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Abstract
Besl and Jain's variable order surface fitting algorithm [1] is a useful method
of constructing a noise-free reconstruction of 2jD range images with a small
number of primitive regions. The use of bivariate polynomials as the approx-
imation basis functions is linear, fast and easy to render robust. Seeding fits
from regions classified by differential geometry is an important step towards
a viewpoint invariant segmentation.

However, in order to better approximate arbitrarily shaped surfaces,
polynomials of high degree are needed. For a region-growing paradigm, the
poor extrapolation power of high order polynomials slows convergence and
generates "non-intuitive" segmentations when crossing curvature discontinu-
ities. Such segmentations are difficult to match against traditional CAD-like
models. Further, the instability of the segmentation makes invocation of the
correct model from a large database extremely difficult.

We show that these algorithms must of necessity trade representational
richness for repeatability. In this paper we describe a new method of satis-
fying the requirement for high representational richness while retaining the
ease of manipulation and recognition of single-extremum surface patches.

By introducing a canonical reparameterised coordinate system, biquad-
ratic patches can be made to approximate arbitrary single-extremum shapes
in a viewpoint invariant manner. An iterative fitting algorithm is presented,
which quickly converges to the appropriate description. Examples of the
abilities of the new approach are supplied, and compared with alternative
strategies.

1 Introduction

We are interested in recognising complex curved objects using range data, with in-
dustrial inspection being the intended application domain. Typical scenes contain
one or many objects, possibly overlapping. Initially, we make the assumption that
the objects in the scene are a subset of a database of known objects stored in the
computer, and that novel objects will be indicated to the system by an external
agent. Given this framework, a number of decisions remain to be made, choice of
model representation and matching algorithms being most important. The data
representation is predetermined, a 2|D image of depth values, which must be con-
verted into a form suitable for matching against the chosen model representation,
hence the need for some form of data segmentation. The combination of model
representation and segmentation output must be sufficient to allow the system to

1. Invoke a small number of plausible hypotheses of data-to-model pairings
from the (possibly large) object database. While in industrial applications,
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the number of objects can generally be controlled, this is not the case in
less structured environments. It seems desirable that a system should be
extendable to cope with such situations.

2. Establish correspondences between features on the model and points in
the image. This is important in the industrial domain where inspection tasks
are specified in terms of measurements to be made on or between labelled
model features.

3. Compute the pose of the object in order to further verify correspondences,
to direct the sensor to invisible parts of the object, and to display matching
results in an visually intuitive form.

4. Identify novel objects and add automatically acquired models to its ob-
ject database. This ability is particularly relevant in unstructured domains,
but is useful even in restricted domains — where a-priori models of the ob-
jects are unavailable or expressed in terms from which it is difficult to derive
a visual model.

1.1 The Correspondence Problem

Within this framework, we may consider the problem of establishing correspon-
dences between model and data features to be the bottleneck process. If a scene
containing a single rigid object is converted to a symbolic form which is exactly
that chosen in the model, modulo a predefined class of 3D transformations, match-
ing will be exact. As an example, consider Figure 3. The model built from the
first viewpoint is being matched with a segmentation from the second viewpoint.
The features used are planar and biquadratic patches. In this instance, the cor-
respondence between patches which appear in both images is close to exact. If
the matching system can rely on such output, it can be simpler and more reliable.
If it must also be able to cope with segmentations such as that shown in Besl's
paper [1] it will need to be considerably more complex.

1.2 Desirable Properties of an Object Representation

Many researchers, for example Marr [6] and Fan [3] have enumerated the desir-
able properties of an object modelling scheme. Here we concentrate on three in
particular.

Repeatability: If we accept that finding the model-to-data correspondence
is the key difficulty, this leads to the first requirement, that presenting the same
object to the system produces the same segmentation. This is generally divided
into two subgoals: Stability and Viewpoint Invariance. Stability is the prop-
erty that images which differ by small amounts should produce segmentations
which differ by small amounts. Figure 1 illustrates how a simple region growing
algorithm's choice of seed point can lead to instability. Viewpoint invariance is
the property that the segmentation, expressed in the object's reference frame, is
invariant to the predefined class of 3D transformations mentioned above.

Generality of Representation: It seems reasonable that the final symbolic
representation of the scene should be sufficient to reconstruct the original image,
to ensure that no information has been lost in the conversion.

Concise Descriptions: Although matching a perfect segmentation will in
general be exact, we cannot conclude that it will be quick. The speed of the
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Figure 1: Demonstration of instability problem when growing high-order surfaces.
The light curve is the data, the heavy curves are cubics fitted to the data. De-
pending on the choice of seed point (A or B), the breakpoint (shown as a gap)
between the two regions changes considerably.

algorithm is dependent on the length of description — small rich descriptions will
invoke and match quickly, whereas a valid, but large, description will in general
take longer.

2 The Richness / Repeatability Tradeoff

Having chosen bivariate polynomials for region approximation, we must decide
the highest order that will be used. The simplest constraint is that higher orders
will model the data more accurately, while lower orders incur less computational
expense. Besl chooses to limit to 4th order because it gives adequate results.

With the requirement for stability, however, additional constraints are imposed.
In this case, the poor extrapolation power of high-order models is unacceptable.
Consider Figure 1 where the order of fitting and choice of seed point drastically af-
fects the resultant segmentation, even from a single viewpoint. We argue that this
is because the segmentation is not sufficiently object-centered. In fact, stability is
more easily guaranteed by restricting to single-extremum functions, which will not
change curvature sign over their surface. In terms of polynomial order, this implies
that we use only planes and biquadratics. Such a restriction in turn immediately
begs consideration of the issue of representational richness, and does not address
parameter invariance under change of viewpoint. We now discuss solutions to both
these problems.

3 Invariant Fitting of Biquadratics

Perhaps the simplest parametric curved surface description is the explicit bi-
quadratic patch, of the form:

F(XJ) = F(xi,yi,Zi) - [ai...a6][l,Xi, y,-,Xij/i,a;?, j/?]T - z< - 0

where the a,- are parameters, and x; are the data points. As a representation,
however, this clearly lacks viewpoint invariance and generality.
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Figure 2: Performance of the canonical biquadratic fitting algorithm. The log-
log graph on the left demonstrates the performance of the algorithm in fitting
to the sloped cylinder z = \J'E? — y2 + x tan 6 for three values of 9. Increasing
noise variance is on the X axis, number of iterations on the Y. The graph on the
right shows the mean fit residuals as a function of surface slant. For more slanted
surfaces, the rotated fit improves significantly, while the unrotated fit error is
constant over all orientations.

3.1 A different representation

The essence of the lack of viewpoint invariance is that explicit bivariate polyno-
mials have a 'canonical' reference frame, which is independent of the orientation
of the surface patch away from the viewer. To eliminate this problem, we borrow
an idea from the SMS modelling system [4, 5], which separates surface shape from
extent and position. In this case, we consider the canonical biquadratic

B(K;U) = B(KI,K2;U,V,W) = (y" 2 + y ^ - w) = 0

which parameterises only the surface's principal curvatures at the origin. This
representation also implicitly places the surface in a canonical reference frame. To
fit an arbitrarily oriented surface, we include the required reference-frame trans-
formation into the surface's equation:

F(KI,K2,R, t;x) = B(KI,K2;R-X. + t)

where R is a 3 x 3 rotation matrix, and t is a translation vector. This
representation is unique (up to a 180° rotation about the transformed Z axis) for
a general biquadratic, where both curvature parameters are non-zero and unequal.
When Ki = /C2, the rotation about Z is unconstrained. If one curvature is zero,
the translation has one degree of freedom. When both are zero, translation has
two degrees of freedom.
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3.2 Determining the transformation

Given a set of data points {XJ}"=1. we need a means of determining the surface
parameters («i, K2, R, t), by minimising the least-square error measure

on the surface det(i?) = 1.
An initial estimate of the parameters is obtained by translating the points to

the data centroid and fitting a 6-parameter biquadratic to the data. From this we
calculate the normal at the origin n = norm(a2,a3) —1) and the elongation axis
of the biquadratic in the X-Y plane a = (cos 9, sin #,0) with tan 20 = a

 a_?a . The
rotation estimate Rk is the matrix which rotates n into the Z axis and a into the
X-Z plane:

Rk = [(n x a) x n n x a n]

An effective fitting algorithm can be constructed by rotating the data points
by Rk and repeating the above process until

ti&ce(RkRl) > 3 - e

where e is close to machine precision. The final rotation R is the inverse of
RT = n!fc=î fc- This algorithm has been implemented and converges in 3 to
5 iterations on real images taken in our lab. Figure 2 illustrates the number of
iterations as a function of noise and initial angle to the viewer, by simulation.
(Theoretical convergence calculations are difficult due to the re-fitting at each
iteration.) Finally, it should be noted that Taubin [7] has recently developed a
least-squares algorithm for implicit surface fitting which will fit this function using
a generalized eigenvector method.

3.3 Matching two transformations

An immediate application demonstrating the usefulness of this representation is
in the calculation of the registering transform between two images. With two cor-
responding patches (K\, K1

2, Ri, t;), applying the rotation R^R~[ to the first patch
brings it into the same orientation as the second (again, modulo reflections). Fig-
ure 3 shows the registration between two images, where the rotation is calculated as
described, and the translation is taken as the difference between the corresponded
centroids of one of the planes.

4 Richness: modelling general surfaces

As noted in section 2, low-order polynomials do not closely approximate arbitrary
curved surfaces. This implies that a representation based simply on biquadrat-
ics fails to satisfy the reconstructibility requirement. In this section we describe
a modification of the standard biquadratic which maintains the curvature-sign
preserving features of the single-extremum surface, while extending the represen-
tational power of the primitives. Experiments have been performed on the 1-D
case, which we describe here. Extension to the 2-D case is discussed.
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Figure 3: Calculating the rotation between 2 images. The two images on the left
are raw data from two views, the middle column is the segmentation output and
the left-hand image shows a model constructed from the first view (dark grey)
superimposed on the data from the second viewpoint (light grey).

4.1 Monotonic reparameterisation
Figure 4 illustrates a parabola fitted to non-quadratic data. In the absence of
noise the parabola cannot model the underlying circle. However, we can alter the
shape of the parabola by reparameterising its X axis to "broaden the shoulders"
of the curve. The single-extremum property may be retained by ensuring that the
reparameterisation is monotonic. Without loss of generality, we may consider a
parabola at the origin y — f(x) = ax2. The reparameterised equation is y = f(u),
u = g(x). Then y(x) has only a single extremum as y'(x) = f'(g(x))g'(x) —
2ag(x)g'(x). As g(x) is monotonic, its derivative has constant sign, so that the only
zero of y'(x) is the single zero of g(x), implying that y(x) has a single extremum.

The advantage of this new parameterisation is that the monotonic function can
be smoothed very heavily and still retain the underlying shape (see Figure 5 and
Chapter 8 of Blake [2], for example).

4.2 Calculation of g
We now describe how to calculate the discrete approximation {<7i}"=1 to the mono-
tonic function g. First, we generate a disparity map at each data point which
defines how the parabola needs to be stretched to meet that point. In the current
implementation, this map is the signed distance between the point and the approx-
imate nearest point on the curve (obtained by assuming that f'(xo) = f'(x), where
xo is the data point, and x is the true nearest point on the curve. The projection
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Figure 4: Monotonic smoothing. The left image shows a parabola fitted to noisy
data sampled from a sphere. The right image shows the fit after the parabola's X
axis has been smoothly monotonically reparameterised.

of the disparity vectors onto the X axis then defines a reparameterisation which
exactly warps the parabola to fit the data. In general, this reparameterisation is
neither monotonic nor smooth, and needs to be altered before use. The method
used is to minimise Yl7=i(di~9i)2 where di is the disparity measure at point i and
g, is constrained to be monotonic. The implementation solves the non-negative
least-squares (NNLS) problem
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By ensuring that the A, are non-negative, and because of the construction of
the coefficient matrix, the technique finds the closest monotonic function to the
disparity map if we set (/,• = Y17=i Ai + mm?=i dn- Results of the algorithm are
shown in Figure 4.

4.3 Extension to Two Dimensions

Extending the ID technique to two dimensions involves (a) defining what com-
prises monotonicity in 2D; and (b) devising a fitting technique that can quickly
approach the required representation. We have cast the first problem as follows:
Consider the original parameterisation as inkblots on a rubber sheet of constant
elasticity. If the sheet is heated, say, its elasticity will locally change, moving
the inkblots in a single-extremum preserving way. Figure 6 shows this technique
applied to a paraboloid, with a hand-chosen "heating matrix". Our current work
is now centred around finding an efficient fitting algorithm to decide the initial
values for the heating matrix, based on raw data points.
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Figure 5: The results of the monotonic optimization algorithm on noisy disparity
data.

Figure 6: Using the rubber sheet to deform the biquadratic. The top two images
show the original paraboloid and its parameter lines. The bottom images show
the deformed parameter lines with the corresponding biquadratic.
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5 Conclusions
We have introduced two new representations to the biquadratic. The first directly
tackles the problems of viewpoint invariance of the surface patch, while the second
extends the generality of the basic biquadratic. By restricting to the simplest type
of curved surface, quick and robust algorithms can be used. The utility of the
rotated biquadratic has been demonstrated on real images, and results from the
monotonic reparameterisation look promising. The system shares similarities with
other deformable modelling schemes, but is designed more for 2|D images.

Future work will concentrate on improving the speed of the NNLS optimization,
which currently uses a standard pseudo-inverse algorithm. In our case, however,
the form of the matrices are a-priori limited, which may allow the development of
an improved specialised method. Work is also progressing on the use of piecewise
monotonicity as a general adaptive smoothing paradigm.
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