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Abstract
This paper presentsa method for generatingsparserange data from
texturedsurfaceswhich have structuredlight projectedonto them. The
work is motivatedby the needto measure3-D road defectsrapidly and
reliably. Traditional approacheso computing range from stereoscopic
imageshave replied on either smooth or finely textured surfaceswhen
usingstructuredight. Conventionakechniqueghattakeadvantagef the
inherent texture in the images are not applicable. This is because
correspondingstereoscopiaoad surfaceviews are dissimilar due to the
geometryof the camerasand the surfacetexture. The methoddescribed
places initial edge points in a low resolution version of the intensity image.
Thesepoints are usedto initialise open active contour modelsor snakes
which arepropagatedria a pyramidto a higherresolution. At this higher
resolution,internal and externalconstraintsare appliedto the snake;the
internal constraintbeing a smoothnesdunctional and the external one
beingbasedon a maximumlikelihood estimateof the edgestrengthacross
eachlight stripe. Computatioris spatiallylocalisedat eachstageandthus
this algorithm could easily be parallelised.

1. Introduction

This paper describesa stereo multiresolution algorithm using active contour
models prior informationandan edgemodel. Thealgorithmgeneratesctivecontours
thatarerefinedoverscale. The smoothnessf the depthdatais determinedby a single
regularisation parameter.

1.1. Motivation

The problemsassociatedvith generatingdepthdatafrom a pair of stereoimages
are well known [1]. Arguably the most difficult task is establishingcorrespondence
betweenfeatureg[2] that providesdepthinformation. Motivation for this work stems
from the needto improveon the poor quality dataobtainedin manuallysurveyingroad
surfaceq3]. Inaccuratedatafrom the surveysis believedto be a major causeof costly
errors in road repair even when expert systems are used [4].
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1.2. Related Work

Projecting light onto a 3-D surface to determine corresponding points in
stereoscopi@magepairswasfirst discussedy Will and Penningtor5,6] who located
planar faces of polyhedral objects. Potmesil [7] descrideslidsticapproactin which
the imagesincluded a set of calibration marks so that cameraparameterscould be
estimated. In 1986 Hu, Jainand Stockman[8] projecteda squaregrid onto a smooth
surfaceand modelledthe resulting squaresas textures. The pattern elementswere
classified in terms of the surfaces they formed, sschlanar,non-planargconvexand
non-convex,using a nearestneighbourtechnique. Both methodsworked well but
relied on the underlying surfaces being smooth.

Otherapproachebsaveincludedencodingthe light pattern[9] andprojectingthree
different patterng(generatinghreedifferentimages)[10]. The later approachinvolves
recovering unique-corresponding points (for stereo images)drcombinationof three
images. Clearly this approachs not applicableif thetargetsceneor imagingsystemis
moving.

An algorithm that combines a passive illumination method with multiple
resolutionswas developedby Tate and Lai [11]. In this paperit was noted that
occlusionandcorrespondencarethe main problems. Laserrangedatacombinedwith
intensity at a coarseresolutionwas usedto ensurecorrespondencacrossmultiple
scales.Othershavedescribedhe useof projectedight patternsat multiple scaleq12],
but not, to the bestof our knowledge the constructionof a depthmap using datafrom
multiresolution images. The correspondence problem is addressed using the laser range
dataand wherethis doesnot exist, an interpolationmethod. Further,severalad-hoc
thresholdsareincorporatedo ensurethatthe newly generatedlatais smooth. Related
to this work by the useof multiple resolutionsjs the work of Bajcsyand Kovacic [13]
on multiresolutionelasticmatching. This work fits shapemodelsto multiresolution
data, the fit being performed in terms of best fit to a trained model.

1.3. Contributions of thiswork

» Projectedlight stripescombinedwith model basedconstraintsto interpret stereo
images without resorting to restrictive object models.

» A careful formulation of the model energy constraints. The internal energy
constrainsthe snaketo a straightline while the externalenergyis basedon a
maximumlikelihood function of the edgethat hasbeenshownto be well behaved
with respectto edgestrength[14]. This forcesthe snaketowardshighly likely
edges.

» The problem of initialising the snakes is performed using a matchedafiltirior
knowledgeof stripewidth and numberof stripes. The matchedfilter anduseof a
pyramid datastructureapply geometricconstraintshat adaptprogressivelyasthe
interpretation is refined.

* No initial estimatesof depthare requiredasin [11]. It is unlikely that a laser
technique would work in this case due to the coarse structure of the road surface.

» Theuseof a singleregularisatiorparameteto control depthdatacontinuity. Post
processing[15] for example)is unnecessargincethe depthdatais smoothand
discontinuities are preserved.



2. Algorithm Overview
This sectiongivesa brief overviewof the algorithmdevelopedo establishedgepoints
in imageswith projectedlight. The numberof stripes,Ns, is known a priori asis the
width of the stripe. Figurel showsan outline of the algorithm. On the left handside
of the figure the original image is sub-sampledo form lower resolution intensity
images. At layer 2, candidateedgenodesare generatedy convolvingwith a matched
filter that is the width of the expectsttipe. The strongestNs responseareselectedo
form the candidateedgemap. Eachedgealonga stripeforms an activecontourmodel
(snake)thusthereare2Ns snakegerimage. Eachsnakeis propagatedo layer1 and
then optimised over a limited spatial domain constrainedby internal and external
energyfunctionstogetherwith a regularisationparameter. Whenthe optimum snake
hasbeenfoundit is propagatedo the next higher resolution(layer 0) and optimised
again. The result of this stage is a set of corresponding edge points for each stereo pair.
Samplingratherthana Gaussiarpyramidis usedbecauset) randomnoiseis not a
causefor concernandii) to avoidthe increaseccomputationaktostassociateavith the
generatingGaussiardata. Whilst this breakswith the conceptof scale-spac¢l6] it
does not undermine theinciple of the proposedalgorithm. Herethe mainissueis not
the preservatiorof a well orderedsignalin scale-spacéut ratherthe initialisation of a
boundarydetectionprocess. This approachis justified becausehe artifactspresentin

the image are not random signals but associated with the structure being analysed.
prior knowledge
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Figure 1. Overview of the algorithm, on the left hand side intensity data is sub sampled
to provide lower resolutions of the original data. On the right hand side, snakes are
formed from an initial convolution placement scheme.

3. Algorithm Detail

This sectiondescribegour partsof the algorithm: 1) the pyramiddatastructure,2)
the snake formulation, 3) initial edge placement(snake initialisation), 4) snake
propagation and 5) snake optimisation and update strategy.

3.1. Pyramid structure

A three level intensity image pyramid is generated by sampling to reduce the
vertical resolution by four and the horizontal resolution by two at each step. The lowest
resolution image is 35 by 192.



3.2. The active contour model

The active contour model introduced by Kass et al. [17] is basedon the
minimisationof energyfunctions. Generallythesefunctionsare heuristicand of an
arbitraryform and frequentlyformulatedas energyfunctions. Active contourmodels
do not requiretheseheuristicsto be energytermsbut just to havea suitableform. In
this work the internal and externalheuristic functions are basedon the cosineof an
angleandthe maximumlikelihood probability of an edge. Given a setof nodesV that
form a snake, then the objective is to minimise

e(V): i)\iEint(vi)+(1_)\i)Eext(Vi) Eq' 1.

where v ={v, =(x,y,):i=12.n},
Eint is @ smoothness constraint,
Eextis the external energy, such as edge strength,
andA are the regularisation parameters.
As notedby Lai andChin [18], theregularisatiorparametersvill greatlyinfluence
the result from being dominatedby the externalenergywhen A <<(1-)\) to being

dominatedby the internal energyor smoothnessvhen ) >>(1-)\) which in this case

would force the snhaketo a straightline. Setting the regularisationparameteris a
formidabletask and despiteefforts of manyresearcherg¢seereferencg18] for details)
the problem is unsolved for the case when the objective is to position the snaketso that
reflectsthe strengthof eachenergyat eachnode. The problemis not solved by the
methoddiscussedn [18] wherea minimax approachs takento the automatic-implicit
selection of... Lai andChin'smethoddepend®n the normalisatiorof the internaland
external energies, therefore weak edges are weighted the same as strong edges.

Theapproachadoptedn this work is basedon the assumptiorthat externalenergy
termsshould be adaptivelyweighted. Thusweak edgeshavea reducedaffect on the
snake. In this work the internal energy is defined as

E,. =(cog6)+1)/2

where® is the angledefinedin Figure2 asthe smallestangulardifferencebetweerthe
lines subtendedbetweenthe vector pairs (v,_,,v,) and (v,,v,,,). Thus E;,, =0 when

(v.,,v,) and(v,,v,,) form a straight line and tends to 1 otherwise.

Figure 2. Definition of angle used in the smoothness constraint.
The externalenergytermis basedon the maximumlikelihood of the edgeat V; such

that E.,(v;)=1-L,(v;). The edgeis assumedto be vertical and therefore the

likelihood estimateis madein the horizontalplane. The normalisediikelihood of the
edge at nod#, is defined as



where L (v,)=maxL(v,)00 L] where L is a local support region defined as
L={v,-2,v, -1v,,v, +1v +2. NotethatwhenL,.(v;)=1 the edgelikelihood is

a maximum. The derivationof the maximumlikelihood estimateL(), is givenin the
Appendix.

3.3. Initialising the snake

The snakes are initialised by finding tiiaximumNs responseto the convolution
operation. Since stripes are projected vertically, the inteimsétgeis convolvedwith a
horizontaltop-hatfunction F,, of width w2, wherew2 is the expectedwidth of the

projectedlight stripe at the resolutionlevel 2, in this casew2=5. Let C, containall

snakes at level p. Thus the initial snake values at lexg), &re based on the result of
C,=G,*F,,

where* indicatesthe convolutionoperation. The initial snakenodesare selectedas

thelargestNs responsein C,. Theseresponsesepresenthe right handedgesof the

stripes,the left handedgesareassumedo be at the position C,(x;,y; —w,) for a right

hand snake node at,(x,,y, )-

3.4. Propagating snakesin the Pyramid

Oncethe snakeshavebeeninitiated at C,, they are propagatedo the nexthighest
resolutionC, sincethe resolutionat layer 2 is suchthat any refinementis unlikely to
produce significant improvement. A snake node at V; in C, represented
C,(v;) =C,(x,y,) propagateso position C,(v,) = C,(kx;,k,y, ), thatis, the positionx
in the lower resolutionprojectsto a new position in the higher resolutionwhich is
simply x k where k is the scaling factor. In addittorthis, parentnodesin C, havea
rangeof child nodesin ¢, (similarly parentnodesin c, havechild nodesin C,) that
arethe possiblesitesthatthe snakenodecould moveto. Thesearedefinedfor nodeV,
asthe setS where s={(x,,y,_,),(x .y, ).(x .Y ..){% ¥ .,)}- Thisis asdefinedin [19]
andrepresents 50% overlapin y comparedvith theintensitysampling. Notethatthe

freedomin the snakeis only in they direction (horizontally) reflecting the expected
orientation of the edge.

3.5. Optimisation and update strategy

For eachsnakeV thereis an associatedvisit set T. Initially the procedureto
minimise Equationl startsat v, andvisits eachsnakenode. Sinceminimising each
node only usesthe local neighbourhood minimising Equation 1 is not explicitly
required. Thuswhen a snakenode V; is updatedthen only nodesv,_, and v, are
affected. If v, is not updatedthenthe visit vectort(i) is zeroed. If Vv, is updatedthen
t(i-1)=t(i)=t(i+1)=1. After the first completeiteration of the snake,a new site to be
minimised is selected as

i = argimaX(e(Vi)ti )



Thus the snakenode with the maximum e(vi) value is visited since this site

representghe worst site in termsof fitting the snakemodel. Finally when T=0 the
snake has converged to a minimum.

The update rule for each snake node is different from that described in [18]. Here a
nodeis updatedby performinga weighted-lineaiinterpolationbetweenthe maximaof

the internal and external energies. For a ngdeefineVv,,, andVv,, as

Vint = argimin(}‘Eint(Vi)) and Vext = argimin((l_)‘)Eext(Vi)) oo s.

Next update the node, asv, =V, +Av, such that
v = Vint ¥ Vext andAV_ _ AVint(l_ Eint(vint)) +Avext(1_ Eext(V ext))
i i =
2 (1_ Eint(Vint)) +(1_Eext(vext))

WhereAvint =V~ Vi andAVext =V, Vet

Note that  if Eint(Vint) =1 Eext(Vext) =0, O AV, =Avgy
if Eint(vint) =0, Eext(Vext) =1 O Av =Avjy

; Avi . + AV
if Eint(Vint) = Eext(Vext) U Ay, = % =0.

Figure 3 shows the complete algorithm.

Generate intensity images andG, from G,
Estimate edge locations for snake initialisation at layer
Step 1 propagate snakes to next higher resolution
Do select each snake s
Do Minimise each node
Generate visit sét
Until all nodes in s have been visited
Do Select a new node in snake s
Minimise the node
UpdateT
Until T=0, that is, shake s has converged
Until all snakes have converged
If not layer O
Gotostep 1
end
Figure 3. The snake minimising algorithm.

4. Results

The algorithmhasbeentestedon imagesof a laboratoryroad surfacecontaininga
pot-hole. In thisvork the baselinevasat 2 metresthe cameraseparatiordistancewvas
1.3 metresandthe areaimagedwasapproximately0.5mx 0.7m. Figure4 showsthe
stereopair and Figure 5 showsthe depthmap reconstructiorfrom the sparsedataset.



In this figure, the regularisationparametemvas setto A = 0, thatis, the snakewas
optimisedwith only the externaledgeparameter.In Figure 6 the sameview is shown
except that the regularisation paramétasbeensetto A = 0.6. Notethatthereis some
degreeof variationin the areasaroundthe hole which initially may be expectedo be a

flat surface. However,the surfaceof the testpot-holeis not flat becausef the coarse
granularity of the surfacingmaterial. Subjectively,the result obtainedis an accurate
interpretation; a detailed evaluation is planned. It can be sddglire5 thatthereare
a numberof depthsthatare probablynot correct. In Figure 6 the sameview is shown
exceptthat the regularisatiorparametehasbeensetto A = 0.6. Clearly the resulting
reconstruction is smoother than that shawfigure5. In Figure7 thedominanterror

in depth estimation is shown. Thentinuousplot is from Figure5 andthe dashedine

is from Figure6. The differencethatthe regularisatiormakescanbe seen. The cause
of this and similar errorsis a nodein the snakethat has beenincorrectly placed.
Figures 8 and 10 both show th@mesectionof oneimagefrom the stereopair with the

shakenodessuperimposed Figure 8 showsthe nodethat causeghe large error shown
in Figure5 within the boxedareaandin Figure9 it canbe seenthatthe error hasbeen
corrected.
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Figure 5. Reconstruction witk=0. Figure 6. Reconstruction with=0.6
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Figure 7. Plot showmg the differences between constramed (dashed) and non-
constrained (full line) depth information.
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Figure 8. Node placemeht0. Figure 9. Node placemeht0.6.

5. Conclusions

This paperhasshownthat a multiresolutionsnakecan be incorporatednto a 3-D
reconstruction scheme that uses light stripes and kmmwledgeregardingthe number
of stripesandtheir geometry. In this approachknowledgeof the projectedpatternis
used to constrain theearchfor correspondingpointsin a steredmagepair. Thesnake
energyterms constrainhow the position of initial points are alteredin the higher
resolutionimages. As a result, thereis an implicit constrainton the corresponding
pointsin eachimage whichenforcesa degreeof continuity in the depthmap. It has
been shown that interpretationsgeneratedirom a strategythat does not include a
smoothnesgonstraintis likely to containerrorsdueto local minimain the intensity
imagesand that the inclusion of constraintsprovidesa reliable 3-D reconstructiorof
the shapefor anirregularobject. Furtherwork will includean initial node placement
scheme that overcomes the problem of occluded stripes.

6. References

[1] Jepson, A. D. and Jenkin, . M., 'The fastcomputatiorof disparityform phase
differences',in ProcCVPR'89: IEEE ComputerSocietyConferenceon Computer
Vision and Pattern Recognition, San Diego, USA, 1989, pp. 398-403.



[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Barnard, S. T. and Thompson,W. B., 'Disparity analysisin images',IEEE
Transactionn PatternAnalysis and Machine Intelligence,PAMI-2, 1980, pp.
333-340.

Hintz, R. J., Karakadas, C. and Kang, J., 'Analysis of pavementcrackingand
rutting using close range photography', Photogrammetric Enginesraigemote
Sensingps, 2, 1989, pp. 217-221.

The highway designand maintenancestandardsnodel, Volume 1, 'Description’,
1987, John Hopkins University Press.

Will, P. M. and PenningtonK. S., 'Grid coding, a preprocessingechniquefor
robot and machine vision', A2, (3/4), 1971, pp. 319-329.

Will, P. M. and PenningtonK. S., 'Grid coding, a novel techniquefor image
processing', Proc. IEEBD, (6), 1972, pp. 669-680.

Potmesil, M., 'Generationof 3-D surface descriptorsfrom images of pattern
illuminated objects’, in Proc. IEEE conf. Pattern Recognition and Image
Processing, Chicago, IL, August, 1979, pp. 553-559.

Hu, G., Jain,A. K. and Stockman,G., 'Shapefrom light stripetexture’, in Proc
CVPR '86: IEEE ComputerSocietyConferenceon ComputerVision and Pattern
Recognition, Miami Beach, FL, USA, 22-26 June, 1986, pp. 412-414.

Vuylsteke,P. and Oosterlinck,A., 'Rangeimageacquisitionwith a singlebinary-
encodedlight pattern’, IEEE Transactionson Pattern Analysis and Machine
Intelligence 12, 2, 1990, pp. 148-164.

McDonald, J. P., Lambert,R. and Fryer, R. J., '3-D measurementising stereo
scenecoding’, Colloquiumon 3D Imagingand Analysisof Depth/Rangdmages,
IEE, Digest number 1994/054, 1994.

Tate,K. andLai, Z., 'Depthmap constructionfrom range-guidednultiresolution
stereomatching',IEEE Transactionson SystemsMan and Cybernetics,24, 1,
1994, pp. 134-144.

McDonald, J. P, Siebert,J. P. and Fryer, R. J., 'A new approachto active
illumination’, BMVC 1991, pp. 210-216.

Bajcsy,R. and Kovacic, S., 'Multiresolution elasticmatching',ComputerVision,
Graphics and Image Processidf, 1989, pp. 1-21.

Zhou, P.andPycock,D., 'RobustModel-BasedBoundaryCue Generatiorfor Cell
Image Interpretation’, BMVC 1995, Birmingham, England, pp. 337-356.

Terzopoulos,D. and Metaxas,D., 'Dynamic 3D modelswith local and global
deormationsdeformablesuperquadrics|EEE Transactionon PatternAnalysis
and Machine Intelligencdg3, 7, 1991, pp. 703-714.

Blom, J., Bart, M., RomneyterHaar, Bel, A. and Koenderink,J. J., 'Spatial
derivitives and propagationof noisein Gaussianscalespace'Journalof Visual
Communication and Image Representatiprl,, 1993, pp. 1-3.

Kass, M., Witkin, A. and Terzopoulos,D., 'Snakes:active contour models',
International Journal of Computer Vision, 1998, pp. 321-331.



[18] Lai, K. F. and Chin, R. T., 'On regularization, formulation amtalisation of the
active contour models (snakes)',First Asian Conferenceon Computer Vision,
Osalsa, 1993, pp. 542-545.

[19] Spann,M. and Grace, A. E., 'Adaptive segmentationof noisy and textured
images'27, 12, 1994, pp. 1717-1733.

[20] FukunagaK., 'Introductionto statistical patternrecognition', Academic Press,
London, England, 1972.

Appendix: Maximum Likelihood Edge Detection
The maximum likelihood principle [20] can be usedto estimatethe likelihood of a
given data set being drawn from a particular distribution. In this caseit has been
applied as an edge detector. The set of grey levels W, is partitioned irttg tvoThe
likelihood, L, is given by

L(W;m) = '|_1,|2'|D_RI p(Wi ) m) = p(Rl)p(RZ)

1=L2R;

wherer, = {w:i =1,i <m},R, ={w:i >m,i <|W|}.
Taking logarithms
logL(W;m) = 5 5 logp(w;,m)

jFL2TR,
Assume a Gaussian distribution fo{ Bnd R gives

logL(W;m) = Z—@Iog(Znofh )3 1[ WJ
o

=12 iT2lR, 2

If o is dependent on j then

logL(W,m)= S —@IOQ(ZHOJZ) -

) 2.
T2 12207 ifR,

1

2
butg; _|R|

Dz()

Therefore 591 (W, m) = Z—@(log@mﬁ) +1)'
i

For the completetest,the value of m is foundthat maximiseghe likelihood. To make
the likelihood a continuousfunction, the standarddeviationis incrementedoy one so
that the rangeof the log likelihood function is betweenO and infinity. Thus given a
candidate edge at position, m, the refined edge positigmfound as
1 = argmax, {logL (W, m)}

where

W={m-Q/2,...m+Q/ 2} and

mL .

In this workQ <wp, Q, =16 andQ, = 32
NotethatW is generatedsaveragesn the vertical plane,x, suchthat at levels1 and
0, x=5 and ¥»=7.




