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Abstract

A method for corresponding the boundaries of two shapes is presented.
The algorithm employs a sparse polygonal approximation of one of the
boundaries, generated using a critical point detection algorithm. A
matching sparse polygon is sought on the second of the two bound-
aries which is both similar in shape to and has a similar representation
error to the first. Optimisation of a cost function using a greedy al-
gorithm locates the sparse polygon on the second boundary. Results
are presented for three classes of shape which exhibit various types of
non-rigid deformation. The algorithm is also applied to an automatic
landmark identification task.

Keywords: Correspondence, Critical Points, Polygonal Approximation,
Automatic Landmarks, Flexible Templates, Point Distribution Models.

1 Introduction

A frequently encountered problem in computer vision is that of finding the trans-
formation which maps the boundary of one object onto that of another. In some
cases the transformation sought is known to be Euclidean i.e. a rigid transforma-
tion. We are interested, however, in the case where the two boundaries represent
different examples from the same class of objects (e.g. two hands) and a non-rigid
transformation is required to map one boundary onto the other. The particular
application which motivates our work is that of generating landmarks automat-
ically on a set of examples. By a landmark we mean a point which identifies a
salient feature on an object and which is present on each of a set of examples of the
object. The landmarks can be used to train a statistical flexible template known
as a Point Distribution Model (PDM) [2]. This avoids the time-consuming and
subjective process of identifying the landmark points manually.

In a previous publication [4] we described a framework for automatically gen-
erating landmarks for a training set of shapes. The first step in our method was
to generate an approximate set of landmarks for each example using a binary tree
of merged pairs of shapes. The algorithm for generating the tree relied upon the
ability both to match pairs of shapes (in order for them to be merged) and to
measure the quality of the match (in order to decide which pairs to merge). The
correspondence method we described was based on matching the curvature of the
two boundaries using Dynamic Programming (DP). This DP approach to pair-wise
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correspondence has not proven to be sufficiently robust or accurate to be generally
useful and does not extend easily to 3D, which is one of our major objectives. We
have also found that several other published methods of correspondence are not
adequate for this task due to poor robustness and/or accuracy (see section 2).

Here, we present a novel method of pair-wise correspondence which has proved
both accurate and robust. The algorithm employs a sparse polygonal approxima-
tion to one of the two boundaries which is transformed onto the other boundary
via an optimisation scheme which minimises a cost function. The final value of the
cost function is used to assess the quality of the match. The algorithm requires a
single control parameter, associated with the cost function, the value of which is
not critical. We present results for three different classes of objects — hands, left
ventricles of the heart and resistors from printed circuit boards. We also present
results for the automatic landmark identification task outlined above.

2 Background

Duncan et al [3] Kambhamettu and Goldgof [5] and Cohen et al [1] all propose
methods of correspondence based on the minimisation of a cost function which in-
volves the difference in the curvature of two boundaries (or surfaces). As pointed
out by Tagare et al [9], however, curvature is a rigid invariant of shape and its
applicability to non-rigid correspondence is problematic. Our own experience of
minimising the difference in curvature of two boundaries [4] confirms this. Tagare
et al [9] recently proposed a method of correspondence based on the minimisation
of a cost function which measures the difference between a geometric criterion,
so called sphericity, of the two boundaries. The cost function involves the com-
putation of the curvature of the boundary but does not compare the curvature
directly. The optimisation scheme employed by Tagare to minimise the cost func-
tion requires five control parameters which may make the method difficult to use
routinely as part of an automatic system.

The related methods of Scott and Longuet-Higgins [7] Shapiro and Brady [8]
and Sclaroff and Pentland [6] describe methods of correspondence between two
sets of points, the connectivity of which is not specified. The first two of these
methods are better suited to the determination of the correspondences arising
from a rigid transformation of one pointset onto the other. The method of Sclaroff
and Pentland [6] is proposed for non-rigid correspondence of pixellated bound-
aries. The algorithm first constructs a finite element model (FEM) of each of
the two pointsets. Modal analysis of the FEMs produces a set of physical modes
of wvariation for each pointset. Correspondences are produced by matching the
two sets of modes directly, following the approach of Shapiro and Brady. We
have implemented this algorithm and found it unsuitable for our purposes. The
reasons for this are twofold: First, in order to build a FEM it is necessary to
construct the Galerkin interpolation matrix, which is the inverse of the matrix
G = [g:(x)] (1 < i,j < m) where gi(x;) = el x["/20" and x;(1 < i < m)
are the points in a given pointset. We have found that G is almost singular when
points on the shape are close to one another or o becomes large, a drawback which
is not discussed in [6]. Second, as with the Scott and Shapiro methods, the al-
gorithm is not guaranteed to generate a legal set of correspondences because the
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connectivity of the boundary is not enforced.

3 Polygon-based Correspondence

In this section we describe a new correspondence algorithm which transforms a
given discretised boundary, A = {A;;1 <i < nyu}, onto some other boundary, B =
{B;;1 <i<np}. We assume that each boundary has been normalised such that
the centre-of-gravity is at the origin and the mean distance of the points from the
origin is 1. The output of the algorithm is a set of ordered pairs ® = {(«;, 8;);1 <
i < ng}. The integer values {«;} index the pixels of A and the integer values
{B:} index the pixels of B. The shapes A' = {A’; = A,,;;1<i<ng} and B' =
{B'; = Bg,;1 < i < ng} represent sparse sub-polygons of A and B respectively.
The values «;, 3; satisfy the following conditions:

1<a;<ny
1 S ﬂz S np (1)
anl 5(ai,ai+1) =1 } . { 1 lf] > k
ha 5(j, k) = . 2
> it 0(Biy Biv1) =1 (> k) 0 ifj<k (2)

where we have assumed, as we will in the remainder of the paper, the appropriate
modulo arithmetic for boundaries i.e. @y = Qng, @1 = @pg41 etc. Condition(1)
ensures that all indices are in the correct range while condition(2) ensures that
the indices {a;}, {8;} form legal sub-polygons of A and B respectively.

The correspondence algorithm comprises of three parts:

1. Generation of a sparse polygonal approximation, A’, of A. This sparse
polygon determines the number of ordered pairs, ng, and is fixed for the
remainder of the correspondence algorithm.

2. Generation of an initial estimate of the corresponding polygon, B/, on B.
This is accomplished using a correspondence algorithm based on the polyg-
onal arc path-lengths of A and B.

3. Refinement of the initial set of correspondences using an optimisation scheme
which modifies the values {;} in order to generate a sparse polygon B’ which
is similar in shape to A’ and has a similar representation error with respect
to its original boundary B as A’ has with respect to A.

Each of these steps will now be described in greater detail.

3.1 Sparse Polygon Generation

To generate a sparse polygon, A’, on A we have used the critical point detection
(CPD) algorithm described by Zhu and Chirlian [11]. The CPD algorithm assigns
a critical value to each point on the boundary which is simply the area of the
triangle constructed from the given point and its two immediate neighbours. An
iterative decimation process is used which removes the point with the smallest
critical value, re-computes the critical value of the immediate neighbours of the
point which has just been deleted and re-identifies the point with smallest critical
value. The process terminates when the remaining smallest critical value is above
some threshold set by the user.
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Figure 1: Critical Points for Various Shapes

In order to have as few controlling parameters as possible we have automated
the selection of the threshold for a given boundary as follows: The monotonically
decreasing curve of (the number of critical points) vs (threshold value) for threshold
values [0..0.75] is generated. A straight line is drawn connecting the first and last
points of the curve. The point in the curve which has a maximum distance from
this line defines the threshold value. The result of applying this process to various
shapes is shown in figure 1.

3.2 Path-based Correspondence

In this section we describe a method of generating the polygon B’ which corre-
sponds approximately to the polygon A’. We use the assumption that A and B
are similar shapes to predict that the spacing of the points A,, with respect to the
polygonal arc path-length of A will be similar to the spacing of the corresponding
points Bg, with respect to the polygonal arc path-length of B i.e. if two points
on A’, A,, and A, ,,, are separated by 5% of the total path-length of A, then
we expect the corresponding points on B’, Bg, and Bg,, ,, to be separated by 5%
of the total path-length of B. The polygonal arc path-length between two points
A, A; is defined by S39 1 ||Agrr — Ayl

The path matching correspondence algorithm exhaustively tests every pixel
B;(1 < i < npg) in the following manner: Set 81 = i to give the first corresponding
pair of points (A,,,Bg, ). Determine the remaining 3;(2 < j < ng) values by pro-
jecting the relative path-length spacing of the polygon segments < A,;_,, Ay, >
onto B. Determine the pose, (0, which satisfies:

Min E7 =) [|Aa, — Q(Bg,)| (3)
j=1

where @ represents the Euclidean transformation Q(p) = sRp + t, s is a scale
factor, R is a rotation matrix and t is a translation. See, for example, Umeyama
[10] for a solution to equation(3).
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a a
Figure 2: Calculation of S(< a,b,c >, < d,e, f >) = |le— f'||/|lc — bl|

Now the index i for which E? < E?V j identifies the pixel on B which matches
the pixel A,, and results in the best correspondence (in a Euclidean sense) when
the points which define B’ are spaced along B to reproduce the spacing of the
points A’ along A and thus determines the initial set of 3 values. We note here that
this path-matching algorithm can recover exactly any Euclidean transformation of
A ie. B = Q(A), the normalised polygonal arc path-length of a boundary being
invariant under a Euclidean transformation.

3.3 Optimisation Scheme

Given an initial set of correspondences generated by the path-based correspon-
dence algorithm described above, an iterative local optimisation scheme can be
used to modify the 3 values in order to minimise the following cost function:

E = \Es + Eg (4)

Es measures the difference in shape between the fixed polygon A’ and its corre-
sponding polygon B’ while Er measures the difference between the representation
errors of A’ and B'.

The term FEg is defined as:

L(A’ 1 &
(M) <— Z S(< A,ifl,Ali,AliJrl >, < Blifl,Bli,Bli+1 >)> (5)
ne ne i=1

where L(A’) is the total polygonal arc path-length of the polygon A’. The first
bracketed term in equation(5) simply defines the mean length of the segments
which make up the polygon A’. The second term measures the difference in
shape of the two polygons as the mean value of a local shape difference opera-
tor S. This operator takes two corresponding triplets < A';_1,A’;; A'i11 >, <
B’;_1,B’;,B’;11 > and measures both the difference in the angles A’; 1 A’;A’;14
and B’;_1B';B’; ;1 and the difference in the lengths of the segments < A';, A'; 11 >
and < B’;, B’;;1 > —see figure 2. The value returned by S is the difference in shape
expressed as a relative proportion of the length of the segment < A’;, A';11 >.
The product of the two terms in equation(5), then, expresses the difference in
shape of A’ and B’ as a mean distance error.

Eg is not in itself sufficient to ensure a good correspondence between A and
B. It might well be possible to construct a B’ on B which is similar to A’ but
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Figure 3: Calculation of R(A, a;, i1, B, 8i, Bi+1) — the shaded area defines R

which does not represent B in the same way that A’ represents A. We need also
to ensure that the manner in which A’ differs from A is as similar as possible to
the manner in which B’ differs from B. To accomplish this we define:

1 &
Ep = L(A") ;R(Aaai,ai+1,3vﬁivﬁi+1) (6)

where R is the local area difference operator for the segments < A’;, A’;11 > and
< B';,B’;11 >. R returns the absolute difference in the representation errors of
A and B for the given segment < 4,7 + 1 > — see figure 3. The representation
error is simply the area between the sparse polygon and its pixellated boundary.

Eg, then, measures the difference in the representation errors of A’ and B’
expressed as a mean distance error and is thus directly comparable with Eg.
The parameter A expresses the relative contribution of the two terms in the cost
function. We have determined suitable values of A empirically and found the range
0.1-0.4 to be useful for real data. For all the results presented in section 4 the
value of A was fixed at 0.2. We note here that both Egs and Eg are local operators.
This means that E requires only partial re-computation when a small subset of
the 3 indices are modified which leads to a computationally efficient algorithm.

Given the expression for E in equation(4) the S values are modified so as
to minimise E thus bringing A’ and B’ into correspondence. We have used the
following greedy descent algorithm to accomplish this:

for j = NNN-1,...,1

set f = 1/2
do
do
for all indices [3;
set & = backwards(Bi—j, Bi—j+1, f)
set B, =0k —0 for k=i—j+1...4

evaluate E using (), in place of [

set § = forwards(B;, Bi+1, f)

set B, =0k +6 for k=i—j+1...4

evaluate F using (3}, in place of [

accept the best (if any) improvement in E for ¢
while improvement in E continues

set f=f/2

while maximum possible movement of any [(3; is > 1 pizxel

First the number of indices to be adjusted simultaneously, j, is set. The algorithm
moves groups of j contiguous points on B’ distances determined by f and tests to
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see whether this reduces the value of E. Any such improvement is accepted. The
size of the adjustment of the 3 values is computed by the backwards and forwards
operators. These operators compute the number of pixels to move the specified
fraction, f, of the distance towards 3;_; from 8;_;11 (backwards) or towards B;11
from B; (forwards). The points on B’ are repeatedly visited until no improvement
in E can be found for the particular values of j and f. The maximum amount by
which points are allowed to move is then halved and the process repeated until the
amount by which any point can be moved drops below a single pixel. The number
of indices to be simultaneously adjusted, j, is repeatedly reduced until j = 1. In
all of our experiments we have found a value of N = 2 to be adequate i.e. the
algorithm first moves pairs of points on B’ until no further improvement can be
made and then moves single points.

4 Results

To investigate the performance of the correspondence algorithm described in sec-
tion 3 we have used three classes of object — hands, left ventricles of the heart
and resistors on a printed circuit board. The shapes within each class vary non-
rigidly and the type of non-rigid deformation is different for each of the classes.
Figure 4 shows the result of applying the polygon-based correspondence algorithm
to difficult pairs of shapes from each of these three classes.

The boundaries of the hand were generated for the same person but with
different positions of the thumb and fingers. When an outline of the hand is
observed from above the digits appear to shorten as the knuckles are raised off the
plane and elastic deformation of the skin observed as the digits change position.
Apical 4-chamber 2D echocardiograms of a beating heart exhibit considerable non-
rigid deformation of the boundary of the left ventricle due to muscular activity
and change in 2D view as the heart naturally rotates as it beats. Further shape
changes occur when one compares hearts from different individuals. The resistors
we have used vary principally in two ways: i) the position of the body of the
resistor on the wire on which it is mounted and ii) the shape of the body of the
resistor. Surprisingly, this has proved to be the most difficult of the classes of
shape we have considered. This is because the landmark representing the junction
of the wire and the body of the resistor must be accurately located in order to
generate a useful statistical model. Poor correspondence in this area results in a
model which generates many implausible examples (poor specificity).

As already mentioned, our goal is to identify a set of landmarks automatically
on each of a set of examples in order to generate statistical shapes models. Previ-
ously we have generated these landmarks manually by placing a small number of
magjor landmarks on each example and generating minor landmarks equally-spaced
between major landmarks. We have used this technique routinely for generating
landmark data. To investigate the accuracy of the polygon-based correspondence
algorithm presented in section 3 with respect to this automatic landmarking task
we have compared the position of landmarks placed manually on a set of examples
with those generated using a binary tree of merged pairs of shapes, as described
in [4], which incorporated the polygon-based corresponder. The non-leaf nodes of
such a tree represent the mean of two other shapes which are themselves nodes in
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Figure 4: Polygon-based Correspondence Applied to Various Shapes. The first col-
umn represents shape A, the second B and the third shows the set of connections
between the corresponding points of the sparse polygons.

the tree. The leaf nodes represent the original shapes in the training set and the
root, node represents the mean shape. Landmarks placed on the mean shape are
projected from the root to the leaves. The comparison was made as follows:

1. A set of landmarks was generated manually on each of a set of examples M
times (6 in our experiments). The mean set of landmarks for each example
was computed and regarded as ground truth. The standard deviation of the
distance of all landmarks on all sets of examples from their mean position

was computed: o = \/W El]\il Zjvzl Eézl [|Ixijr — Xjk||> where x;j is
the k' landmark on the j* shape for the i*" set of landmarks, X5 is the
mean position of the k" landmark on the j* example, N is the number of
examples and L is the number of landmarks. o represents the uncertainty
in landmark position associated with selecting the landmarks manually.

2. A merge-tree was generated for the given set of examples. The pixels on the
mean shape generated by the tree which best corresponded to the ground
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Landmark Error
(Pixels)
a 1t
Hand 0.4 0.9
Resistor 0.7 1.3
Heart 0.9 1.8

Figure 5: Manually Selected Major Landmarks, e, Equally-Spaced Minor Land-
marks, x, and Pixel Location Errors for Manual Landmark Identification, o, and
Automatically Generated Landmarks, p. No. of examples: hand=18, resistor=33,
heart=66. No. of pixels per boundary: hand=650, resistor/hearta300.

truth landmarks were identified as follows: For each landmark, k (1 < k <

L), the pixel on the mean shape corresponding to min Zjvzl |1%p(i,5) =X |
(3

was identified and labelled iz, where x;,(; ;) is the p(i, /)" pixel on the j**

example and p(i, j) is the pixel index projection operator for the i** pixel of
the mean shape and the j** example.

3. The mean distance between the automatically generated landmarks and
1 N L _

ground truth was computed: u = w7 >:2; D5 ||Xji, —Xjk[|- 1 represents

the pixel error in landmark position for landmarks generated automatically.

In figure 5 we show the landmarks used for the three examples to conduct the
experiment. The values of o and u for the three cases are also shown in figure
5. These results show that the landmarks selected automatically are, on average,
within 0.9-1.8 pixels of the ground truth landmarks. This compares favourably
with the error associated with placing the landmarks manually, the standard de-
viation of this error being between 0.4-0.9 pixels.

The polygon-based approach to correspondence has proved to be computa-
tionally efficient — a pair of hands (= 650 pixels per boundary) requires 0.9 CPU
seconds and a pair of resistors/left ventricles (& 300 pixels per boundary) requires
0.4 CPU seconds on a Sun SPARCstation 20.
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5 Conclusions

We have presented a novel method for the non-rigid correspondence of two closed,
pixellated boundaries. The method is based on generating a sparse polygonal
approximation to one shape and searching for a similar polygon on the other shape.
No curvature estimation of either boundary is required and the algorithm requires
only a single control parameter, A. Results have been presented which demonstrate
the ability of the algorithm to provide accurate, non-rigid correspondences for
three classes of shape — hands, chambers of the heart and resistors on printed
circuit boards. The appropriateness of the algorithm for the automatic landmark
generation task has also been demonstrated. Our current research is concerned
with extending polygon-based correspondence to objects represented by multiple
open/closed boundaries and 3D voxellated surfaces.
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