initialise the feature
windows with loose bounds. Such is the case for the cephalograms we use in
our demonstration (see figure 3). Although it is obviously helpful, it is not,
however, essential to our method that the initial feature windows occupy less
than the whole image.

Once the feature windows have been initialised each feature expert can search
its window for its target feature. In general feature detection is unreliable and
many off-target responses have to be accepted in order to guarantee that the
correct location is included in the set of location hypotheses. It is not necces-
sarily the most efficient strategy for all feature experts to apply feature detec-
tion at this early stage but this is of secondary importance; we intend to con-
sider alternatives in due course. Once a feature expert has found a set of fea-
ture hypotheses it can adjust its window; in general the rectangle containing all
the hypothesised feature locations will be smaller than the region over which
they were sought. When a feature expert reduces its window it notifies the
geometry expert. Given new, tighter bounds on the location of one feature, the
geometry expert can supply tighter bounds to each of the other feature experts.
In general, some feature location hypotheses will now fall outside the feature
windows for the experts to which they belong. When this happens a feature
expert can reduce its window to the point where it just contains the remaining
valid hypotheses. Such a reduction can again be passed to the geometry ex-
pert, leading to further shrinking of all feature windows. More formally the
algorithm is as follows:

1. Initialise feature windows using configuration constraints.
2. Apply appropriate feature detector to each feature window.
3. For each feature window find the reduced window which contains

all the detected features.
4. Use these additional constraints together with a configuration model

to predict new feature windows.
5. Repeat from step 3 until no further change results.
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Where relatively few featurelocation hypotheses are initially generated, this
algorithm can converge to a single valid configuration. In general, however, it
will reach a stable state in which at least some feature hypotheses sets have not
converged to a single candidate. In this case a second strategy is applied.

5.2 Building alternative worlds

Given a stable, self consistent set of feature groups, further refinement of the
locations of the features can be achieved by splitting one of the groups in two.
We assume that only one example of each feature is allowed, so the two sub-
groups form the basis for alternative solutions. We create two 'worlds' each
containing a feature expert carrying some of the hypotheses from the split
group together with copies of the geometry expert and all the other feature
experts in their current state. Each of these worlds can be iterated as de-
scribed above; three outcomes are possible: the world converges to a single
configuration, the geometry expert finds that no consistent solution can be
built from the feature hypotheses in the world, or the world stablises to a self-
consistent state in which more than one solution is still possible. The actions
taken are, respectively, to save the solution, stop considering the world, or gen-
erate two new sub-worlds. Thus a binary tree of self-consistent worlds is ex-
panded until each leaf node is either 'dead' or a solution. Where more than
one consistent solution is found, that with the strongest evidential support is
selected; if probabilities can be attatched to the feature hypotheses the set
with the highest posterior probability should be selected. More formally the
algorithm is as follows:

1. Choose a feature expert F and split its window in two, creating two
new experts Fi and F2.

2. Construct two worlds based on Fi and F2 with copies of all other
experts in their current state.

3. Iterate both worlds until they become solved, stable or dead.
4. For any stable world which remains, repeat from 1.
5. For any solved worlds evaluate the evidence supporting the solution.
6. Select the solution with the most support.
This proceedure is guaranteed to find any legal solutions which exist. The
probability of selecting, from amongst these, the correct solution will depend
on the reliability of the measures of evidential support used by the feature ex-
perts - it is possible in a noisy system for an incorrect solution to appear more
likely than the correct one. It is difficult to generalise about the number of
steps needed to reach a solution since this depends on the number of feature
location hypotheses generated, their spatial disposition, and above all the
strength of the configuration constraints.

6. THE CEPHALOMETRIC APPLICATION
We have tested the methods described above by applying them to a difficult
image interpretation problem. Cephalograms are lateral radiographs of the
skull taken under controlled conditions. They are used in planning surgery to
correct inherited or developmental malformations of the bony structures. The
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Figure 4: a - The feature coefficient map for
one of the initial feature windows-

Figure 4: b - Feature location hypotheses
sets considered at each iteration.

proceedure requires that the positions of a set of bony landmarks are located
so that distances, angles etc can be measured. The appearance of each land-
mark is relatively distinctive, although there are often other structures which
can easily be confused. The spatial configuration of the landmarks varies
from individual to individual but only within limits.

We built a PDM model of the landmark configurations from a set of 28 cepha-
lograms on each of which six landmarks had been placed by an expert. 99% of
the variation in the training set was explained by the 8 modes of variation we
used to represent the configuration constraints in a geometry expert. The ini-
tial feature windows generated by the model are shown in figure .

In order to concentrate on the spatial reasoning aspects of the problem and
have control over the difficulty of interpretation we generated images with the
geometry of real cephalograms but with synthetic features. These hybrid
images were generated as follows. First a real cephalogram was selected and
the positions of its landmark features noted. A uniform image with grey-level
gmean was created. For each of six landmarks a 16x16 pixel grey-level template
with mean grey-level gmean was generated randomly and placed at the location
of the corresponding feature in the real cephalogram. Gaussian noise was
added to the image at an amplitude which could be varied. Feature experts
used cross correlation with the known landmark templates to detect features.
A threshold was applied to create location hypotheses; the threshold level was
chosen to ensure that the real feature location was almost always amongst
those at which a potential feature was detected.

The system has been implemented in C + + on a Sun SPARC 10. Our ultimate
aim is to develop a multi-agent implementation in which control is fully dis-
tributed. With this in mind we have simulated messaging interaction between
feature and geometry experts which is directly compatible with MAPS, a mul-
ti-agent programming system [11].

7. RESULTS
We show results for a deliberately difficult hybrid image with a standard devi-
ation of 2. Figure 4a shows the map of correlation values over the initial fea-
ture window for one of the six features used in the experiment. The correct
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Figure 5. The cephalogram image with feature windows for all six features overlaid.

feature location is near the centre of the window and appears as a bright spot
surrounded by a region of lower valued (darker) responses. The hypotheses
generated by thresholding the correlation map are shown in figure 4b. The
number of feature hypotheses for the six initial windows varied between 4 and
714; the total number of landmark feature configurations possible following
feature detection was around 1.5xlO12.

Figure 5 shows the situation after 8 window splits; to reach this stage the geom-
etry expert was used to recalculate the feature windows 57 times. Correct solu-
tions have been found for features 1, 2 and 4 and the number of remaining
hypotheses for the other features have been greatly reduced; the total number
of feature configurations now possible is around 1000. Thus the combinator-
ics have been reduced by nine orders of magnitude without any significant risk
that the correct solution has been discarded. A further 3 splits and 7 calls to
the geometry expert were required to reach convergence to the correct solu-
tion.
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8.0 CONCLUSIONS
We have demonstrated the feasibility of a new method of combining local and
global spatial reasoning. Our approach deals effectively with the combinato-
rial explosion which can arise when many hypotheses are generated for each
feature, and allows flexible constraints on the configuration of features to be
modelled. We have shown the system being applied to a difficult image inter-
pretation problem based on a medical application. The methods are, howev-
er, quite general - the assumptions which have been made are applicable to
many practical applications of machine vision. Although we have described
image interpretation methods based on the use of PDM models previously the
way the are used here is quite new.

There are two main areas in which we envisage new work in the immediate
future. First, the criteria used for deciding which feature window to split,
when new worlds are needed, require further attention; at present our ap-
proach is very ad hoc, though there is no evidence to suggest that the results
are sensitive to the selection sequence. More fundamentally, we intend to de-
velop a true multi-agent implementation in which control is fully distributed.

REFERENCES

[I] W.E.L.Grimson, 1990, Object recognition by computer: the role of geometric constraints, MIT
Press, Cambridge MA, USA.

[2] D.N.Davis and CJ.Taylor, 1991, A blackboard architecture for automating cephlogram anal-
ysis, Medical Informatics, Vol 16, ppl37-149.

[3] A.D. Levy-Mandell, A.N. Vestanopoulos and E.D. Filleray, 1986^4« expert system for land-
marking of cephalograms, Proc. of 6th International Workshop on Expert Systems and
Applications, pp337-356.

[4] C. Bolles and A. Cain, 1982, Recognizing partially visible objects: the local-feature-focus
method, Int. Jour, of Robotic Research Vol 1 No 3, 1982., pp57-82

[5] N. Ayache and O.D.Faugeras, 1986, HYPER,: A new approach for the recognition and posi-
tioning of two-dimensional objects, IEEE Trans. PAMI Vol 8 No 1, pp44-54

[6] T.M. Breuel, 1990, An efficient correspondence based algorithm for 2D and 3D model based
recognition, MIT A.I. Lab. Memo 1259, Dept. of Brain and Cognitive Sciences / AI Lab.
MIT, Cambridge MA, USA.

[7] T.A. Cass, 1990, Feature matching for object localisation in the presence of uncertainty, IEEE
3rd Int. Conf. of Computer Vision, Osaka Japan, pp360-364.

[8] H.S. Baird , 1985, Model based image matching using location, MIT press Cambridge MA,
USA.

[9] T.F.Cootes, C.J.Taylor, D.H.Cooper and J.Graham, 1992, Training Models of shape from sets
of examples, Proc. BVMC 92 Leeds UK, Eds D.Hogg and R.Boyle, pp9-18, Springer-Ver-
lag.

[10] PE.Gill, W.Murray and M.H. Wright, 1981, Practical Optimisation, Academic Press, Lon-
don

[II] O. Baujard, S. Pesty& C. Garbay. 1991.̂ 4 Programming Environment for Distributed
Vision System Design. 6th Int. Conf. on Image Analysis and Processing. Como, Italy.


