
A Method of Non-rigid Correspondencefor Automatic Landmark Identi�cationA. Hill and C. J. TaylorDepartment of Medical BiophysicsUniversity of Manchesterah@sv1.smb.man.ac.ukAbstractA method for corresponding the boundaries of two shapes is presented.The algorithm employs a sparse polygonal approximation of one of theboundaries, generated using a critical point detection algorithm. Amatching sparse polygon is sought on the second of the two bound-aries which is both similar in shape to and has a similar representationerror to the �rst. Optimisation of a cost function using a greedy al-gorithm locates the sparse polygon on the second boundary. Resultsare presented for three classes of shape which exhibit various types ofnon-rigid deformation. The algorithm is also applied to an automaticlandmark identi�cation task.Keywords: Correspondence, Critical Points, Polygonal Approximation,Automatic Landmarks, Flexible Templates, Point Distribution Models.1 IntroductionA frequently encountered problem in computer vision is that of �nding the trans-formation which maps the boundary of one object onto that of another. In somecases the transformation sought is known to be Euclidean i.e. a rigid transforma-tion. We are interested, however, in the case where the two boundaries representdi�erent examples from the same class of objects (e.g. two hands) and a non-rigidtransformation is required to map one boundary onto the other. The particularapplication which motivates our work is that of generating landmarks automat-ically on a set of examples. By a landmark we mean a point which identi�es asalient feature on an object and which is present on each of a set of examples of theobject. The landmarks can be used to train a statistical 
exible template knownas a Point Distribution Model (PDM) [2]. This avoids the time-consuming andsubjective process of identifying the landmark points manually.In a previous publication [4] we described a framework for automatically gen-erating landmarks for a training set of shapes. The �rst step in our method wasto generate an approximate set of landmarks for each example using a binary treeof merged pairs of shapes. The algorithm for generating the tree relied upon theability both to match pairs of shapes (in order for them to be merged) and tomeasure the quality of the match (in order to decide which pairs to merge). Thecorrespondence method we described was based on matching the curvature of thetwo boundaries using Dynamic Programming (DP). This DP approach to pair-wise
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correspondence has not proven to be su�ciently robust or accurate to be generallyuseful and does not extend easily to 3D, which is one of our major objectives. Wehave also found that several other published methods of correspondence are notadequate for this task due to poor robustness and/or accuracy (see section 2).Here, we present a novel method of pair-wise correspondence which has provedboth accurate and robust. The algorithm employs a sparse polygonal approxima-tion to one of the two boundaries which is transformed onto the other boundaryvia an optimisation scheme which minimises a cost function. The �nal value of thecost function is used to assess the quality of the match. The algorithm requires asingle control parameter, associated with the cost function, the value of which isnot critical. We present results for three di�erent classes of objects { hands, leftventricles of the heart and resistors from printed circuit boards. We also presentresults for the automatic landmark identi�cation task outlined above.2 BackgroundDuncan et al [3] Kambhamettu and Goldgof [5] and Cohen et al [1] all proposemethods of correspondence based on the minimisation of a cost function which in-volves the di�erence in the curvature of two boundaries (or surfaces). As pointedout by Tagare et al [9], however, curvature is a rigid invariant of shape and itsapplicability to non-rigid correspondence is problematic. Our own experience ofminimising the di�erence in curvature of two boundaries [4] con�rms this. Tagareet al [9] recently proposed a method of correspondence based on the minimisationof a cost function which measures the di�erence between a geometric criterion,so called sphericity, of the two boundaries. The cost function involves the com-putation of the curvature of the boundary but does not compare the curvaturedirectly. The optimisation scheme employed by Tagare to minimise the cost func-tion requires �ve control parameters which may make the method di�cult to useroutinely as part of an automatic system.The related methods of Scott and Longuet-Higgins [7] Shapiro and Brady [8]and Sclaro� and Pentland [6] describe methods of correspondence between twosets of points, the connectivity of which is not speci�ed. The �rst two of thesemethods are better suited to the determination of the correspondences arisingfrom a rigid transformation of one pointset onto the other. The method of Sclaro�and Pentland [6] is proposed for non-rigid correspondence of pixellated bound-aries. The algorithm �rst constructs a �nite element model (FEM) of each ofthe two pointsets. Modal analysis of the FEMs produces a set of physical modesof variation for each pointset. Correspondences are produced by matching thetwo sets of modes directly, following the approach of Shapiro and Brady. Wehave implemented this algorithm and found it unsuitable for our purposes. Thereasons for this are twofold: First, in order to build a FEM it is necessary toconstruct the Galerkin interpolation matrix, which is the inverse of the matrixG = [gi(xj)] (1 � i; j � m) where gi(xj) = ejjxi�xj jj2=2�2 and xi(1 � i � m)are the points in a given pointset. We have found that G is almost singular whenpoints on the shape are close to one another or � becomes large, a drawback whichis not discussed in [6]. Second, as with the Scott and Shapiro methods, the al-gorithm is not guaranteed to generate a legal set of correspondences because the
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connectivity of the boundary is not enforced.3 Polygon-based CorrespondenceIn this section we describe a new correspondence algorithm which transforms agiven discretised boundary,A = fAi; 1 � i � nAg, onto some other boundary,B =fBi; 1 � i � nBg. We assume that each boundary has been normalised such thatthe centre-of-gravity is at the origin and the mean distance of the points from theorigin is 1. The output of the algorithm is a set of ordered pairs � = f(�i; �i); 1 �i � n�g. The integer values f�ig index the pixels of A and the integer valuesf�ig index the pixels of B. The shapes A0 = fA0i = A�i ; 1 � i � n�g and B0 =fB0i = B�i ; 1 � i � n�g represent sparse sub-polygons of A and B respectively.The values �i, �i satisfy the following conditions:1 � �i � nA1 � �i � nB (1)Pn�i=1 �(�i; �i+1) = 1Pn�i=1 �(�i; �i+1) = 1 � �(j; k) = � 1 if j � k0 if j < k (2)where we have assumed, as we will in the remainder of the paper, the appropriatemodulo arithmetic for boundaries i.e. �0 = �n� , �1 = �n�+1 etc. Condition(1)ensures that all indices are in the correct range while condition(2) ensures thatthe indices f�ig, f�ig form legal sub-polygons of A and B respectively.The correspondence algorithm comprises of three parts:1. Generation of a sparse polygonal approximation, A0, of A. This sparsepolygon determines the number of ordered pairs, n�, and is �xed for theremainder of the correspondence algorithm.2. Generation of an initial estimate of the corresponding polygon, B0, on B.This is accomplished using a correspondence algorithm based on the polyg-onal arc path-lengths of A and B.3. Re�nement of the initial set of correspondences using an optimisation schemewhich modi�es the values f�ig in order to generate a sparse polygonB0 whichis similar in shape to A0 and has a similar representation error with respectto its original boundary B as A0 has with respect to A.Each of these steps will now be described in greater detail.3.1 Sparse Polygon GenerationTo generate a sparse polygon, A0, on A we have used the critical point detection(CPD) algorithm described by Zhu and Chirlian [11]. The CPD algorithm assignsa critical value to each point on the boundary which is simply the area of thetriangle constructed from the given point and its two immediate neighbours. Aniterative decimation process is used which removes the point with the smallestcritical value, re-computes the critical value of the immediate neighbours of thepoint which has just been deleted and re-identi�es the point with smallest criticalvalue. The process terminates when the remaining smallest critical value is abovesome threshold set by the user.
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Figure 1: Critical Points for Various ShapesIn order to have as few controlling parameters as possible we have automatedthe selection of the threshold for a given boundary as follows: The monotonicallydecreasing curve of (the number of critical points) vs (threshold value) for thresholdvalues [0..0.75] is generated. A straight line is drawn connecting the �rst and lastpoints of the curve. The point in the curve which has a maximum distance fromthis line de�nes the threshold value. The result of applying this process to variousshapes is shown in �gure 1.3.2 Path-based CorrespondenceIn this section we describe a method of generating the polygon B0 which corre-sponds approximately to the polygon A0. We use the assumption that A and Bare similar shapes to predict that the spacing of the points A�i with respect to thepolygonal arc path-length of A will be similar to the spacing of the correspondingpoints B�i with respect to the polygonal arc path-length of B i.e. if two pointson A0, A�i and A�i+1 , are separated by 5% of the total path-length of A, thenwe expect the corresponding points on B0, B�i and B�i+1 , to be separated by 5%of the total path-length of B. The polygonal arc path-length between two pointsAi, Aj is de�ned by Pj�1k=i jjAk+1 �Akjj.The path matching correspondence algorithm exhaustively tests every pixelBi(1 � i � nB) in the following manner: Set �1 = i to give the �rst correspondingpair of points (A�1 ;B�1). Determine the remaining �j(2 � j � n�) values by pro-jecting the relative path-length spacing of the polygon segments < A�j�1 ;A�j >onto B. Determine the pose, Q, which satis�es:Min E2i = n�Xj=1 jjA�j �Q(B�j )jj2 (3)where Q represents the Euclidean transformation Q(p) = sRp + t, s is a scalefactor, R is a rotation matrix and t is a translation. See, for example, Umeyama[10] for a solution to equation(3).
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b cd0 f 0Figure 2: Calculation of S(< a; b; c >;< d; e; f >) = jjc� f 0jj=jjc� bjjNow the index i for which E2i � E2j 8 j identi�es the pixel on B which matchesthe pixel A�1 and results in the best correspondence (in a Euclidean sense) whenthe points which de�ne B0 are spaced along B to reproduce the spacing of thepointsA0 alongA and thus determines the initial set of � values. We note here thatthis path-matching algorithm can recover exactly any Euclidean transformation ofA i.e. B = Q(A), the normalised polygonal arc path-length of a boundary beinginvariant under a Euclidean transformation.3.3 Optimisation SchemeGiven an initial set of correspondences generated by the path-based correspon-dence algorithm described above, an iterative local optimisation scheme can beused to modify the � values in order to minimise the following cost function:E = �ES +ER (4)ES measures the di�erence in shape between the �xed polygon A0 and its corre-sponding polygon B0 while ER measures the di�erence between the representationerrors of A0 and B0.The term ES is de�ned as:�L(A0)n� � 1n� n�Xi=1 S(< A0i�1;A0i;A0i+1 >;< B0i�1;B0i;B0i+1 >)! (5)where L(A0) is the total polygonal arc path-length of the polygon A0. The �rstbracketed term in equation(5) simply de�nes the mean length of the segmentswhich make up the polygon A0. The second term measures the di�erence inshape of the two polygons as the mean value of a local shape di�erence opera-tor S. This operator takes two corresponding triplets < A0i�1;A0i;A0i+1 >, <B0i�1;B0i;B0i+1 > and measures both the di�erence in the angles A0i�1A0iA0i+1andB0i�1B0iB0i+1 and the di�erence in the lengths of the segments< A0i;A0i+1 >and< B0i;B0i+1 > { see �gure 2. The value returned by S is the di�erence in shapeexpressed as a relative proportion of the length of the segment < A0i;A0i+1 >.The product of the two terms in equation(5), then, expresses the di�erence inshape of A0 and B0 as a mean distance error.ES is not in itself su�cient to ensure a good correspondence between A andB. It might well be possible to construct a B0 on B which is similar to A0 but
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............................................................................................................................................................................................................ B ....................................................................................................................................................................................A0 and B0A�iB�i � �A�i+1B�i+1Figure 3: Calculation of R(A; �i; �i+1;B; �i; �i+1) { the shaded area de�nes Rwhich does not represent B in the same way that A0 represents A. We need alsoto ensure that the manner in which A0 di�ers from A is as similar as possible tothe manner in which B0 di�ers from B. To accomplish this we de�ne:ER = 1L(A0) n�Xi=1 R(A; �i; �i+1;B; �i; �i+1) (6)where R is the local area di�erence operator for the segments < A0i;A0i+1 > and< B0i;B0i+1 >. R returns the absolute di�erence in the representation errors ofA and B for the given segment < i; i + 1 > { see �gure 3. The representationerror is simply the area between the sparse polygon and its pixellated boundary.ER, then, measures the di�erence in the representation errors of A0 and B0expressed as a mean distance error and is thus directly comparable with ES .The parameter � expresses the relative contribution of the two terms in the costfunction. We have determined suitable values of � empirically and found the range0.1{0.4 to be useful for real data. For all the results presented in section 4 thevalue of � was �xed at 0.2. We note here that both ES and ER are local operators.This means that E requires only partial re-computation when a small subset ofthe � indices are modi�ed which leads to a computationally e�cient algorithm.Given the expression for E in equation(4) the � values are modi�ed so asto minimise E thus bringing A0 and B0 into correspondence. We have used thefollowing greedy descent algorithm to accomplish this:for j = N;N � 1; : : : ; 1set f = 1/2do do for all indices �iset � = backwards(�i�j ; �i�j+1; f)set �0k = �k � � for k = i � j + 1 : : : ievaluate E using �0k in place of �kset � = forwards(�i; �i+1; f)set �0k = �k + � for k = i � j + 1 : : : ievaluate E using �0k in place of �kaccept the best (if any) improvement in E for iwhile improvement in E continuesset f = f=2while maximum possible movement of any �i is � 1 pixelFirst the number of indices to be adjusted simultaneously, j, is set. The algorithmmoves groups of j contiguous points on B0 distances determined by f and tests to
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see whether this reduces the value of E. Any such improvement is accepted. Thesize of the adjustment of the � values is computed by the backwards and forwardsoperators. These operators compute the number of pixels to move the speci�edfraction, f , of the distance towards �i�j from �i�j+1 (backwards) or towards �i+1from �i (forwards). The points on B0 are repeatedly visited until no improvementin E can be found for the particular values of j and f . The maximum amount bywhich points are allowed to move is then halved and the process repeated until theamount by which any point can be moved drops below a single pixel. The numberof indices to be simultaneously adjusted, j, is repeatedly reduced until j = 1. Inall of our experiments we have found a value of N = 2 to be adequate i.e. thealgorithm �rst moves pairs of points on B0 until no further improvement can bemade and then moves single points.4 ResultsTo investigate the performance of the correspondence algorithm described in sec-tion 3 we have used three classes of object { hands, left ventricles of the heartand resistors on a printed circuit board. The shapes within each class vary non-rigidly and the type of non-rigid deformation is di�erent for each of the classes.Figure 4 shows the result of applying the polygon-based correspondence algorithmto di�cult pairs of shapes from each of these three classes.The boundaries of the hand were generated for the same person but withdi�erent positions of the thumb and �ngers. When an outline of the hand isobserved from above the digits appear to shorten as the knuckles are raised o� theplane and elastic deformation of the skin observed as the digits change position.Apical 4-chamber 2D echocardiograms of a beating heart exhibit considerable non-rigid deformation of the boundary of the left ventricle due to muscular activityand change in 2D view as the heart naturally rotates as it beats. Further shapechanges occur when one compares hearts from di�erent individuals. The resistorswe have used vary principally in two ways: i) the position of the body of theresistor on the wire on which it is mounted and ii) the shape of the body of theresistor. Surprisingly, this has proved to be the most di�cult of the classes ofshape we have considered. This is because the landmark representing the junctionof the wire and the body of the resistor must be accurately located in order togenerate a useful statistical model. Poor correspondence in this area results in amodel which generates many implausible examples (poor speci�city).As already mentioned, our goal is to identify a set of landmarks automaticallyon each of a set of examples in order to generate statistical shapes models. Previ-ously we have generated these landmarks manually by placing a small number ofmajor landmarks on each example and generatingminor landmarks equally-spacedbetween major landmarks. We have used this technique routinely for generatinglandmark data. To investigate the accuracy of the polygon-based correspondencealgorithm presented in section 3 with respect to this automatic landmarking taskwe have compared the position of landmarks placed manually on a set of exampleswith those generated using a binary tree of merged pairs of shapes, as describedin [4], which incorporated the polygon-based corresponder. The non-leaf nodes ofsuch a tree represent the mean of two other shapes which are themselves nodes in



British Machine Vision Conference

Figure 4: Polygon-based Correspondence Applied to Various Shapes. The �rst col-umn represents shape A, the second B and the third shows the set of connectionsbetween the corresponding points of the sparse polygons.the tree. The leaf nodes represent the original shapes in the training set and theroot node represents the mean shape. Landmarks placed on the mean shape areprojected from the root to the leaves. The comparison was made as follows:1. A set of landmarks was generated manually on each of a set of examples Mtimes (6 in our experiments). The mean set of landmarks for each examplewas computed and regarded as ground truth. The standard deviation of thedistance of all landmarks on all sets of examples from their mean positionwas computed: � = q 1MNLPMi=1PNj=1PLk=1 jjxijk � �xjk jj2 where xijk isthe kth landmark on the jth shape for the ith set of landmarks, �xjk is themean position of the kth landmark on the jth example, N is the number ofexamples and L is the number of landmarks. � represents the uncertaintyin landmark position associated with selecting the landmarks manually.2. A merge-tree was generated for the given set of examples. The pixels on themean shape generated by the tree which best corresponded to the ground
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Landmark Error(Pixels)� �Hand 0.4 0.9Resistor 0.7 1.3Heart 0.9 1.8Figure 5: Manually Selected Major Landmarks, �, Equally-Spaced Minor Land-marks, �, and Pixel Location Errors for Manual Landmark Identi�cation, �, andAutomatically Generated Landmarks, �. No. of examples: hand=18, resistor=33,heart=66. No. of pixels per boundary: hand�650, resistor/heart�300.truth landmarks were identi�ed as follows: For each landmark, k (1 � k �L), the pixel on the mean shape corresponding to mini PNj=1 jjxjp(i;j)��xjk jjwas identi�ed and labelled ik, where xjp(i;j) is the p(i; j)th pixel on the jthexample and p(i; j) is the pixel index projection operator for the ith pixel ofthe mean shape and the jth example.3. The mean distance between the automatically generated landmarks andground truth was computed: � = 1NLPNj=1PLk=1 jjxjik � �xjk jj. � representsthe pixel error in landmark position for landmarks generated automatically.In �gure 5 we show the landmarks used for the three examples to conduct theexperiment. The values of � and � for the three cases are also shown in �gure5. These results show that the landmarks selected automatically are, on average,within 0.9{1.8 pixels of the ground truth landmarks. This compares favourablywith the error associated with placing the landmarks manually, the standard de-viation of this error being between 0.4{0.9 pixels.The polygon-based approach to correspondence has proved to be computa-tionally e�cient { a pair of hands (� 650 pixels per boundary) requires 0.9 CPUseconds and a pair of resistors/left ventricles (� 300 pixels per boundary) requires0.4 CPU seconds on a Sun SPARCstation 20.
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5 ConclusionsWe have presented a novel method for the non-rigid correspondence of two closed,pixellated boundaries. The method is based on generating a sparse polygonalapproximation to one shape and searching for a similar polygon on the other shape.No curvature estimation of either boundary is required and the algorithm requiresonly a single control parameter, �. Results have been presented which demonstratethe ability of the algorithm to provide accurate, non-rigid correspondences forthree classes of shape { hands, chambers of the heart and resistors on printedcircuit boards. The appropriateness of the algorithm for the automatic landmarkgeneration task has also been demonstrated. Our current research is concernedwith extending polygon-based correspondence to objects represented by multipleopen/closed boundaries and 3D voxellated surfaces.References[1] I. Cohen, N. Ayache, and P. Sulger. Tracking points on deformable objects usingcurvature information. In G. Sandini, editor, 2nd European Conference on ComputerVision, pages 458{466, Santa Margherita Ligure, Italy, May 1992. Springer-Verlag.[2] T. F. Cootes, D. H. Cooper, C. J. Taylor, and J. Graham. A trainable method ofparametric shape description. Image and Vision Computing, 10(5):289{294, June1992.[3] J. Duncan, R. L. Owen, L. H. Staib, and P. Anandan. Measurement of non-rigidmotion using contour shape descriptors. In IEEE Conference on Computer Visionand Pattern Recognition, pages 318{324, 1991.[4] A. Hill and C. J. Taylor. Automatic landmark generation for point distributionmodels. In E. Hancock, editor, 5th British Machine Vison Conference, pages 429{438, York, England, Sept. 1994. BMVA Press.[5] C. Kambhamettu and D. B. Goldgof. Point correspondence recovery in non-rigidmotion. In IEEE Conference on Computer Vision and Pattern Recognition, pages222{227, 1992.[6] S. Sclaro� and A. P. Pentland. Modal matching for correspondence and recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):545{561,1995.[7] G. L. Scott and H. C. Longuet-Higgins. An algorithm for associating the features oftwo images. Proceedings of the Royal Statistical Society of London, 244:21{26, 1991.[8] L. S. Shapiro and J. M. Brady. A modal approach to feature-based correspondence.In P. Mowforth, editor, 2nd British Machine Vison Conference, pages 78{85, Glas-gow, Scotland, Sept. 1991. Springer-Verlag.[9] H. D. Tagare, D. O'Shea, and A. Rangarajan. A geometric criterion for shape-basednon-rigid correspondence. In 5th International Conference on Computer Vision,pages 434{439, MIT, Cambridge, Massachusetts, June 1995.[10] S. Umeyama. Least-squares estimation of transformation parameters between twopoint patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,13(4):376{380, Apr. 1991.[11] P. Zhu and P. M. Chirlian. On critical point detection of digital shapes. IEEETransactions on Pattern Analysis and Machine Intelligence, 17(8):737{748, 1995.


