
Estimating pose uncertainty for surfaceregistrationA. J. Stoddart, S. Lemke, A. Hilton, T. RennDept. of Electronic & Electrical EngineeringUniversity of Surrey, Guildford, Surrey GU2 5XH, UKemail: a.stoddart@ee.surrey.ac.ukAbstractAccurate registration of surfaces is a common problem in computervision. Several algorithms exist to re�ne an approximate value for thepose to an accurate value. They are all more or less variants of theIterated Closest Point algorithm of Besl and McKay (1992).Up to now the problem of determining the uncertainty in the poseestimate thus obtained has not been addressed in detail. In this paperwe present a framework in which to quantify the uncertainty in pose.We introduce a new parameter called the registration index to give asimple means of quantifying the pose errors one might expect whenregistering a particular shape.1 Introduction
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The registration of surfaces and curves can be broken down into two separatetasks. A matching task in which an approximate estimate of the pose is obtained.This might also involve a large database of model shapes. Then a registration taskin which an accurate pose is obtained from a rough initial guess.Algorithms for the accurate registration task are now well established. Theyare all more or less variations on the iterative closest point algorithm (ICP). Thealgorithm is not particularly fast or simple, but can give very accurate results. Itis di�cult to imagine a substantially di�erent or better algorithm being developedfor the general case of free form surfaces.Although one may obtain a very accurate estimate of pose, very little workexists to quantify the accuracy. Recently there has been some work by Pennec andThirion (1995a, 1996) which has provided a very useful framework for quantifyinguncertainty in pose.In this paper we apply this framework to the problem of surface registration.The original contribution of this paper is to propose a framework for quantifyingthe uncertainty in pose when two surfaces have been registered. We also introducea simple parameter which depends only on shape which we call the registrationindex. This gives an easy way to predict the expected quality of the pose estimateunder conditions of varying number of point measurements and sensor noise.The most closely related work to this is that of Brujic and Ristic who performeda Monte Carlo study of extracted pose parameters (1996).
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1.1 Besl's ICP AlgorithmThe ICP algorithm was �rst presented by Besl and Mackay (1992). The algorithmmay be summarised as follows. Using a reasonably good initial guess the sceneand model are moved into approximate alignment. A set of points is chosen onone surface, and the corresponding closest points are found on the other surface.Using a least squares method the pose is computed that brings the two point setsinto alignment, and this is applied to one of the surfaces. The procedure is iterateduntil the change in pose becomes very small.It should be noted that the algorithm will �nd a nearest local minimum of amean-square distance metric. It is mainly in this respect that the initial estimateis important, since we would prefer to �nd the global minimum.The usually quoted advantages of the ICP method are as follows. It handlesthe full six degrees of freedom problem. It is independent of shape representation(assuming that you have a closest point algorithm). It does not require derivativeestimation or feature extraction. The main disadvantage is the requirement for agood initial guess.Two distinct problems may be addressed by \surface registration" algorithms.The model-scene case arises when we have an exact model and wish to register itto scene measurements. The scene-scene case arises when we wish to register (andpossibly fuse (Hilton et al., 1996)) two separate scene measurements of the sameobject. The registration method is usually the same but for a correct statisticalanalysis of the errors the two cases need to be treated slightly di�erently.We should note that most variants of the ICP that have been presented haveused the least squared distance point set registration procedure. This is probablydue to the ready availability of an analytical solution. However Chen and Medioni(1992) use a registration procedure that includes reference to local surface normals.This is not analytically soluble but seems better adapted to the problem.Later work by Dorai et al (1994) revisited the technique of Chen and Medioni,and proposed an minimum variance estimator. This accepted the approach ofusing only uncertainty in the surface normal direction, but argued that rangedata has constant uncertainty in the z direction, which implies slope dependentperpendicular uncertainty. This can be accommodated within our scheme.Applications of registration should be mentioned. One area is that of CADbased inspection (Bispo and Fisher, 1994; Brujic and Ristic, 1996). It is assumedthat there is an accurate model, perhaps based on B-Splines of an object, and asurface measurement by a range sensor. The objective is to register the data tothe model and then �nd the largest or average deviation of the object from themodel. Other applications include navigation and surface fusion (Hilton et al.,1996).2 NotationIn order to present our notation we begin by considering the familiar problemof pose estimation from two point sets with correspondence. Various analyticalsolutions exist, and we use the SVD method of (Kanatani, 1994).A pose consists of a translation t and a rotation. The rotation may be speci�ed
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by an axis n̂ and angle �. Equivalently it may be speci�ed by the 3 � 3 rotationmatrix R or the 3 component vector r = �n̂. Finally there is the quaternionrepresentation q. In this paper we will mainly use r, thus a pose or rigid bodytransform f is equivalent to f = ���� rt = (R; t) (1)Poses are also referred to as frames. Frames may be composed � or applied � topoints.� Application of f = (R; t) to x : y = f � x = Rx+ t.� Composition of f1 = (R1; t1) with f2 = (R2; t2):f = f2 � f1 = (R2R1; R2t1 + t2)Suppose we have two sets of N corresponding points bi and qi. A pair (bi; qi)together comprise a measurement x̂i of some underlying unknown true value xi.We will assume an unbiased measurement so that x = E[x̂] = x and denote thecovariance by Wx = E[(x̂� x)(x̂� x)>].We assume that the true values of bi and qi are related by an unknown framef according to the relation qi = f � bi. We need to de�ne an error vector hi withcovariance Wi such that the estimate f̂ that we seek will minimise the weightedleast squares criterion C =Xi h>i W�1i hi (2)A suitable error measure is the vector distance hi(xi; f) = qi � f � bi, so thatwe minimise the mean squared distance. This is a non-linear minimisation butexact solutions are available. For greater generality we choose to linearise theminimisation problem in the variable f . It can then be solved either directly orusing the Extended Kalman Filter (EKF). These methods can output an estimateof the transform f̂ and the covariance of the transform Wf . The criterion islinearised around some prior estimate f̂k�1 as followshi(xi; f) ' h(x̂i; f̂k�1) + @hi@f (f � f̂k�1) + @hi@xi (xi � x̂i) (3)If we identify Yi = �hi(xi; f) + @hi@f f (4)Mi = @hi@f (5)wi = @hi@xi (xi � x̂i) (6)Then we have a standard multidimensional least squares problem of the formYi =Mif + wi (7)
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Yi is the generalised measurement, f is the parameter vector and wi the noise,with covariance Wi. In this paper we assume that the point measurement noise isalways isotropic, i.e. Wb = �2I3. The points bi are always measurements or scenepoints. The qi may be (noise free) model points or scene points. In the scene-scenecase Wi = 2�2I3 and in the model-scene case Wi = �2I3. We will sometimes referto �2 = 3�2, where � is the rms displacement counted over all 3 dimensions.The minimum of C = NXi=1(Yi �Mif)>W�1i (Yi �Mif) (8)is given by f̂k = " NXi=1 M>i W�1i Mi#�1 " NXi=1M>i W�1i Yi# (9)The covariance of the estimated parameter f̂k will be given byW�1f = NXi=1 M>i W�1i Mi (10)The result depends on f̂k�1 because this is the point around which the cost waslinearised. Therefore we must iterate a few times until the estimate f̂k converges.The Extended Kalman �lter provides a good framework to solve this problem .Finally we need to evaluate the partial derivatives. This is not straightforward dueto the nonlinear nature of rotations, and for details we refer the reader to (Pennecand Thirion, 1995b).2.1 Frame covarianceThis resolves the question of how to compute frame covariance. However we mustask whether it makes sense. Pennec and Thirion (1995b) suggest that the correctway to model frame errors is by a right error frame er with some probabilitydistribution P (er). This is a representation independent concept since the er arereal rigid body transforms. The frame estimate is then given by f̂ = f � er. Thisis better than an additive noise model such as f̂ = f + �f where it is di�cult toensure that the noise process does the same thing to di�erent frames f . In additionit will be speci�c to a particular representation of f . These problems are relatedto the fact that rotations do not belong to a vector space. For further discussionsee (Pennec and Thirion, 1995b).In the applications that we will consider the errors are typically small so thatthe rotation errors are much less than 90�. In�nitesimal rotations do form a vectorspace. This means that for very small frames�f1 � �f2 ' �f1 + �f2 (11)in the representation of equation (1), namely f = (r; t). It does not apply in otherrepresentations. Thus if we move the scene and model to a position where both f
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and the typical error are small thenWf = E[(f̂ � f)(f̂ � f)>] ' E[ere>r ] (12)Henceforth in this paper we will assume that this has been done.2.2 Interpretation of the frame covarianceThe covariance Wf consists of 36 real numbers and is not immediately usefulas a way of grasping the uncertainty in the pose. Covariance matrices may bediagonalized to reveal a set of directions in which the errors are uncorrelated, withtheir corresponding variances.The in�nitesimal frame error (usually) consists of 3 small rotations and 3 smalltranslations. If a speci�c degree of freedom is very uncertain the covariance will belarge. After diagonalisation we can identify the largest error modes, for examplea pure translation in a particular direction, a pure rotation or a mixture.The following example will illustrate the interpretation of the covariance ma-trix. In this example we consider only the rotational modes. A cylinder of lengthl and radius r is centred at the origin, and aligned with direction â. It is �lledwith a uniform distribution of N points. We create a copy and corrupt each pointof the copy by Gaussian noise with variance �2I3 and then obtain an estimateof (f;Wf ). If r � l we would expect the frame to be accurately determined forrotations perpendicular to the axis and poor for the rotations around the axis.This is related to the well known fact in point set registration that some solu-tions are degenerate. If one set of points lie in a straight line the solution is de�nedup to a rotation around the line. The analytical methods presented by Kanatani(1994) are able to detect the presence of degenerate solutions, but cannot detectcases of near degeneracy such as points contained in a narrow cylinder.If we diagonalise the 3 � 3 rotational submatrix then we get eigenvalues asfollows �1;2 ' �2N 12l2 ; �3 ' �2N 2r2 (13)This is in agreement with the idea that there are two low covariance modes ofrotation perpendicular to the axis and a high covariance (uncertain) mode of ro-tation parallel to the axis. Indeed the third eigenvector is the same as â. In thelimit of r ! 0 the covariance blows up consistent with a degenerate solution.3 Surface RegistrationWe wish to apply the ideas of (Pennec and Thirion, 1995b) to the case of surfaceregistration. At the heart of most ICP algorithms is the use of the least squarescriterion of equation (2). There is a serious problem with this which is best il-lustrated by example. Suppose we have as our model a sphere and have severalaccurate measurements from its surface. Using the ICP approach for each mea-surement we �nd the closest point on the model and then obtain the registrationfrom the two point sets with correspondence. The covariance produced by thesimple criterion will tell us that we have a very accurate estimate of pose.
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Intuitively we know that we can determine only 3 of the 6 degrees of freedomof the pose, the remaining 3 are degenerate. We can see that the complete surfacecriterion will be una�ected by rotations of the model around its centre.This strongly suggests that we should use a di�erent error measure which takesaccount of the origin of the model-data point pairs. In particular the way in whichwe obtain correspondence does not guarantee \true" correspondence.Another approach is to consider an idealised surface sensor. Suppose we havea surface consisting of the x-y plane and we measure a point (x; y; 0) on it whichis then corrupted by some small error to become (x+ �x; y+ �y; �z). An ICP typealgorithm will regard this point as a measurement of (x+ �x; y+ �y; 0), corruptedby an error (0; 0; �z), since we have no way of knowing which point of the surfaceto associate with it. Only the z component of the measurement has any bearingon the pose estimation.This suggests that we use only the component of the point-to-surface distancein the direction of the model surface normal when de�ning the least squares errorcriterion. This di�erence may a�ect the minimum of the cost function considerably.Most other authors, with the exception of Chen and Medioni (1992), do not usethe surface normal. Chen and Medioni use a motivation roughly similar to ourown, although their method di�ers in detail.Notice here that we assume that the sensor measures points and that the modelis a complete surface description. Of course in the scene-scene case the surfacewould be reconstructed from the point measurements and the normal would benoisy. This noise will be taken into account in future work.3.1 Point Set plus normal RegistrationThe discussion indicates we should use an error model for the inner registrationstep of the ICP which uses the surface normal. We assume that we have points mion the model which are translated by frame f�1 and corrupted by noise to becomedata points di, i.e. di = f�1 �mi + wi. We assume that the noise is isotropic sothat mi = f � di + wi.We assume that the model surface normal at point mi is ni and noise free.The error measure should only consider errors perpendicular to the surface so wepropose h0i = ni:(mi � f � di) with the error criterion given byC =Xi h0>i W�1i h0i (14)The analysis of section 2 may now be applied to the new error function. Thedi�erences are relatively minor, except that we should replace Mi by M 0i = ni:Mi.We now consider an example. Suppose that the model is a unit square centredon the origin with normal n = (0; 0; 1). We select N points at random, applysome f and corrupt with Gaussian noise of variance �2. As expected the inversecovariance matrix has zeros in the rows and columns corresponding to rotationsaround the ẑ axis and translations in the x-y plane. The covariance blows upindicating that the recovered frame is 3-fold degenerate. A similar exercise maybe performed with a sphere. In this case the translations are well �xed but thereare three undetermined rotations.
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3.2 Registration IndexIn many situations we will not be interested in analysing in detail the covariancematrix. In this section we propose a simple parameter, the registration indexrs, that will give an indication of how well two surfaces may be registered. Inparticular it will signal cases of near degeneracy. The de�nition of rs is based onthe typical boundary error �8 as proposed by Pennec and Thirion (1995a). This isa concise way of expressing the pose uncertainty.Typically we are not interested in the pose uncertainty but rather its e�ectson point registration. The error in a point's registration is best expressed by therms distance. Suppose that we have ŷ = f̂ � x, i.e. x known and f̂ an estimate.The variance in estimate ŷ due to pose uncertainty Wf isWy = JWfJ>; J = @(f � x)@f = �Mi (15)The rms distance of y from ŷ due to the uncertainty in f we denote by �d where�2d = E[(ŷ � y)2] = traceWy (16)In this way we see that the error of a point depends on the pose uncertainty.However the point error also depends on where the point is. A convenient way ofreducing the dependence on position is to use the 8 vertices of a bounding box.This will usually give a good indication of the average error of points inside thebox. Thus we de�ne the typical boundary error �8 as the arithmetic average ofthe eight rms displacements (i.e. �d) of points at the vertices of the bounding box.For �xed Wf it depends on the size of the box.We have not yet said where Wf comes from. Consider the following scenario:We have a cube centred at the origin with sides of length l. We obtain N=8measurements of each vertex with W = �2I3. We then use point set registrationto compute (f̂ ;Wf (cube)), and obtain �28(cube) = Kc�2=N where Kc is a numberindependent of the cube size, N and �. It may be determined numerically thatKc = 6. For any positioning of the measured points closer to the cube centre therotational errors and hence Kc will increase. Kc = 6 is the smallest (i.e. optimal)value if the pose is computed from measurements of points located within thecube.We can now select some surface registration problem and compute the poseusing our modi�ed ICP algorithm (f̂ ;Wf (surface)). Based on this we can com-pute �28(surface). ( The box used to compute �8 should be a bounding box of theintersection of the surfaces for partially overlapping surfaces. ) We now de�ne Ksby the relation �28(surface) = Ks�2=N .Ks will be larger than Kc and will blow up as the registration problem becomesdegenerate. We de�ne the registration index rs as the ratiors = KsKc (17)The larger the registration index the less certain the pose. Knowledge of the regis-tration index allows a \back-of-the-envelope" computation of the typical boundary
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Table 1: Registration IndicesShape rsSphere 1Tetrahedron 6.0Octahedron 19.0Cube 6.0Dodecahedron 20.0Icosahedron 24.9Beethoven 11.1Foot 11.9Dumbbell 20.9Arch 12.4Bunny 13.3error, given N measurements and measurement error of �. The registration indexconverts to typical boundary error as follows�28 = 6rs �2N (18)3.3 Surface Registration ExamplesThe �rst examples we consider are a sphere radius r and the �ve platonic solidsinscribed within a sphere radius r. We consider �rst the icosahedron and selectN points at random, apply some frame f and add noise with variance �2. TheICP algorithm is applied to recover an estimate f̂ . If we use a cost based on h weobtain translational modes with covariance �2=N whereas the rotational modeshave covariance 2�2=Nr2. If we instead use h0 we obtain 3�2=N and 30�2=Nr2respectively. This shows that the icosahedron does resemble the sphere to someextent and the rotational modes have relatively high covariance as a consequence.For the icosahedron we obtain rs ' 24:9. The registration indices are summarizedin Table 1. For the sphere rs = 1. In �gures 1 and 2 we show the registrationindex for a variety of other shapes from various sources.Our area of interest lies in surface fusion where the model is unknown and wehave two scene measurements. In the case where we are registering a scene to amodel we have access to the exact normal. If we are registering two measurementsof the same object we do not. The normal is a di�erential quantity and thereforemagni�es the e�ects of measurement error.Work is in progress on developing the treatment further to take account of theerror in the normal, but for the time being we believe that some indication of theerror may be obtained from naively applying the model scene method.In �gure 3 we show a scene-scene registration task and record the registrationindices. In table 1 we summarise all the registration indices. A `fringe bene�t'of this technique should be mentioned. We �nd that an ICP based on the point-
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Figure 1: (a) Beethoven rs = 11:1 (b) Foot rs = 11:9
Figure 2: (a) Dumbbell rs = 20:9 (b) Arch rs = 12:4normal registration usually needs between 1/10th and 1/2 the number of iterations.The reason for this may be understood by considering the following example.Consider a cube translated parallel to a side. The point-normal ICP will convergein one step, whereas the point-point ICP will converge in a geometric series wherethe rate depends on the number of points on faces perpendicular and parallel tothe displacement. The points on parallel faces slow down the point-point ICPconvergence, but are ignored in the point-normal ICP.4 ConclusionWe have presented a method to compute the frame covariance for surface regis-tration. We believe that it favours the Chen and Medioni variant of the IteratedClosest Point algorithm. We �nd that the ICP algorithm with this variant is 2-10times faster than the conventional choice.Work is in progress on the case of curve-curve registration where the errorfunction should be modi�ed to h00 = t�h for t the tangent vector. The treatmentis otherwise the same. The treatment we have presented is complete for the case ofmodel-scene registration where we have access to an exact surface normal. Workis in progress on the case of scene-scene registration where the uncertainty in thenormal should be taken into account.Finally we would like to acknowledge the sources of the data. The foot model
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Figure 3: The scene and model for the bunny, rs = 13:3is based on Cyberware data supplied by Tim McInerney, using the Slime package.The dumbbell and arch were also created using Slime. The Beethoven modelwere produced by Viewpoint Animation using a mechanical digitiser. The bunnydataset was used by Turk and Levoy in their zipper paper.ReferencesBesl, P.J. and McKay, N.D. (1992). A method for registration of 3-d shapes. IEEETrans. Pattern Analysis and Machine Intell., 14, no. 2, 239{256.Bispo, E. M. and Fisher, R. B. (1994). Free-form surface matching for surfaceinspection. In 6th IMA Conf. on the Mathematics of Surfaces, pp. ?{?, BrunelUniversity, London, U.K.Brujic, D. and Ristic, M. (1996). Analysis of free form surface registration. In1996 Int. Conference on Image Processing, pp. ?{?, Laussane, Switzerland.Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiplerange images. Image and Vision Computing, 10, no. 3, 145{155.Dorai, C., Weng, J., and Jain, A.K. (1994). Optimal registration of multiplerange views. In 12th Int. Conference on Pattern Recognition, pp. A569{571,Jerusalem, Israel.Hilton, A., Stoddart, A. J., Illingworth, J., and Windeatt, T. (1996). Reliable sur-face reconstruction from multiple range images. In Fourth European Conferenceon Computer Vision, pp. 117{126, Cambridge, U.K.Kanatani, K. (1994). Analysis of 3-d rotation �tting. IEEE Trans. Pattern Anal-ysis and Machine Intell., 16, no. 5, 543{549.Pennec, X. and Thirion, J.-P. (1995a). Validation of 3-d registration methods basedon points and frames. In 5th Int. Conference on Computer Vision, pp. 557{562,Cambridge, Massachusetts.Pennec, X. and Thirion, J.-P. (1995b). Validation of 3-d registration methodsbased on points and frames. INRIA Tech Report RR2470.Pennec, X. and Thirion, J.-P. (1996). A framework for uncertainty and valida-tion of 3-d registration methods based on points and frames. Int. Journal ofComputer Vision.


