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Abstract

Rendering realistic images requires solving the notoriously hard physically-based light transport

problem. Almost all of the state-of-the-art physically-based rendering methods use Monte-Carlo

sampling of the light paths contributing to the image. These methods suffer from variance until

convergence. Depending on the scene, an impracticable amount of time might be required to get

a clean image. A recently developed method called gradient-domain Metropolis light transport

mitigates this problem. It first samples the image-space finite differences of paths alongside the

paths themselves and then reconstructs a clean image from the sampled data by applying a screened

Poisson reconstruction. The method exploits two properties: first, the gradients of natural images

are usually much sparser than the image itself, thus sampling efforts can be concentrated in fewer

regions of the path space. Second, sampling finite differences allows using correlated sampling in

rendering, which can strongly reduce noise in the finite differences. Both properties combined lead

to dramatical speed-ups compared to classical (Markov-chain) Monte-Carlo rendering methods.

This dissertation builds up on the aforementioned gradient-domain Metropolis light transport and

proposes a number of improvements and generalizations. We improve the sampling by replacing finite

differences by arbitrary differences and by combining different sampling strategies in an unbiased

way. We also generalize the method to non-MLT rendering methods like bidirectional path tracing.

Further, we develop an algorithm that regularizes the screened Poisson reconstruction by using

auxiliary scene information in order to increase image quality. This leads to the first method that

combines gradient-domain rendering with classical image-space denoising. And finally, we incorporate

temporal finite differences in gradient-domain rendering in order to create stable animations, thus

making gradient-domain rendering an even more appealing option for production rendering.
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Chapter 1

Introduction

In the last couple of decades computer graphics (CG) has become more and more important in our

day to day life up to a point that it is omnipresent. Nowadays, we encounter CG extensively in movies,

video games, commercials, printed media, simulators and data visualizations, just to name a few.

The uses of CG are sometimes very obvious, e.g. in form of fantastic special effects in science fiction

movies and sometimes not so obvious like in photo-realistic furniture arrangements in commercial

catalogues.

Before CG, special effects in media were more difficult to realize. For instance in a movie, every

asset had to be physically present in some form, be it as a model, a drawing, a cardboard, a costume

or an animatronic robot. Hence what was depictable was limited by what could be created physically

with the available resources. With CG, the physical restrictions for creating imagery weakened

severely. Suddenly, it was enough to have a virtual description of a scene in a computer, algorithms

to convert them into images, and the computational power to transform these descriptions into

images. While in theory every imaginable image became possible to create, practical limitations of

the computation cost have always put limits to what was feasible with CG.

1.1 Motivation

In this thesis we will focus on the problems related to computing an image from a scene description.

More precisely, given a scene description in some format we want to compute how an image would

look like if captured from a virtual camera placed inside of this virtual scene. This process is called

rendering. The specific goal on which we will focus in this thesis is to render images that are

indistinguishable from real photography. We will concentrate on methods that simulate the physical

processes that lead to photography in the real world.

Creating photo realistic images is difficult because in our tangible world they are the result of

a very complex process: a camera creates an image by measuring the amount of light arriving at

sensors inside of it. The amount of light arriving at these sensors depends on the light that arrives to

the camera from all directions. This requires knowledge of how much light is reflected and emitted

towards the camera from every point in the scene. However, the light reflected from any point in

the scene towards the camera depends on all light that arrives at this point. In other words we need

5



6 CHAPTER 1. INTRODUCTION

to know how much light is transported from any point in the scene to any other point in the scene.

Therefore we call this the light transport problem.

Algorithms for approximating the light transport with arbitrary precision have been around since

the 1980ies [50]. However, they have not been used widely because of their computational costs.

Therefore until recently, rendering was always based as much as possible on cheaper phenomenological

methods. Examples of such methods are non-physically based models for the surface appearance

of objects [65] and methods for creating plausible soft shadows based on heuristics [26]. In general,

phenomenological methods in rendering are based on models that can describe what something looks

like without necessarily describing why it looks like that. The descriptive power of such models is

often limited to a small range of visual phenomena. This led to very bloated processes for generating

images since different visual phenomena had to be computed separately with different methods.

These pipelines were complicated to handle since they required a lot of manual tweaking for every

single asset that had to be rendered. This became a large cost factor for companies since artists

needed to spend a lot of time to get this tweaking right.

This is in contrast to the more general light transport algorithms that produce photo-realistic

images per definition and that require significantly less tweaking. With the decreasing computational

cost due to faster and cheaper hardware, light transport algorithms thus became more attractive.

As a consequence, around 2010, a dramatic shift in the movie-industry [55] occurred away from

agglomerates of specialized phenomenological methods to physically-based light transport algorithms.

With physically-based light transport algorithms existing since decades and computation now

being cheap enough to make these algorithms affordable, it might seem futile to invest more research

efforts in light transport algorithms. However, since people tend to always push the limits of what is

feasible, more computation power will not necessarily mean shorter rendering times. It is estimated

that each year the average computational effort to render a blockbuster movie roughly doubles [25].

The reason for this is that the rendering industry is very competitive and therefore companies try to

surpass each other with the level of realism they can achieve. As a consequence the scene complexity

and the required precision of the light transport simulation increased dramatically over the last few

years and will continue to do so. Since the increase in computation power seems to slowly approach

a physical limit, companies in the rendering industry cannot rely exclusively on upgrading their

hardware anymore. Hence, to further increase realism, more efficient light transport algorithms are

required.

1.2 Problem Statement

Current light transport algorithms compute images by measuring the light arriving at each pixel

represented by a virtual light sensor floating in the virtual scene. As it turns out, computing the

quantity of light arriving at each sensor requires solving an equilibrium that tells how much light

arrives and how much light leaves at every point in a scene simultaneously in a consistent way.

Solving this problem is particularly hard since the light arriving at a certain point depends on the

light arriving through any possible path from any light source to this point (Figure 1.1). Many

methods have been developed in the last decades, and the most effective ones were based on Monte-
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Sensor array

Lightsource

Figure 1.1: The image is represented as a virtual sensor array where each sensor roughly corresponds
to a pixel. The color of each pixel depends on light travelling along all possible paths through the
scene from the light source to the sensor. The number of possible paths is infinite since light can
bounce off at arbitrary locations and surfaces an arbitrary number of times before reaching the sensor.

Carlo integration that sample these paths in a brute force manner. In a nutshell, these methods

stochastically select paths that connect one of the light sources with the sensor, compute how much

light they transport to the sensor, and compute the sensors response as a weighted sum of these path

contributions. An image is then generated by computing the responses of many such sensors, each

representing a pixel in the image. Intuitively one can interpret an image as the responses of many

sensors arranged in a 2D array floating in the virtual scene. Due to the stochastic nature of selecting

path trajectories the methods based on Monte-Carlo integration all suffer from variance in the result

that becomes visible as noise at different frequencies. Depending on the scene setup, getting clean

images can take an impractical amount of time. In general, Monte-Carlo methods for light transport

can be classified into two classes: (1) unbiased rendering methods that produce results that are on

average always correct solutions for the light transport problem, and (2) biased rendering methods

that accept systematic errors in order to yield more pleasant results in shorter amount of time.

The most common Monte-Carlo rendering methods solve the light transport problem for every

pixel separately [50, 62]. This is very wasteful since close-by pixels usually get illuminated similarly

by the environment. More generally any two close-by points in space are illuminated similarly in

most cases, thus information about the illumination in one point usually is also useful for computing

illumination in close-by points. Put in other words, the light transport is usually smooth with respect

to changing positions in the scene, meaning it usually does not change abruptly1. This can be exploited

to speed up rendering by increasing the amount of information at arbitrary points in the scene by

using information of close-by points. Naturally, many methods have been developed that exploit this

particular property of light transport for rendering images: some interpolate the incoming light at any

point, for instance photon mapping [49, 32], vertex merging [33, 28] or irradiance caching [112], some

interpolate the sensor responses, for instance adaptive sampling and reconstruction methods [115],

1Of course this is not always true since occlusion due to objects in the scene will lead to abrupt changes in illumination.
But these effects are very local and the vast majority of illumination is not affected by this.
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and some interpolate the path trajectories themselves, for instance path space filtering [54]. However,

these interpolation approaches generally introduce some kind of systematic errors in the computation

due to simplifying assumptions about the light transport. These systematic errors decrease with

increasing computation time and vanish in the limit. For finite computation times the resulting

artefacts are often hard to predict and subject to additional parameters in the algorithms, making

these algorithms harder to use. Methods without systematic error that also aim at exploiting the fact

that similar paths transport similar amount of light are the Metropolis sampling methods [109, 53, 10]

that are discussed in Section 3.4. However, these methods suffer from unpredictable low frequency

noise and convergence behaviour, and they are hard to use in animations.

1.3 Gradient-Domain Rendering

Recently, a new class of unbiased Monte-Carlo rendering algorithms emerged that can exploit the

smoothness of the light transport without introducing the aforementioned problems, the gradient-

domain rendering algorithms. Gradient-domain rendering samples finite differences between pixels

in the image alongside the pixel colors, and then reconstructs a high-quality image from the finite

differences and pixel colors. Depending on what type of reconstruction is used, the resulting image

can be unbiased or biased but with lower noise. A finite difference of the image can be sampled from

pairs of paths, where each path in the pair contributes to the illumination of one of the two pixels

that are involved in the finite difference computation. The difference of these two path contributions

is then a sample of the finite difference.

The paths involved in the finite differences are sampled with techniques that make them as

similar as possible, called correlated sampling. The finite difference sampling can be implemented

on top of existing algorithms and we will show a number of rendering techniques that have been

augmented for finite difference sampling. A property of these new sampling techniques is that in

regions where the path space is smooth, both paths involved in the finite difference computation

are extremely similar. A consequence of this similarity is that the finite differences created in this

way have less noise than if they are created with traditional sampling techniques. Combined with

the reconstruction, this effectively reduces noise contamination due to the stochastic Monte-Carlo

sampling significantly in most regions of an image. Another useful property of gradient-domain

rendering is that the image-space finite differences are a much sparser representation of the image

than the color image itself. Concentrating computation efforts on the few regions where gradients

are big, or in other words where the action happens in the image, leads to further benefits.

The first algorithm that used gradient-domain rendering is gradient-domain Metropolis light

transport [68]. This method is based on Metropolis sampling and thus suffers from uneven convergence,

is ill suited for animations and is challenging to implement. This made the algorithm unattractive

for being used in industry. Hence, the goal of this thesis is to develop new algorithms that make

gradient-domain rendering more useful in practice.
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1.4 Overview

In Chapter 2 we discuss the mathematical foundations of the light transport problem. We describe

the measurement quantities required to formulate the light transport problem, discuss the different

components of light transport, and then show how the full light transport problem can be described as

an equilibrium. In Chapter 3 we discuss Monte-Carlo integration that is the mathematical foundation

of most modern methods to solve the light transport problem efficiently. There we also provide a short

overview over probability calculus. We also put a large emphasis on advanced variance reduction

techniques that help reducing noise in Monte-Carlo methods. In Chapter 4 we describe solution

methods to the light transport problem that are based on Monte-Carlo integration. We discuss, in

that order, path tracing, bidirectional path tracing and Metropolis light transport. We also give

a quick overview of recent noise reduction methods called adaptive sampling and reconstruction

that can be used in conjunction with Monte-Carlo rendering. Chapter 5 describes previous work on

gradient-domain rendering on which our contributions build upon most directly. We first describe

the basic concepts and theoretical properties of gradient domain rendering and show how they where

applied on gradient-domain path tracing [57] and gradient-domain Metropolis light transport [68].

Chapters 6 to 9 consist of our unaltered publications on gradient-domain rendering. Finally, Chapter

10 concludes our findings and also discusses some potential avenues for future research in the field of

gradient-domain rendering.

1.5 Contributions

In this thesis we present a set of contributions to gradient-domain rendering. Publications in which

the author of this thesis was the primary contributor or one of the primary contributors are used in

unaltered form in Chapters 6 to 9. These publications include

• Improved Sampling for gradient-domain Metropolis Light Transport [75]. A set of

improvements upon the original Gradient-Domain Metropolis Light Transport algorithm [68]

that reduce variance of the sampled gradients. This is achieved by proposing a new sampling

technique resulting in even lower noise and by proposing a combination scheme for different

sampling techniques for gradients. Additionally, the original method is generalized to use

arbitrary difference constraints instead of finite differences in the x− and y−direction, which

yields further benefits.

• Gradient-Domain Bidirectional Path Tracing [73] An integration of gradient-domain

rendering with bidirectional path tracing, including efficient sampling techniques for gradients.

• Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature

Patches [76]. A combination of gradient-domain rendering with image-space denosing. This is

done by introducing a new regularized reconstruction which aims at constructing a smoother

image by exploiting feature data.

• Temporal Gradient-Domain Path Tracing [74]. An extension to gradient-domain path

tracing that also generates gradients across the time dimension. The solution is easy to add on
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top of existing gradient-domain path tracing implementations and greatly increases temporal

coherence of animations.

Additionally, with the permission of all involved authors, parts of the following work that the author

of this thesis co-authored are used in Chapter 5 (Section 5.3 and 5.4.3):

• Gradient-Domain Path Tracing [57]. A generalization of Gradient-domain metropolis light

transport to unidirectional path tracing, including a theoretical framework that justifies why

gradient-domain rendering is beneficial for algorithms that use uniform sampling distributions.



Chapter 2

Light Transport

Light transport algorithms compute how light interacts with an environment and are used in computer

graphics to compute how a virtual environment would be seen by a virtual camera or observer. Such

algorithms create an image by simulating the process that creates images in our physical world and

are thus often referred to as physically-based rendering algorithms. These methods simulate how

photons are emitted by light sources in a scene, how they travel through space and interact with

matter and finally how sensors are stimulated by them. The culmination of many such stimuli for

many sensors is then interpreted as an image.

The biggest appeal of physically-based rendering is that, given a simulation that is accurate

enough, it is able to create images that are indistinguishable from real photographs. Surprisingly,

pysically-based rendering is also getting used more and more to create non-photo-realistic images [55].

For instance, the shapes of objects and material properties can be changed to achieve a cartoonish

look while the underlying physically-based algorithm will still ensure that the images look consistent.

This means shadows will appear at the right place, reflections will be correct and even caustics

will appear. This led to a unique look that has been used extensively in the last decade to create

animation movies.

Common light transport algorithms in rendering use ray optics to model light. Ray optics is

based on some simplifying assumptions about the nature of light: light is assumed to be consisting

of infinitesimally small particles called photons travelling along straight lines with infinite speed.

The color of such a photon is determined by the amount of energy that it transports. When these

photons interact with a surface they are reflected, transmitted, absorbed or emitted. We further

assume that photons do not interact in any way with each other. This implies that light is linear

with respect to color and intensity. This means for instance that an optical system using the sum

of two light sources as input will generate the same result as computing the system for each light

source separately and then summing up the results. The linearity makes this model very appealing

for light transport simulations since computing the full light transport in a scene can be reduced to

compute all possible paths that a photon can travel through the scene separately.

However, the ray optics model is incomplete since it ignores the electromagnetic and quantum

nature of light. It does therefore not describe the full spectrum of light phenomena that are observed

in the real world. Specifically, ray optics starts to fail at describing light’s behaviour on geometry

11
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that changes on scales approaching the wavelength of the emitted light. Hence effects caused by

very small geometric features like diffraction due to microscopic scratches on a CD’s surface or light

slightly ”bending” around sharp corners cannot be explained or simulated using ray optics. Similar

problems occur with polarization effects or fluorescence. Luckily, in our day to day life these effects

are usually not very prominent or too small in scale to be noticeable.

Although there are methods that use more complete models of light in rendering like waveoptics

[102] or the finite speed of light [46], none of them are widely used in computer graphics because

they are much more expensive to use. Therefore, in this thesis we will only focus on light transport

algorithms based on ray optics.

In this chapter we will first give a short introduction into radiometry. Radiometry describes how

light can be measured. These quantities are then used to measure and describe light transport in the

remainder of this chapter. We will describe light transport in terms of its two basic operations. First,

we will describe light scattering, this means how light is scattered when it interacts with a surface.

Then we will describe how light is propagated from one surface to another. These two operations

will then be combined to describe the full light transport in a scene as an equilibrium between the

incoming and outgoing light at any point in a scene.

Note that our contributions have not been generalized to rendering volumes yet, therefore we will

not include volumes in our discussion of light transport. We will therefore assume that light can only

be scattered on surfaces of objects but not in mid air by interacting with particles as it happens for

instance in clouds, smoke, water or fog. We refer to work by Veach [106], Cerezo et al. [8], Pharr

and Humphreys [90] and Jarosz [47] for more details on this subject.

2.1 Radiometry

Radiometry describes measurement quantities for light. As such it describes the basic quantities

that we want to measure when simulating light transport. Specifically we will discuss radiant flux,

irradiance and radiance. These quantities are measured in terms of the spectral power distribution

that describes the amount of light at every wavelength [90].

2.1.1 Spectral Power Distribution

In physics light is usually described as electromagnetic radiation quantified as packets called photons.

Such photons are described by their wavelength that determines at which frequency the electromag-

netic wave oscillates and by their polarization that determines how this oscillation is oriented. The

higher the energy that a photon carries is, the faster it oscillates respectively the smaller its wave-

length is. The spectrum of wavelengths interesting for creating images is the narrow band between

370 nm to 730 nm that includes all colors that can be perceived by the human eye. However, recall

that we are interested in ray optics that ignores the wave nature of light. The notion of photons

having a certain wavelength that determines their color is however still useful for describing light.

In radiometry light is not quantified as single photons but as a continuous distribution over the

different wavelengths: the so-called spectral power distribution (SPD). Intuitively, one can imagine



2.1. RADIOMETRY 13

this quantity as packets of many photons where the SPD S(ν) describes their distribution in terms

of wavelengths ν. Since we cannot store continuous distributions, SPDs are usually represented in

terms of basis functions that allow approximating the SPD with only a few coefficients. Many such

representations exist, the most commonly used are representations with three basis functions where

each of them roughly corresponds to the three types of color receptors in the human eye, like the

CIE1931 color space. Many sophisticated renderers nowadays do however support spectral rendering

where more basis function are used or where the different wavelengths of the SPD are sampled in a

stochastic way with Monte-Carlo sampling [113] (see Chapter 3).

2.1.2 Radiant flux

Radiant flux, also called radiant power, is denoted by the symbol Φ and measures how much radiant

energy passes through a surface in space per unit time s. This radiant energy is proportional to

the number of photons that passes through the surface. The radiant energy Q(s) measures the

electromagnetic radiation in joules J . Radiant flux is thus defined as radiant energy per unit time

Φ(s) =
∂Q(s)

∂t
. (2.1)

The radiant flux is measured in joules per second or watts, W = J/s. For instance, in order to

measure the radiant energy emitted by a point light source we could measure the flux on spheres

surrounding that point light. Measuring the radiant flux per wavelength ν leads to another useful

quantity; the spectral flux Φ(ν) = ∂Φ/∂ν.

2.1.3 Irradiance

Irradiance measures the radiant flux arriving on a surface, per surface area. Irradiance is a function

of a point on the surface x:

E(x) =
∂Φ(x)

∂A(x)
, (2.2)

where Φ is the incoming radiant flux. We measure it with respect to the surface area measure around

x, A(x). ∂A(x) is an infinitesimally small surface patch around a point x. If we measure the radiant

flux emitted by the surface we talk of radiant exitance instead of irradiance. To better distinguish

both we will use different subscripts for both terms, irradiance will be denoted by Ei and radiant

exitance by Eo. Both irradiance and radiant exitance use as units watts per square meters, W ·m−2.

Analogous to spectral flux, the irradiance per wavelength ν, Ei(x, ν) = ∂Ei(x)/∂ν, is called spectral

irradiance.

2.1.4 Radiance

Radiance measures the radiant flux leaving or arriving on a point x from direction ω, per unit area

surface perpendicular to ω and per unit solid angle. In order to define this we must first clarify the

term solid angle:
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Figure 2.1: A geometric interpretation of the relationship of ∂A, ∂σ and ∂σ⊥. The surface patch A
gets first projected onto the solid angle around x and then onto the projected solid angle around x.

Solid angles are used to measure how large objects appear from an observer. It is a measure

for questions like ”How much of the night sky is covered by the moon?”. It is expressed in the

dimensionless steradians (sr). Intuitively, given an observer at point x and an observed surface A,

the solid angle measures the area of the intersection of a cone originating at x and spanning over A,

and a unit hemisphere S2 around x (Figure 2.1). Given this background the radiance is

L(x, ω) =
∂2Φ(x, ω)

|cosθ|∂A(x)∂σx(ω)
, (2.3)

where cosθ = |nx ·ω| and nx is the surface normal around x. Intuitively this dot-product accounts for

the fact that radiant energy coming from grazing angles is distributed over larger areas which leads

to less energy per unit surface area. In most light transport literature the dot product is absorbed

by the solid angle measurement leading to the projected solid angle

σ⊥x (ω) = |nx · ω|σx(ω). (2.4)

Radiance is measured as watts per steradian per square meter, W · sr−1 · m−2. Radiance per

wavelength ν, L(x, ω, ν) = ∂L(x, ω)/∂ν, is called spectral radiance.

Note that irradiance is the radiance integrated over all incoming directions

Ei(x) =

∫

S2

L(x, ω)dσ⊥x (ω). (2.5)

2.2 Light Scattering

In ray optics photons interact with surfaces by being reflected, transmitted or absorbed (or any

combination thereof). In order to describe these interactions we must be able to model how light

scatters when interacting with a surface. We do this by using mathematical functions that tell us

what fraction of light incoming from a specific direction is reflected into another specific direction.

2.2.1 Surface Scattering

Scattering on surfaces can be described by bidirectional reflectance distribution functions (BRDF)

[86]. The BRDF describes the fraction of light incoming from a certain direction ωi that is reflected
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Figure 2.2: A depiction of a BRDF.

in another direction ωo

Formally the BRDF is defined as the partial derivative of the radiance towards ωo with respect

to the differential irradiance from a infinitesimally small cone of directions around ωi at a surface

position x:

f(x, ωi, ωo) =
∂Lo(x, ωo)

∂E(x, ωi)
=

∂Lo(x, ωo)

Li(x, ωi)dσ⊥x (ωi)
. (2.6)

The second step follows from Equation 2.5. Note that both ωi and ωo point away from the surface.

The main property of the BRDF is that it is energy preserving, that is

∫

S2

f(x, ωi, ωo)dσ
⊥
x (ωi) ≤ 1,

where S2 is the hemisphere at x. The energy preservation property ensures that no new energy gets

created without emission. This means that a non-emissive surface cannot reflect more light than it

receives. Another important property is that the BRDF is symmetrical, that is

f(x, ωi, ωo) = f(x, ωo, ωi).

This leads to the Helmholtz reciprocity that states that reversing a path in a pure BRDF environment

by swapping emitter and sensor does not change the measured flux on the sensor. This property is

important for light transport algorithms since it allows paths to be constructed in reversed order.

Note that neither energy preservation nor symmetry must hold for non-physically based BRDFs.

The BRDF only describes reflection, the analogous function that describes transmittance is the

bidirectional transmittance distribution function (BTDF). While the pairs of directions ωi and ωo for

the BRDF are on the same hemisphere of the surface x they are on opposite hemispheres for the

BTDF. Note that the BTDF usually is not symmetric. Fortunately, there is a simple solution to this

problem such that all BSDFs following physical laws can be described in a symmetric way [106].

Many materials are composed of both BRDFs and BTDFs as for instance water surfaces where

a fraction of the light gets reflected and a fraction of the light gets refracted (see Figure 2.3) The

BRDF and BTDF are usually unified by the bidirectional scattering distribution function (BSDF).

2.2.2 BSDF Types

In our tangible world a wide range of surfaces occur. The reflection properties of these surfaces can

be arbitrarily hard to model precisely since they are often determined by microscopic structures and

imperfections that can be of arbitrary complexity. The most direct way to construct BSDFs is to
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Figure 2.3: A watersurface has a BRDF and BTDF component.

Figure 2.4: From left to right: a diffuse, a glossy and a specular BRDF.

directly measure the reflectance properties of a surface physically with measurement devices and then

to use this data directly during rendering. For instance, the data can be tabulated for the measured

ωo and ωi directions and then looked up during rendering. The disadvantage with this method is

that measuring reflectance properties physically is usually an expensive and tedious process and that

look-up and storage of this data is also expensive.

More commonly used BSDFs of real materials are approximated by simple mathematical models.

Some of these models are phenomenological, meaning they do not really have a physical meaning.

Such models are often designed with performance in mind and intuitive control of the parameters.

The danger with such models is that, since they are not rooted in physical laws, they do not necessarily

yield consistent results. For instance, energy preservation can be violated or they might behave in

unexpected ways in certain situations.

Thus, photo-realistic rendering often relies on physically-based models. These models are usually

more expensive to evaluate than phenomenological models but yield more realistic results. One

example of such a model is the micro-facet model [11, 3]. We will not directly dive into the micro-

facet theory in this thesis and instead explain it on a intuitive level: on a high level, micro-facet models

allow to model surfaces with different levels of roughness. The roughness describes how strongly light

gets scattered when interacting with the material. Micro-facet models achieve this by describing

surfaces as consisting of many microscopically-sized randomly orientated surface patches (”facets”).

The larger the variance of the facets orientation is, the rougher a material appears. On the ends of

this spectrum are perfectly diffuse materials that scatter light equally in every direction and perfectly

specular materials that scatter light only into a infinitesimally small cone of directions. Between

those two extremes are the glossy materials. Figure 2.4 shows 2D slices of BSDF examples. In three

dimensions a BSDF can also behave in an anisotropic fashion, meaning it can behave differently

depending on the viewing direction. Brushed metal is a typical example of a anisotropic BSDF where

the material appears rougher in the direction perpendicular to the brushing direction. Independent

of the exact material roughness properties, we must further differentiate between conductor materials

and dielectric materials. Conductors reflect a part of the light and turn another part of the light

into heat by absorbing it. This means conductors do not refract light. Dielectric materials are
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different in the sense that they partially reflect light and partially refract light. The ratios of reflected

light and absorbed light for conductors and the reflected light and refracted light for dielectrics are

described by the Fresnel equations [39]. Examples for conductors are metals and for dielectrics water

or glass. More complex materials are modelled as surfaces with several BSDF layers [36, 44]. In the

simplest case this can be something like a wooden floor with a coating layer on top of it, but it can

also be something very complex like skin that is composed of several translucent layers with dense

participating media in between the layers.

2.3 Light Propagation

2.3.1 The Reflection Equation

By multiplying Equation 2.6 by the differential irradiance and integrating it, we get the reflection

equation:

Lr(x, ωo) =

∫

S2

f(x, ωo, ωi)Li(x, ωi)dσ
⊥
x (ωi), (2.7)

which states that the total reflected light in an outgoing direction is the integral of the incoming

radiance times BSDF over all incoming directions. It is crucial for the understanding of light transport

that this equation describes an equilibrium between the incident and reflected radiance.

2.3.2 The Rendering Equation

Radiance does not change along a ray, thus

Li(x, ωi) = Lo(x
′,−ωi) (2.8)

where

x′ = ν(x, ωi) (2.9)

is the ray casting function that describes the first visible point viewed from x in direction ωi. This

shows that Lo and Li are interchangeable and therefore we will only use Lo from now on and drop

the subscript, i.e. L = Lo. By taking into account that the total outgoing radiance is the sum of

the reflected light Lr and the emitted light Le, i.e. L = Le + Lr, we can write down the rendering

equation [50, 42]:

L(x, ωo) = Le(x, ωo) +

∫

S2

f(x, ωi, ωo)L(x′,−ωi)dσ⊥x ωi. (2.10)

The solution to the rendering equation describes the equilibrium of radiance in the entire scene. This

means that the solution of this equation describes a state of balance between the incident, reflected

and emitted radiance everywhere in the scene simultaneously. In our tangible world - expect for

phenomena of astronomical scale - this state is reached nearly instantly due to the speed of light.

Hence, the light that we perceive as humans is always in the state of balance as described by the

rendering equation.
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2.3.3 Transport Direction

Recall from Section 2.2 that the Helmholz-reciprocity states that emitters and sensors can be ex-

changed and the flux on the sensor will not change. This implies that measuring light in the direction

of radiance transport, i.e. from emitters to sensor, is equivalent to measuring a theoretical quantity

that travels in the reversed direction from sensors to emitters. This theoretical quantity is commonly

described as importance or light measured along the importance direction, since it measures how

important paths are for the sensor. The equivalence of light measured along radiance and importance

direction1 gives us more freedom in how to construct light paths and allows light transport to be

solved more efficiently: only a small subset of possible trajectories starting from emitters do actually

reach a sensor, thus it is more efficient to develop algorithms that construct paths in the importance

direction from the sensor towards the light than the other way round.

2.3.4 The Measurement Equation

The rendering equation gives us a tool to describe the radiance everywhere in a scene in a consistent

way. However, in practice we are only interested in the light arriving at a specific location of the

scene in order to render an image. That is, we want to compute the radiance arriving at our virtual

camera. The virtual camera is modeled as an array of sensors. Each sensor is associated with a single

pixel, thus the response measured at a sensor is the associated pixel’s color value. The response of

each sensor p is described by the measurement equation:

Ip =

∫

PA

∫

S2

Wp(x, ω)L(x, ω)dA(x)dσ⊥x (ω), (2.11)

where PA is the aperture of the sensor and S2 is the sphere of all unit directions. The sensitivity

of the sensor towards radiance with respect to position and direction is specified by the importance

function Wp(x, ω) for sensor p. Typically each sensor has a non-zero sensitivity only for a very

small spatial region representing the sensor aperture2 and a very narrow cone of directions. The

measurement equation combined with the rendering equation makes it possible to design algorithms

that can generate images by mimicking the light transport in the real world.

2.3.5 Surface Form of the Rendering Equation

In this section we will reformulate the rendering equation such that it is a function of positions

instead of a function of directions. This formulation is a useful step towards reformulating light

transport into the path space formulation in Section 2.3.6.

Equation 2.10 defines the light transport problem as a recursive integral over solid angles. We

want to reformulate it as an integration problem over surface areas. To do so, we first change the

integration variable from projected solid angle to surface area. The projection of a surface patch

around x′ onto solid angle at x depends on the orientation of the surface with respect to x as well as

1With refractive materials equivalence is usually not achieved out of the box. However, Veach [106] describes simple
workarounds to still achieve equivalence.

2If a pinhole camera is used, the aperture is a infinitesimally small point in space.
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Figure 2.5: Parametrizing paths by surfaces. This figure shows the relationship between the incoming
and outgoing directios ωi and ωo with the surface patches x,x′ and x′′ used in this subsection. The
yellow arrow shows the direction of the light flow.

its distance to x (recall Figure 2.1):

dσ⊥x (ω) =
cosψ cos θ

||x′ − x||2
dA(x) (2.12)

where cosψ = nx′ · ωi, cos θ = nx · −ωi and ωi = x′−x
||x′−x|| . With this in mind the rendering equation

becomes

L(x, ωo) =Le(x, ωo)+∫

P
f(x, ωi, ωo)L(x′,−ωi)

V (x′, x)| cos θ| cosψ

||x′ − x||2︸ ︷︷ ︸
G(x′,x)

dA(x′).

(2.13)

We call G(x′, x) the geometry term between x′ and x. V (x′, x) is a binary function called visibility

term with

V (x′, x) =





1 if x and x′ are mutualy visible and

0 otherwise.

The directions can be described by the surface points they originate from and the surface they point

to, e.g. ωi = x′−x
||x′−x|| (see figure 2.5). The transport of light between any three surfaces x, x′ and x′′

can thus be parametrized by the surfaces themselves. This leads the three-point surface form of the

rendering equation:

L(x′′, x) =Le(x
′′, x)+

∫

P
f(x′, x, x′′)L(x, x′)G(x, x′)dA(x′).

(2.14)

In this case light is transported from x′ to x to x′′ as depicted in Figure 2.5.
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Similarly the measurement equation can also be transformed in surface form:

Ip =

∫

PA

∫

P
Wp(x, x

′′)L(x′′, x)G(x′′, x)dA(x)dA(x′′) (2.15)

2.3.6 Path Space Formulation of Light Transport

The rendering equation (Eq. 2.10) completely describes the light transport problem and can be used to

compute images with the measurement equation (Eq. 2.11). However, describing the light transport

problem in this way has some limitations: it describes the light transport as one scattering event at a

time and thus provides only a local view on the light transport problem. As a consequence, algorithms

solving this equation construct paths incrementally, this means by evaluating one scattering event

of a path at a time. This leads to conceptually simple solutions to light transport as for instance

path tracing [50] that will be discussed in Section 4.2. However, since no global perspective on

the problem is provided, algorithms that operate on full paths cannot be fully understood. Veach

[108, 106] described a formulation of light transport that operates on full paths and showed how this

can be used to formulate new algorithms that can create new paths by combining existing paths

[107] (Section 4.3) or by perturbing existing paths [109] (Section 4.4).

In the following we will show how the measurement equation and rendering equation can be

reformulated into one simple integral. More specifically, we will show how light transport can be

formulated in the form Ip =
∫
f?p (x)dx where x are paths and f?p (x) is a function that evaluates

the sensor response at pixel p due to a path x. To this end, we will first give a formal description

of paths so that we can integrate over them, then we will discuss an operator formulation of light

transport that reveals a new way of rewriting the rendering equation, and finally we will show how

these ingredients can be combined to formulate light transport as an integral over the space of all

possible paths.

Paths and Path Space A path x is described by the ordered sequence of positions xi, called

vertices, that describe the positions of all scattering events along the path:

x = x0x1x2...xk. (2.16)

The first and last path-vertex represent a point of emission or a measurement on a sensor, while the

path-vertices in between mark any sort of scattering event. We define the length of a path, denoted by

len(x), as the number of path-vertices it consists of. This means for instance that direct illumination

consists of paths of length 3 (one emission, one scattering and one measurement event). It does

not really matter whether the vertices are ordered along the light flow or in the reversed direction,

but as a convention in this thesis path vertices are always ordered in the importance direction (see

Section 2.3.3). This means x0 is always a vertex on a sensor and xn a vertex on a emitter. All possible

paths of length n are denoted by the space Ωn. The union of all these spaces is called path-space

Ω = ∪∞i=1Ωi. This space covers all paths of all lengths that can possibly occur in the scene. Next we
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define a new measure, the area-product measure, that allows us to integrate over paths of length k:

µk(x) = µ(x0x1...xk−1) =
i<k∏

i=0

dA(xi) (2.17)

Operator Formulation The area-product measure above allows us to formulate problems directly

on full paths parametrized by their vertices. However, we need to know how the rendering equation

can be formulated as a problem over paths directly instead of as a recursive operator. To do so

we will discuss Arvos’ operator formulation of light transport [2] that reveals how the rendering

Equation can be reformulated as sum of integrals over different path lengths. It is noteworthy that

the rendering equation is a Fredholm integral equation of the second kind [92] and that these can be

solved by Liouville-Neumann series under certain conditions.

Arvo [2] showed that light transport can be expressed in terms of linear operators for scattering

K and propagation G that can be solved directly without recursion. K is a linear operator that

describes the outgoing radiance Lo in terms of the incoming radiance Li after applying a single

scattering operation:

KLi(x, ωo) =

∫
f(x, ωi, ωo)Li(x, ωi)dω

⊥
x (ωi) = Lo,

and G is a linear operator that describes the incoming radiance at a surface in terms of outgoing

radiance from other surfaces:

GLo(x, ωi) =




Lo(ν(x, ωi)− ωi), if ν(x, ωi) exists

0, else
= Li.

where ν(x, ωi) is defined in Equation 2.9. The two operators can be used to reformulate Equation 2.10

to

L = Le + TL,

with T = KG. Note that we again omit the subscript in Lo and that Le is the emitted light. By

using (I − T )L = Le with I being the identity operator, the equation above can be rewritten to

L = (I − T )−1Le = SLe.

Arvo further showed that S can be easily computed by series expansion if all materials in the scene

are energy conservative:

S = (I − T )−1 =
∞∑

i=0

T i = T 0 + T 1 + T 2 + ....
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The rendering Equation 2.10 can then be written in a non-recursive form as:

L =
∞∑

i=0

T iLe = Le + TLe + T 2Le + .... (2.18)

Note that each T kLe is an integral over paths of length k. The crucial implication of this formulation

is that light transport can be computed by solving integrals of paths of different length independently.

This opens the door to a path space formulation of light transport.

The measurement equation (Eq. 2.11) can be formulated as the inner product of L and the

importance function Wp from Section 2.3.4. From this we can directly see that

Ip = 〈Wp, L〉 =

∞∑

i=0

〈Wp, T
kLe〉. (2.19)

The second step follows from the linearity of the inner product.

Path Space Integral Following Equation 2.18 we can decompose the rendering equation into

paths of different length separately. Each term of the form T kLe can be written out in area-product

measure as:

(T kLe)(x0, x1) =

∫

P
...

∫

P︸ ︷︷ ︸
k times

Le(xk+1, xk)

k∏

i=1

[f(xi−1, xi, xi+1)G(xi, xi+1)] dµ(x2, ..., xk+1).

The first two vertices are fixed by the direction and position on which we want to compute the

radiance. Extending this term in a similar way as Equation 2.15 in order to compute the sensor

response reveals that these represent paths of length k + 2 from sensor to emitter.

Ip,k+2 =

∫

PA

∫

P
Wp(x0, x1)(T kLe)(x0, x1)G(x0, x1)dµ(x0, x1) (2.20)

Interestingly, paths with a length below 2 are not expressed in this formulation. This makes sense

since a path needs to have at least 2 vertices in order to transport any light to a sensor. Namely,

it needs to have at least one vertex on the sensor and one vertex on an emitter. In the classic

formulation, PA is a point on the aperture, but we could easily generalize this to any point in the

scene. Wp would simply be zero for all point that are not on the aperture. Doing so allows us to

write the integral in area product measure (Eq. 2.17) for paths of length k + 2,

Ip,k+2 =

∫

Ωk+2

f?p (x)dµk+2(x), (2.21)



2.4. PATH EXPRESSIONS 23

Figure 2.6: Depiction of the different components of the measurement contribution function for a
path x with len(x) = 4.

where

f?p (x) = Wp(x1, x0)

len(x)−2∏

j=1

f(xi+1, xi, xi−1)G(xi, xi+1)

Le(xlen(x)−2, xlen(x)−1)G(xlen(x)−2, xlen(x)−1)

(2.22)

is the measurement contribution function of path x. Figure 2.6 shows an example for f?p . Using

Equation 2.19 we can now formulate the full measurement equation

Ip =
∞∑

k=2

∫

Ωk
f?p (x)dµk(x). (2.23)

Changing the domain of integration from path spaces of fixed length to the full path space finally

allows us to integrate over all paths of all lengths at once. This finally yields the path space integral

Ip =

∫

Ω
f?p (x)dµ(x). (2.24)

2.4 Path Expressions

We will see later in Chapter 4 that different approaches to solve the light transport problem are

well suited for different types of paths. Therefore, to simplify the discussion later, we review in this

section a commonly used notation for describing the interaction along a path in a compact manner

that allows us to classify paths.

To this end we use a simplified version of the notation by Heckbert [40], similar to the one used by

Veach [106], that classifies each interaction along a path according to the BSDF of the surface that

is either diffuse (D) or specular (S). Additionally vertices on the sensor are denoted with E (for eye)

and vertices on a emitters with L (for light). A path can then be described as a regular expression

consisting of these symbols. The order of symbols could be either in the radiance or importance
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direction, but to keep it consistent with the path notation we order the symbols in the importance

direction.

A simple example is EDSL that denotes a direct caustic path. A more complex path classifica-

tions example is E(S|D)D∗S+L. As with regular expressions the symbol “∗” means zero or more

occurrences, the symbol “+” one or more occurrences and the symbol “|” either the right-hand side

or the left-hand side. Therefore, the example above describes a path from sensor to emitter that

consist of a specular or diffuse vertex followed by any number of diffuse vertices followed by at least

one specular vertex before reaching the emitter.

Even though this notation is useful to explain theoretical concepts it is very limited in practice.

For instance it ignores that material properties are rarely modelled as perfectly diffuse or perfectly

specular surfaces, since neither of them exist in the real world. Most materials are something in

between or even combinations of several layers interacting with each other. However, for the simplicity

of discussion we assume that any material interaction can be classified as one of both categories

based on its roughness. This means if a material has a roughness value over an certain threshold

it is classified as diffuse and otherwise specular. The discussion about multi-layered materials [36]

[44] on the other hand is more problematic. Depending on what a certain method aims at it defines

the roughness as the average, minimum, maximum of all its layers or only considers the currently

sampled layer if only a subset of the layers are evaluated. We will however assume that suitable

classification methods are available and not discuss this further.



Chapter 3

Monte-Carlo Integration

In the previous chapter we showed how the problem of synthesizing realistic images can be solved by

computing integrals over paths for every pixel. That is by solving the associated measurement equa-

tion (Eq. 2.11), or equivalently, its formulation in path space (Eq. 2.24). Despite the conceptionally

simple formulations, solving these equations is difficult for two reasons:

First, for non-trivial scene configurations these integrals cannot be computed analytically. Which

means that we need to approximate each integral’s solution numerically. On a intuitive level this is

done by evaluating the integrals at many different positions. Weighted sums of these evaluations are

then used as approximations of the integrals.

Second, the integrals are high-dimensional since the paths have (infinitely) many degrees of

freedom. This makes the integrals subject to the curse of dimensionality that will be discussed later

in this chapter. Essentially it states that the cost of approximating an integral numerically with

non-stochastic methods goes up exponentially with the number of dimensions of the integral.

The most established method for computing high-dimensional integrals is Monte-Carlo integration.

Nearly all modern physically-based rendering techniques use Monte-Carlo integration. Radiosity

algorithms are an alternative set of approaches that solve the light transport equilibrium as a system

of linear equations [29, 42, 99]. They are however less practical than the Monte-Carlo integration

based methods.

In this chapter we will first give an introduction into the required mathematical foundations for

this thesis, then we will give a overview of Monte-Carlo integration and finally discuss some variance

reduction techniques.

3.1 Mathematical Foundations

3.1.1 Random Variables

Random variables are created by some arbitrary random process. They are drawn from a certain

domain that can be continuous or discrete. In this thesis random numbers will be denoted by capital

letters, e.g X. Note that functions applied on random numbers again yield random numbers, e.g.

Y = F (X).

25
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Density Functions Random processes are usually described by quantities that describe how likely

it is to pick certain values. The cumulative distribution function (CDF) describes the probability of

picking a value smaller or equal to a certain value

P (x) = Pr [X ≤ x] . (3.1)

By construction P (x) is always inside the interval [0, 1] and a monotonically increasing function. The

probability density function (PDF) on the other hand describes how likely it is to pick a specific value

and is equal to the derivative of the CDF:

p(x) =
∂P (x)

∂x
. (3.2)

As such the PDF is never negative and integrates to one over its domain.

Canonical Uniform Random Variables The simplest class of random variables that can be

produced with pseudo-random number generators (PRNG) are canonical random numbers (CRN).

That is, continuous random numbers ranging from zero to one that have the same probability for

every value in the interval to be picked.

For most applications however, it is desirable to use random numbers that are generated with non-

uniform probability densities. Such random numbers usually do not need specialized PRNG since they

can be constructed directly from CRNs. In a first step a simple pseudo-random generator produces

CRNs and in a second step these CRNs are warped onto functions with the desired distributions. In

practice the second step can be done with the inversion method, where a CRN X is mapped onto

the inverse of the CDF of the desired distribution, i.e. P−1. The new random variable Y = P−1(X)

then has per construction the desired distribution. Note that this requires P−1 to be computable,

which is not always the case.

3.1.2 Probability Calculus

Random processes usually lead to non-deterministic results. Despite this we still want to be able

make statements about what kind of results can be expected from a random process and how certain

we are with our predictions.

Expected Value and Variance The expected value E[X] describes the output of a random

process X that can be expected on average. More precisely, it describes the weighted average of

possible outcomes, where the weights are the PDF of this outcome:

E[X] =

∫

D
xp(x)dx (3.3)

where D is the integration domain.

The variance V [X] quantifies the uncertainty of the expected value. It is defined as the expected



3.1. MATHEMATICAL FOUNDATIONS 27

squared difference of the outcomes of X and the expected value of X:

V [X] = E
[
(X − E[X])2

]
. (3.4)

A direct consequence of this definition is that for any constant c

V [cX] = c2V [X]. (3.5)

The square root of the variance σ[X] =
√
V [X] is called standard deviation.

Covariance and Correlation Sometimes it is important to describe the relationship between

random processes. A quantity to measure by how much two random variables X and Y change

together is the covariance:

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])] . (3.6)

Two random variables are independent if their covariance is zero. Note that covariance is a general-

ization of variance, since the covariance of a variable to itself is the variance, i.e. Cov[X,X] = V [X].

With this and Equation 3.5 we can compute the variance of weighted sums of random variables:

V

[
N∑

i=1

ciXi

]
=

N∑

i,j=1

Cov[ciXi, cjXj ]

=

N∑

i=1

c2
iV [Xi] + 2

∑

1≤i<j≤N
cicjCov[Xi, Xj ] (3.7)

Note that the second term disappears for independent random numbers. As a generalization of vari-

ance, covariance quantifies both the relationship of two random variables as well as their uncertainty.

A quantity that only measures the relationship of random variables is Pearson’s correlation coefficient,

often simply called correlation:

Cor[X,Y ] =
Cov[X,Y ]

σ[X]σ[Y ]
. (3.8)

Estimators Many complex problems are to complex too be computed fully in an analytical way.

The light transport problem is such a problem. Instead the solutions for these problems need to

be computed numerically from observed sampled data. In this context the quantity that should be

estimated is called estimand, the estimated result is called estimate and the rule that produces an

estimate from a set of samples is called the estimator. Usually the quality of an estimator depends

on the number of samples. As a notational convention when we denote an estimator we will always

show the number of samples as a subscript, i.e. f̃N .

Consistency and Bias Sometimes estimators do not really estimate the correct thing in all cases.

This can for instance happen unintentionally due to systematic errors in the measurements or models

with insufficient precision. But it can also happen intentionally by approximating complex problems
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by simpler ones for the sake of efficiency. The systematic error is called bias and measures by how

much the expected value of the estimate is off from the estimand. Formally, given a estimand θ and

its estimator f̃N , the bias is defined as

Bias[f̃N ] = E[f̃N ]− θ. (3.9)

A estimator is called unbiased when the bias is zero for any positive number N :

∀N > 0 : Bias[f̃N ] = 0, (3.10)

and called consistent when it converges towards the estimand:

limN→∞f̃N = θ. (3.11)

Note that both things are not equivalent. It is possible for an estimator to have only one of both

properties. Unbiased but not consistent estimators are as well possible as biased but consistent

estimators.

In computer graphics biased algorithms usually describe methods based on biased estimates

regardless of whether they are consistent or not. In fact when speaking of biased algorithms in light

transport most of the time biased but consistent estimators are meant.

Error The variance and the bias combined give us a tool to measure the accuracy of an estimator.

That is how certain and how correct outcomes of the estimator are. The most commonly used

measurement for error is the mean squared error (MSE), that measures the expected squared error

that is equal to the sum of the squared bias and the variance:

MSE[f̃N ] = E[(f̃N − θ)2] = Bias[f̃N ]2 + V [f̃N ]. (3.12)

As we will see later, when a perfect estimator is not possible, variance can often be reduced by

increasing bias and vice versa. So designing good estimators often boils down to finding good

trade-offs between variance and bias.

For computations of the expected error we are usually more interested in the root mean square

error (RMSE), that is the square root of the MSE, RMSE[f̃N ] =
√

MSE[f̃N ].

Another useful quantity is the peak signal-to-noise ratio (PSNR), which measures the maximal

possible signal intensity with respect to the MSE of the signal. This quantity is usually measured in

the log-domain and larger values are better than smaller values:

PSNR = 10 log10

(
max(I)

MSE[I]

)
.
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3.2 Introduction to Monte-Carlo Integration

Motivation Evaluating integrals numerically is usually done by evaluating the integral at discrete

positions, and then combining these evaluations to estimate the complete integrals value. Essentially

this means we approximate the integrals with finite sums of selected weighted samples:

∫

D
f(x)dx ≈ 1

N

N∑

i=1

ωif(xi) (3.13)

These methods are called quadrature rules and differ from each other only by the rules that select

the samples xi ∈ D and by how the weights ω are set. Note that these rules are deterministic,

thus quadrature rules do not lead to any variance. The approximation error in Equation 3.13

depends on how large N is. If
∑N

i=1 ωi/N = 1 then the error is zero in the limit, which means that

limN→∞
∑N

i=1 ωif(xi) =
∫
D f(x)dx. The rate at which the error goes down as a function of the

number of samples is called convergence rate. For one dimensional integrals the convergence rate is

O(N−r) with r ≥ 1. Note that the value of r depends on the specific quadrature rule that is used.

Unfortunately, as it turns out extending this formulation to multiple dimensions is problematic

since

∫

D1

∫

D2

...

∫

Ds

f(x1, x2, ..., xs)dx1dx2...dxs

≈
N∑

i1=0

N∑

i2=0

...
N∑

is=0

ω1ω2...ωsf(x1, x2, ..., xs). (3.14)

Intuitively, one can see that the number of weights and samples increases exponentially with the

number of dimensions s. As a consequence, one can prove that quadrature rules cannot have a

convergence rate better than O(N−r/s) with r ≥ 1. This means that getting the same approximation

error for a high dimensional integral requires exponentially more samples than doing so for a lower

dimensional integral. This is known as the curse of dimensionality.

Since the integrals used in light transport computations are high dimensional, using deterministic

quadrature rules is infeasible due to the curse of dimensionality. However, as it turns out introducing

randomness in our estimator provides an elegant way out of this dilemma.

The Monte-Carlo Estimator The idea of Monte-Carlo integration is to approximate an integral

similarly to Equation 3.13 by a weighted sum of samples. The main difference to quadrature rules is

that samples are selected stochastically instead of with deterministic rules. By additionally setting

the weights ωi to be the reciprocal of the PDF of picking the associated sample, we can show that

the estimator will converge to the correct solution. Formally, the Monte-Carlo estimator FN of a

function f using N samples is defined as:

FN =
1

N

N∑

i=1

f(Xi)

p(Xi)
(3.15)
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with Xi ∈ D. This is indeed an unbiased estimator of the integral that we want to approximate,

since

E[FN ] = E

[
1

N

N∑

i=1

f(Xi)

p(Xi)

]
=

1

N

N∑

i=1

∫

D

f(x)

p(x)
p(x)dx

=
1

N

N∑

i=1

∫

D
f(x)dx =

∫

D
f(x)dx. (3.16)

The most important property of the Monte-Carlo estimator is that its convergence rate is independent

of the number of dimensions. To show this we need to understand how the error behaves as function

of the number of samples. We know that the Monte-Carlo estimator is unbiased, so its RMSE is equal

to its standard deviation, RMSE[FN ] = σ[FN ]. For algebraic reasons we first show how the variance

behaves as a function of the number of samples. Assuming that the samples are independent, then

V [FN ] = V

[
1

N

N∑

i=1

f(Xi)

p(Xi)

]

=
1

N2

N∑

i=1

V

[
f(Xi)

p(Xi)

]
=

1

N
V

[
f(X1)

p(X1)

]
. (3.17)

The second step follows from Equation 3.7 and the fact that we use independent random variables.

Since σ[FN ] =
√
V [FN ] and F1 = f(X1)/p(X1) we can directly conclude that

RMSE[FN ] = σ[FN ] = N−1/2σ [F1] . (3.18)

This means that the convergence rate is O(N−1/2). Note that this statement does not put any

bounds on the error of the estimate of a single realization of the estimator, it only puts bounds on

the expected error. This means, on average the Monte-Carlo estimator is guaranteed to have an

expected error of O(N−1/2), but a single estimate can still have a arbitrarily large approximation

error.

3.3 Variance Reduction Techniques

Equation 3.17 shows that the variance of the estimator depends on the number of samples, thus the

most straightforward way to reduce the error of the Monte-Carlo estimator is to increase the number

of samples. Unfortunately the cost of of the Monte-Carlo estimator increases linearly with the number

of samples. Thus, following Equation 3.18, to halve the expected error of the estimator the costs of

evaluating the estimator quadruple. Reducing variance to a level that is not perceivable any more

can thus take an impractical amount of time. It is therefore important to examine alternative ways

of reducing variance. Variance reduction techniques are techniques that reduce the variance of a

Monte-Carlo estimator without increasing the number of samples.

The remainder of this chapter will give an overview of such techniques that are related to our

contribution. Note that most techniques mentioned below are orthogonal and can be combined to



3.3. VARIANCE REDUCTION TECHNIQUES 31

(a) Random Sampling (b) Stratified Sampling (c) Blue Noise Sampling

Figure 3.1: Different sampling strategies

further reduce variance.

3.3.1 Improved Coverage of the Integration Domain

One of the problems with purely random sampling is that the distribution of samples over the

integration domain can be very uneven. For simplicity of discussion we will assume that the sampling

domain with s degrees of freedom is a s dimensional hypercube. Samples from this hypercube can

be mapped onto any s dimensional sampling domain so this does not constrain our discussion in any

way. Pure random sampling can lead to clumping in certain regions and to missing entire regions of

the sampling domain. As a consequence, important features of the integrand can be missed which

increases variance. An example of such clumping in a 2D sampling space is depicted in Figure 3.1a.

The simplest way to improve this behaviour is by using stratified sampling. Stratified sampling

describes a sampling technique in which the sampling domain is subdivided into non-overlapping

domains, i.e. the s-dimensional hypercube is divided into ns cells, called strata, that are each sampled

independently. The advantage of this method is that it guarantees that in every strata a certain

amount of samples will be generated which generally improves coverage of the sampling domain. A

fundamental problem with this kind of sampling is that it is unclear how to effectively generate strata

for high-dimensional sampling domains, since again the curse of dimensionality leads to a exponential

increase of strata in order to cover the sampling domain effectively. However, it is possible to apply

stratified sampling only on a subset of the dimensions and to sample the other dimensions with

random sampling. For instance a common way to use stratified sampling in rendering is to subdivide

the 2D pixels of the image plane into sub pixels and to perform stratified sampling only on these

dimensions [12, 79]. Figure 3.1b visualizes this. Note that inside of each strata clumping can still

occur, thus these methods are not optimal. Shirley [98] showed that clumping can be effectively

reduced with half-jittered sampling, that restricts samples in every strata to be located around to

the center of the strata. A related alternative designed to sample higher dimensional domains more

efficiently is latin hypercube sampling that was first introduced in rendering as N-rooks sampling [98].

With this method sampling patterns for the hypercube are generated by first generating samples

only for the stratas in the diagonal of the hypercube. These samples are then shuffled along each

dimension independently to create evenly distributed samples in the hypercube. Similar methods
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Figure 3.2: Adaptive sampling. On the left: continuous signal, on the right: reconstruction. Top:
signal with 16 uniformly distributed samples. Bottom: same signal with 16 adaptively distributed
samples. Note hoe the later one captures fine details of the signal much better. This figure is
reproduced from Manzi [72].

with even better distributions are (s, t)-sequences and (t,m, s)-nets [87, 60]. These sequences are not

random any more, thus methods using them are called quasi-Monte-Carlo (QMC) methods. It is

interesting that for many integration problems QMC have asymptotically faster rates of convergence

than standard MC methods [87]. Note however, that some of the variance reduction techniques

applicable to standard MC methods can not be applied to QMC methods, like Russian roulette

(Section 4.2.3). Mitchell [81] investigated how much better than random sampling stratified sampling

strategies are. Intuitively, the smoother a function is the higher the benefit of using stratification

is. For high-dimensional integrands however, the improvements of stratified sampling are minimal.

Other methods put minimum distance constraints between samples to produce blue noise patterns

(Figure 3.1c). A simple but expensive ways to approximate such a distribution is with rejection

sampling or best-candidate sampling [80].

3.3.2 Adaptive Sampling

Ensuring uniformity of the sampling on a subset of the dimensions is often not desirable since it is

blind to the integrand that is sampled. Figure 3.2 illustrates how distributing samples according to

the signal that is integrated can be beneficial. Thus, better results with the same amount of samples

can be achieved by concentrating the sampling efforts in regions where they pay off most. In order

to do so the integration domain is subdivided into smaller regions, the sampling density of each

subregion is then determined according to either analytical properties of the subregion or empirical

information that is gathered during sampling [115]. In the later case the full sampling domain is

initially sampled in a non-adaptive way. During this initial sampling, empirical information about

each subregion is gathered and used to control how densely each subregion should be sampled after

this initial phase [79]. For instance, one could compute the sample variance across each subregion

to measure how complex the integrand locally is, and then distribute additional samples accordingly.

In Section 4.5 we will discuss in more details how adaptive sampling techniques are applied in the

context of Monte-Carlo rendering.
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3.3.3 Importance Sampling

So far we have not discussed about the PDF of the samples. As it turn out, drawing samples

from ”good” distributions is a key in reducing variance of the Monte-Carlo Estimator. Examining

Equation 3.15 reveals that the best possible PDF for sampling is proportional to the integrand. That

is p(Xi) = cf(Xi). In order to integrate to one over the integration domain the normalization factor

c must be equal to 1/
∫
D f(x)dx. Given this sampling distribution we can show that the estimator

has zero variance:

V [FN ] =

[
1

N

N∑

i=1

f(Xi)

cf(Xi)

]
= V

[
1

N

N∑

i=1

1

c

]
= 0. (3.19)

Of course this is of limited use in practice since we can only construct such a ideal sampling distribution

if we know the integrand, which we do not. However, this example gives us an intuition of why it is

good for a sampling distribution to be similar to the integrand. Luckily, simplifications of f(x) can

often still be obtained by factoring out some of the more complicated components. For instance, if

the integrand can be written in the form f(x) = g1(x)g2(x) and g1(x) is a function that we know and

that can be sampled easily, then sampling according to p(X) = g1(X)/
∫
D g1(x)dx can in most cases

reduce variance significantly. Importance sampling is similar to adaptive sampling in the sense that

it optimizes sampling distributions with respect to the integrand. Note that importance sampling

can lead to much higher variance than uniform sampling if used unwisely. For instance, if some

regions of the integrand that have very large values also have a very low probability of being sampled

according to p(x), then samples in those regions will become huge because of simultaneous large

numerators and small denominators. Such huge outlines can increase the variance dramatically, even

if p(x) matches the integrand in all other regions of the integrand perfectly.

3.3.4 Multiple Importance Sampling

One disadvantage of importance sampling is that we have to decide which sampling strategy we

want to use, even though often good sampling strategies for several components of the integrand are

available. For instance lets assume a integrand is of the form f(x) = g1(x)g2(x) where good sampling

strategies are known for both factors, but none can be constructed for the product of the factors.

Assuming one half of the integration domain is nicely approximated by g1 but badly by g2, and the

other half is nicely approximated by g2 and badly by g1. Regardless of which of both strategies we

use we will always sample one half of the integration domain badly.

The naive way of combining different sampling strategies is to define a new estimator that

combines estimators with T the different strategies, that is

F̂N =

T∑

k=1

λk
Nk

Nk∑

i=1

f(Xi,k)

pk(Xi,k)
, (3.20)

with
∑T

k=1Nk = N and
∑T

k=1 λk = 1. Note that Xi,k denotes the i-th sample that has been drawn
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with strategy k. Unfortunately the formulation above is ineffective at reducing variance since

V ar
[
F̂N

]
=

T∑

k=1

λ2
k

N2
k

V ar

[
Nk∑

i=1

f(Xi,k)

pk(Xi,k)

]
, (3.21)

which states that the variance of the strategies is additive. A much better way of combining different

sampling strategies is with the multiple importance sampling (MIS) estimator introduced by Veach

[106], that is a generalization of Equation 3.20:

F ?N =
T∑

k=1

λk
Nk

Nk∑

i=1

wk(Xi,k)f(Xi,k)

pk(Xi,k)
. (3.22)

We simply added additional weights wk(Xi,k) for every sample drawn with every strategy. The

estimator F ?n is unbiased if:

• The weights wk of a specific sample Xi over all strategies sum up to one, i.e.
∑T

k=1wk(Xi,k) = 1,

• and if the weights wk are never zero for parts integral domain that are sampled with probability

bigger than zero, i.e. pk(Xi,k) > 0⇒ wk(Xi,k) > 0.

The most commonly used weights that fulfil these requirements and do a provable good job at

reducing the variance have been first presented by Veach [108] and are of the form:

wk(Xi, k) =
pk(Xi,k)

β

∑T
j=1 pj(Xi,k)β

. (3.23)

with β being any non-negative exponent. If β = 1 we call this estimator the balance heuristic and

if β = 2 we call it the power heuristic. On an intuitive level the reason why the power and balance

heuristic work so well is that by design, the weight will always reflect how good a certain sampling

strategy is at generating a specific sample compared to all other available sampling strategies. If the

currently used strategy is inferior to at least one or several other strategies, then the denominator

will be much bigger than the numerator and thus the weight will be low. On the other hand if one

strategy is superior to all others, the denominator will be only marginally bigger than the numerator,

thus the weight will be close to one. In summary, this weighting scheme effectively weights down bad

sampling strategies and consequentially suppresses outliers generated by them.

3.3.5 Control Variates

Similar to importance sampling, control variates is a method that reduces variance of an estimator

of an unknown quantity by exploiting information of similar known quantities. Given a function f

that we want to integrate and a similar function g whose integral is known
∫

Ω g(x)dx = µ, then we

can reformulate the integral to

∫
f̃(x)dx = µ+

∫

Ω
f(x)− g(x)dx. (3.24)



3.3. VARIANCE REDUCTION TECHNIQUES 35

The corresponding Monte-Carlo estimator is then

F̃N = µ+
1

N

N∑

i=1

f(Xi)− g(Xi)

p(Xi)
. (3.25)

The estimator F̃N has a lower variance than FN when

V

[
f(X)− g(X)

p(X)

]
< V

[
f(X)

p(X)

]

This tends to be true whenever g and f are strongly correlated. Examining the equation above we

see that a function g that is already used for importance sampling, that is replacing p(x) by g(X)/µ,

will not benefit at all from being used as control variate too since

V

[
f(X)− g(X)

g(X)/µ

]
= V

[
f(X)

g(X)/µ

]
.

Thus one must decide whether to use a function g that is similar to f either for control variate

or for importance sampling. It can be shown that, as a rule of thumb, importance sampling is

preferable whenever f/g is nearly constant, and that control variate is preferable whenever f − g is

nearly constant [51]. A general advantage of control variates compared to importance sampling is

the greater generality. For importance sampling we must consider how practical it is to draw samples

from a distribution with the shape of g. Since usually the inversion method is used for this purpose,

this boils down to requiring the inverse of the CDF of g to be computable.

Control variates have not been used widely in rendering since constructing a function whose

expected value can be sufficiently closely approximated and that captures all relevant details of the

integral are difficult to obtain. Nevertheless, there has been some research in this direction. First

attempts have been performed by Lafortune and Williems [63] where they used a constant ambient

term as control variates and later a piecewise constant function based on cached incident radiance in

a 5D tree [64]. Later, Szirmay-Kalos et al. [104] proposed to use the solution of a radiosity pass as

control variate of a second Monte-Carlo pass. Further, Scécsi et al. [103] proposed a weighting scheme

to combine importance sampling with control variates, Fan et al. [24] introduced a generalization of

multiple importance sampling that allows to combine of several control variates and Clarberg and

Akenine-Möller [9] included visibility information in the used control variates.

3.3.6 Correlated Sampling

Comparing two unknown quantities that only differ slightly, for instance by simulating the same

process with slightly changed parameters, can be very useful to get a deeper understanding of the

simulated process. However if those processes are integrals that must be approximated numerically

with Monte-Carlo, computing the differences between two similar instances can be quite inefficient.

Given a difference of two integrals that should be computed

∫

Ωi

f(x)dx−
∫

Ωj

g(y)dy,
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then the classic Monte-Carlo estimator yields

FN −GN =
1

N

N∑

i=1

f(Xi)

p(Xi)
− 1

N

N∑

j=1

g(Yj)

p(Yj)
. (3.26)

the variance of this expression is

V [FN −GN ] = V

[
f(X)

p(X)

]
+ V

[
g(Y )

p(Y )

]
− 2Cov

[
f(X)

p(X)
,
g(Y )

p(Y )

]
. (3.27)

If g and f are computed in independent fashion, for instance with separate simulations using different

random variables, then the correlation is zero. This means that the variance of the difference will

be the additive variance of the processes. Since the differences often tend to be smaller than the

subtrahends in magnitude, the signal to noise ratio of the difference will be much higher than the

signal to noise ratio of the estimates of the individual subtrahends.

However, if the subtrahends are sampled in such a way that there is a positive covariance between

them, then the variance will be lower since noise gets cancelled out due to the last term in Equation

3.27. One can exploit this by simply sharing the random variables of the Monte-Carlo simulation

between the two integrals, that is

FN −GN =
1

N

N∑

i=1

f(Xi)− g(Xi)

p(Xi)
. (3.28)

Sampling two independent integrals in such a correlated fashion is called correlated sampling 1 or the

usage of common random numbers. If the integrals are similar enough, this will lead to high correlation

between the subtrahends and some variance will be cancelled out. Note that this formulation is

very similar to the control variates estimator (Equation 3.25). Both methods eliminate variance by

exploiting correlation between two functions. However there are two key differences:

• First, g is not a simplified version of f but its own quantity that just happens to be similar to

f . Even the integration domain of f and g can be different.

• Second, the correction term µ is not used. This means that g itself can be a unknown quantity

that must be sampled.

These differences show that the use-cases of both methods are quite different, control variates is

used for noise reduction of an integral given a suitable a-priori known approximation function, while

correlated sampling provides a way to sample differences of similar and potentially unknown integrals

more efficiently. Correlated sampling is one of the foundations of the gradient-domain rendering

methods presented in Chapter 5.

1Even though our terminology clearly makes a difference between correlated sampling and control variates, both
terms are often used as synonyms in literature for describing methods that exploit correlation between two sampled
quantities.
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3.4 Metropolis Sampling

3.4.1 Motivation

Recall that with importance sampling the goal is to distribute samples according to a distribution that

has a shape similar to the integrand. But such similar functions must be integrable and sampleable.

Unfortunately, these requirements are not always easy to meet. For instance, importance sampling

a high dimensional function like the path space formulation of light transport directly is nearly

impossible. It is unclear how one could compute and sample PDFs that cover such a complex

function adequately over its entire integration domain efficiently, even with the usage of MIS. In

rendering a way to side-step this, is to importance sample only a small subset of all dimensions of

the sampling space at once. However, this does not lead to optimal solutions.

Metropolis sampling [78, 37] is a Monte-Carlo integration technique that allows to importance

sample arbitrary non-negative functions. It is neither required to integrate the function or to invert

its CDF in order to sample accordingly to any specific distribution. The key idea is to develop an

algorithm that generates in the limit a set of samples with a distribution that has the exact same

shape as the integrand. Given enough samples, the unknown integral can be computed directly from

the - appropriately normalized - histogram of the generated samples. In the next chapter a light

transport method that is based on this sampling method will be presented that allows to importance

sample the path space directly.

3.4.2 Markov-Chains

Metropolis sampling generates a sequence of samples S = X0, ...Xn from the integration domain D

where each sample Xi depends on the previous sample Xi−1 but not on any other preceding states.

Such a sequence of samples is called a Markov-chain. The probability to transition from any state

Xi−1 to a state Xi is the transition probability K(Xi−1 → Xi). Note that sequences generated this

way will lead to correlation between the samples. Also stratification techniques to reduce variance

cannot be applied any more [90]. If any state Y ∈ D can be reached after a finite number of transitions

from any other state X ∈ D with a non-negative probability, then the chain is called ergodic. One

can show that the probability distribution of samples generated by an ergodic Markov-Chain will

converge towards a specific distribution in the limit, the stationary distribution, regardless of the

initial sample X0.

3.4.3 Metropolis-Hastings Algorithm

In physical systems the stationary distribution is usually determined by the transition probabilities

of the system, and the system will evolve towards it over time. The Metropolis-Hastings algorithm

[37] reverses these dependencies: given a desired stationary distribution, it constructs the transition

probabilities of the system in such a way that the system converges towards the desired stationary

distribution.

We construct such a system by introducing the concept of proposing a candidate for the next

sample that can either be accepted or rejected. The tentative transition probability T (Xi−1 → X ′i)



38 CHAPTER 3. MONTE-CARLO INTEGRATION

describes the probability of a sample X ′i to be proposed as successor of Xi−1. Whether or not this

successor is accepted is determined by the acceptance probability a(Xi−1 → X ′i). Note that the

transition probability K(Xi−1 → Xi) from the last section is now decomposed in two components

T (Xi−1 → Xi)a(Xi−1 → Xi). The successor of sample Xi−1 is defined as follows:

Xi =




X ′i with probability a(Xi−1 → X ′i),

Xi−1 otherwise.

Asides from being ergodic, no constraints are put on T (Xi−1 → Xi). The tentative transition function

is therefore a free parameter of the method. Instead, the stationary distribution is controlled by

the acceptance probability. The choice of the acceptance probability in the Metropolis-Hastings

algorithm is justified in the following way: assume that the desired stationary distribution is already

reached, that is p ∝ f , then our distribution should not change any more. This is true when the

following equation is fulfilled for any samples X and X ′:

f(X)T (X → X ′)a(X → X ′) = f(X ′)T (X ′ → X)a(X ′ → X).

One can show that this is fulfilled with the following choice of a:

a(X → X ′) = min

(
1,
f(X ′)T (X ′ → X)

f(X)T (X → X ′)

)
(3.29)

This choice also provides the fastest convergence rate towards the desired distribution p ∝ f . Note

that if the tentative transition probability is symmetric, that is T (X ′ → X) = T (X → X ′), then the

acceptance probability can be simplified to

a(X → X ′) = min

(
1,
f(X ′)
f(X)

)
. (3.30)

This equation states that proposed samples with f(X ′) ≥ f(X) will always be accepted, while pro-

posed samples with f(X ′) < f(X) might be rejected with a probability proportional to f(X ′)/f(X).

These acceptance probabilities will lead to a sample distribution that is proportional to the function

f .

3.4.4 Mutation Strategies

A way to realise the tentative transition function is by specifying a set of mutation strategies, with

each of them designed to be good at one specific thing. Choosing a tentative sample then becomes a

two stage approach. First, a mutation strategy is selected according to some probability and then

the current sample is randomly mutated according to a set of rules specified by the selected mutation

strategy.

How fast the stationary distribution is reached largely depends on the choice of the tentative

transition function, and thus of the mutation strategies. A good set of mutation strategies should be

efficient at fulfilling two objectives:
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Figure 3.3: MLT mutation strategies. A sequence of samples taken from the function f using MLT
starting at the red sample. Local mutation strategies are visualized as green arrows and global
strategies as blue arrows. Note that the function f consists of two regions separated by a very low
valued gap. The chance of crossing this gap with local strategies alone is minimal.

• they should explore the region around a local maxima thoroughly once one has been found,

• and they should allow to transition from one local maxima to another even if they are separated

by very low valued regions.

The first objective ensures that many samples are drawn in a region of interest as soon as one has

been found. Note that this property is crucial for having a high acceptance probability. For instance,

if a sample X is close to a local maxima of f and thus has a large value f(X), then it is likely that

close-by samples X ′ will also have large values f(X ′). The acceptance probability a(X → X ′) will

thus not be too small when we have mutation strategies that are able to sample close-by points with

high probability. On the other hand without mutation strategies that sample close-by points, it can

become very unlikely to find new samples that also lead to large values. The Markov-Chain would

be stuck at X for a long time and consequentially the integration domain would not be explored

efficiently.

The second objective ensures that the Markov-chain is able to jump across local minima of f

between different regions of interest. In order to fulfil both objectives, local mutation strategies

and global mutation strategies are combined (see Figure 3.3). The local mutation strategies draw

tentative samples that are close-by the current sample. It is easy to see that such strategies are good

at fulfilling the first objective. The global mutation strategies on the other hand allow a tentative

sample to be anywhere in the integration domain, independently of the current sample. The simplest

such strategy is one that completely ignores the current sample and just randomly samples the

integration domain. This allows the Markov-chain to jump into totally new areas of the integration

domain and thus find new local maxima.
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Chapter 4

Rendering Algorithms

In this chapter we discuss algorithms that solve the light transport problem using Monte-Carlo

sampling to create an image. Often these methods are referred to as physically-based rendering

algorithms. These algorithms find light paths that connect the sensor with the emitters by sampling

the path space with Monte-Carlo methods. The path samples are then evaluated and used to create

a final image.

We will describe three well known path sampling algorithms that will be extended in the remainder

of this thesis to gradient-domain rendering algorithms. We will start with describing path tracing that

was the first full solution to the light transport problem [50] and still is the most widely used one due to

its simplicity. This method was introduced as a solution to the measurement function (Equation 2.11)

and samples paths in a recursive manner, starting from the sensor until an emitter is eventually

hit. The two other algorithms use sampling strategies that are more efficient at sampling paths in

complex illumination setups. The first of these two methods, bidirectional path tracing [62, 107],

constructs paths from both directions, that is from the emitters to the sensor and from the sensor

to the emitters, and combines different parts of these paths to create a large number of new paths

at low cost. The last method discussed here is Metropolis light transport [109] that uses Metropolis

sampling (Section 3.4) to directly importance sample the path-space and thus provides an efficient

sampling solution for very difficult lighting situations where other methods fail. Figure 4.1 shows a

motivational example of how these different path sampling techniques affect the obtained results at

equal computation time.

We conclude this chapter with a brief discussion of a set of recent techniques that reduce the

variance of the resulting image through adaptive sampling and reconstruction.

4.1 Formulation of the Problem

In order to render images in a physically-based way, we want to compute the Monte-Carlo estimator

of Equation 2.24 in a way that is as efficient as possible. Formally, we want to compute

Ip ≈
1

N

N∑

i=1

f?p (xi)

p(xi)
(4.1)

41
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(a) Path tracing (b) Bidirectional path tracing (c) Metropolis light transport

Figure 4.1: Comparison of different path sampling methods. The scene consists of a glass sphere and
a reflective metal box. The sphere produces a caustic on the floor that is also mirrored on the metal
box. Each image took 35 seconds to render. The images where rendered in Mitsuba [43].

for every pixel p of the image. Recall that the measurement contribution function f?p is computed

with Equation 2.22 regardless of how x was sampled. In the equation above it is often useful to

separate pixel dependent quantities from pixel independent quantities. Since the only pixel dependent

component is the importance function Wp, we can decompose Equation 4.1 into

Ip ≈
1

N

N∑

i=1

Wp(xi)
f?(xi)

p(xi)
,

where we call f?(x) the throughput of x.

This allows a clear separation of the rendering algorithms into sampling and reconstruction. One

step is sampling f? and the other one is reconstructing pixel values Ip from this data by using a filter

Wp. We will discuss the implications of this separation in Sections 4.2.1 and 4.5. Our interest for

now lies in the sampling step. The main challenge there lies in finding sampling techniques for x

that lead to small variance of f?/p and whose PDF can be computed efficiently. In the following we

will discuss three ways of doing this.

4.2 Path Tracing

Kajiya introduced random walks into computer graphics [50]. He showed that light paths can be

sampled effectively by incrementally constructing a path as a sequence of random decisions. In

classical path tracing, paths are computed in the reversed direction of light transport, this means

they start at the sensor and are then incrementally constructed backwards until a light source is

eventually hit. For this reason path tracing is also often referred to as backward tracing. Specifically,

for every pixel p paths are constructed with the following procedure:
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1. Sample an initial position x0 on the sensor.

2. Sample a new outgoing direction ωi on the current vertex xi by using any suitable sampling

strategy.

3. Evaluate the ray casting function (Equation 2.9) at xi and set the next vertex to be xi+1 =

ν(xi, ωi).

4. Repeat step 2 and 3 until a termination criterion is met.

The main degree of freedom in this procedure is how to sample the directions ω. We will discuss

suitable sampling strategies in the next section. Note however, that we can easily control to which

pixel or set of pixels a path contributes by sampling the initial direction ω0 and position on the sensor

x0 such that the importance function (Section 2.3) of the currently processed pixel p will not be zero,

i.e. Wp(x) = Wp(x0, ω0) > 0. This is a form of stratification and will not lead to bias. By using

this stratification, parallelism of path tracing is greatly simplified. Instead of computing the value

of every pixel of an image sequentially, we can tile the image and compute each tile in a separate

thread that samples only paths that might contribute to this tile.

In practice during generation of the path its throughput f?(x) and its PDF p(x) are also computed

incrementally. In order to do so we define two variables that are incrementally updated during

sampling. For the throughput this variable is defined recursively as:

α0 = 1

αi = αi−1f(xi+1, xi, xi−1), (4.2)

and for the PDF it is:

β0 = pW0 (x0)pW1 (ω)

βi = βi−1pσ⊥(xi+1, xi, xi−1). (4.3)

pW0 is the probability of selecting a certain position on the sensor’s aperture and pW1 is the probability

of selecting a certain initial direction. pσ⊥ is the PDF of a scattering event with respect to projected

solid angle. Note that because Equation 2.11 is described in terms of area measure and because we

implicitly perform a change of variables with a Jacobian determinant of |∂PA/∂pσ⊥ | = 1/G(xi, xi+1)

at each vertex, the geometry terms are missing in α. If the last vertex xn is on an emitter then the

contribution of the path can be computed as

f?(x)

p(x)
=
αn−1

βn−1
Le(xn, xn−1). (4.4)

4.2.1 Reconstruction Filter

Let Ωp = {x ∈ Ω : Wp(x) > 0} denote the set of paths whose importance function for pixel p is

non-zero. In general to avoid aliasing artefacts Ωp and Ωq may overlap if p and q are close-by in

image space. Examples of such overlapping filters are Gaussians or Mitchell-Netravali filters [82]. We
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refer the reader for an in-depth discussion of the aliasing artefacts and how different reconstruction

filters can mitigate them to the excellent book by Pharr and Humphreys [90].

Any path x will thus contribute to several pixels. For efficiency reasons any sampled path x

should therefore be evaluated for all pixels it contributes to. This is usually done with a weighted

average filter

Ip =
1∑

iWp(xi)

∑

i

Wp(xi)f
?(xi)/p(xi).

In practice, this sum can be computed efficiently as Ip = Cp/Wp by incrementally updating a color

buffer C and a weight buffer W where each time a sample contributes to p the buffers are updated

by Cp+ = Wp(xi)f
?(xi)/p(xi) and W+ = Wp(xi). Since we usually know in advance the importance

function of our sensors1 and since the importance functions usually have a small region of support

in image space, we can efficiently evaluate the contribution of each sample x for all pixels to which

it might contribute.

4.2.2 Sampling Techniques

Randomly sampling each direction during construction of the path will generally lead to unacceptably

high variance due to reasons that are explained in the next paragraphs. Importance sampling

strategies are an efficient way to reduce variance. Different importance sampling strategies can be

combined with a MIS estimator (Section 3.3.4) to further reduce variance.

BSDF sampling Surfaces often have glossy BSDFs. This means that these surfaces only reflect

light incoming from a specific narrow cone of directions (recall Figure 2.4). If directions are sampled

randomly only a small fraction of samples will lie in this cone which leads to high variance. Luckily,

designing an importance strategy for this is relatively easy since the BSDFs are known in advance.

Thus, at each scattering event we can importance sample the direction according to the BSDF at

the current location.

Light Sampling Another reason for high variance is due to the fact that a path only carries light

if it connects an emitter with the sensor. With traditional path sampling this requires a path to

randomly hit such an emitter at some point during its incremental construction. Unfortunately this

can become very unlikely if the emitters in the scene are very small or far away. A sampling strategy

to ensure that lights get sampled, is to sample a point on the surface of any light source in the scene

and to set this point as the next vertex of the path. Note that sampling a vertex on an emitter

happens over area measure in contrast to projected solid angle measure that is used for the direction

sampling in path tracing. This change of variables must be taken into account when computing

the paths contribution, which means that the last geometry term G(xn−1, xn) gets not cancelled

out because of the Jacobian determinant |∂PA/∂pσ⊥ | in Equation 4.4. Note that light sampling

1This is not true for some of the methods discussed in Section 4.5, since there the reconstruction filter is not known
in advance. There however, this problem can be avoided by separating the reconstruction filter into two parts. First,
an a priori known uniform image filter is used to create an image buffer. Then a second adaptive reconstruction filter is
applied on this image buffer to create a final image. Only the first component of the filter is used during accumulation
of the color values with the weighted average filter.
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Figure 4.2: Next Event Estimation. Black is the main path. The red dots are the next events
computed using area sampling and the green lines are the connections of partial paths to full paths
with NEE.

cannot be applied on (perfectly) specular vertices, since the probability of sampling the reflection or

refraction direction with area sampling is zero. Also note that the simple strategy described here

ignores visibility, thus a sampled vertex on an emitter can still be occluded as seen from the previous

vertex in the path. However, more sophisticated methods importance sample the locations of emitters

with respect to the current vertex [97].

Path Tracing with Next Event Estimation This method describes an algorithm that generates

a set of correlated paths out of each path sample. With naive path tracing, one single path x = x0, ...xn

is generated at a time. We will refer to this path in the following as the main path. Next event

estimation (NEE) attempts to create one or more paths for each subpath of x with sub(x)m =

x0, ...xm and m < n that connect the sensor to one of the emitters. This is done by performing at

each vertex xk along the main path light sampling to create one or more extra paths of the form

x0, ...xk, ye = sub(x)kye where ye is on an emitter and 0 < k < m (see Figure 4.2). This process leads

to pn paths sub(x)kye for every main path x, where p is the number of light samples generated at

each vertex of x. Note that any sampling strategy can be used to create the main path, for instance

BSDF sampling. For all paths that are generated by this process, including the main path and any

subpath of it, we then compute a MIS estimator that combines all used sampling strategies.

4.2.3 Russian Roulette and Path Splitting

One subtle problem that we ignored so far is that Equation 4.1 samples over paths of unbound length.

This means infinitely long paths should also be considered and of course we cannot sample those.

Russian roulette (RR) is a simple way to reduce the probability of sampling such infinitely long paths

to infinitely small values while still producing unbiased results. In general, Russian roulette describes

a method to not evaluate samples with a certain probability α. In order to still get an unbiased

result, samples X that are not evaluated with a probability of α must be weighted by a correction

factor 1/(1−α) since E[X] = (1−α)E[X/(1−α)]. First introduced in the context of path sampling

by Arvo and Kirk [1], Russian roulette can be used to terminate the incremental path construction

with a probability of α. Specifically, given a path of length n with x = x0, ..., xn−1 a new sample of
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length n+ 1 with y = x0, ..., xn−1, yn will only be sampled and evaluated with a probability of 1− α.

If the sample y gets evaluated, f?(y)/p(y) is weighted by 1/(1 − α). The termination criterion of

α can vary for every sample and as long as α > 0 for all paths with a length bigger than a certain

finite number, then the probability of sampling infinitely long paths goes to zero. Note that Russian

roulette generally increases noise from long paths since less samples are used to sample them.

A related method to Russian roulette also introduced by Arvo and Kirk [1] that helps increasing

the sampling rates of important regions of path space is path splitting. With a certain probability β

a subpath x = x0, ..., xn−1 is split into k new paths y1 = x0, ..., xn−1, yn,1 to yk = x0, ..., xn−1, yn, k.

Distributed ray tracing [13] can be seen as an instance of path splitting. Russian roulette and path

splitting together can form a quite efficient adaptive sampling scheme of the path space and thus

many ways of defining heuristically based splitting or termination probabilities have been proposed.

The weights can be based on variance analysis of nested estimators [7] or BSDF properties and

user constraints [105]. Further, Veach [106] developed efficiency-optimized Russian roulette and

Vorba et al. [111] an algorithm that aims at keeping the contribution of a path roughly constant

along the path by combining Russian roulette and splitting with adjoint-driven importance sampling

techniques [110].

4.2.4 Limitations

The main limitation of path tracing (with or without NEE) is its inefficiency in sampling caustic

paths, that is paths of type E(D|S)∗S+L. Scenes in which such path configurations occur will suffer

from extensive noise from these types of paths. An example is given in Figure 4.1a. Unfortunately in

some scenes nearly all illumination comes from caustic paths, as for instance a room illuminated by

the sun shining through a glass window or by light sources encapsulated in light bulbs. The reason

for this is that NEE in its simplest form cannot be used to connect a vertex with a light source when

a specular interface is in between (e.g. a glass window). Hence, in such cases path tracing with NEE

degenerates to plain path tracing.

Recently, a method called manifold next event estimation (MNEE) extended NEE to support

connections through simple transmissive specular interfaces [34]. It starts with a straight connection

through the transmissive interface with zero throughput and performs a local optimization to find a

close-by path in path space that has a non-zero throughput. However, this method is only effective if

the nearby geometry on the specular interface is reasonably simple. Also in its current form MNEE

cannot be used to perform NEE across reflective interfaces.

4.3 Bidirectional Path Tracing

A path can be constructed in more ways than it is done in path tracing. For instance instead

of constructing a path from the sensor incrementally until a emitter is eventually hit, one could

construct the path the reversed way round, that is from the emitter towards the sensor. This is

what is done in light tracing [20]. Bidirectional path tracing (BDPT) exploits the fact that paths

can be created by combining path tracing and light tracing and was developed independently by
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(a) s=0, t=3 (b) s=1, t=2

(c) s=2, t=1 (d) s=3, t=0

Figure 4.3: Bidirectional Path Tracing. There are 4 ways of sampling a path of length 3 by combining
path tracing with light tracing. Yellow subpaths are sampled in the radiance direction and blue
subpaths in the importance direction. Green lines are connection segments. The s-t notation is
according to Section 4.3.1.

Lafortune and Willems [62] and Veach and Guibas [107]. BDPT combines parts of the path traced

subpath with parts of the of the light traced subpath by connecting them to new full paths. As

it turns out, for a path of length k there are k + 1 ways of constructing it with such combined

approaches (see Figure 4.3). Each of these strategies is good at computing certain types of paths and

bad at computing other types of paths. All these strategies can be combined with a MIS estimator

(Section 3.3.4) in a optimal way that weights down path samples that were sampled using an ill-suited

sampling strategy [108].

4.3.1 MIS over Connection Strategies

BDPT combines a pair of paths consisting of one path starting from the sensor and one path starting

from an emitter in all possible ways to generate a set of complete paths that connect the sensor to the

emitter. That means, given a sensor subpath y = y0, ..., yn where y0 is on the sensor and an emitter

subpath z = zm, ..., z0 where z0 is on one of the emitters, then we compute all possible combinations

from this two paths of the form

xs,t = y0, ...ys−1, zt−1, ..., z0

where 0 ≤ s ≤ n and 0 ≤ t ≤ m. Note that as a slight abuse of notation we set x0,t = z and xs,0 = y.

We call all these different ways of creating the paths s-t-connection strategies and we call ys−1 and

zt−1 the connection vertices. The resulting set of paths then consists of n + m + 1 different paths

with each of them using a different connection strategy.
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Every path in this set that was computed with a specific s, t-connection strategy could have been

sampled from other sensor and emitter sub paths by using another s, t-connection strategy. It is easy

to show that any path of the form xs,t = y0, ...ys−1, zt−1, ..., z0 can be sampled by up to s + t + 1

other connection strategy with s′ = k and t′ = (s + t) − k where 0 ≤ k ≤ s + t 2. Each of these

strategies will compute the same path with a different PDF. We can construct a MIS estimator with

the power heuristic over the sampling strategies over all these samples:

s≤n∑

s=0

t≤m∑

t=0

i≤s+t∑

k=0

ps,t(xs,t)
2

pk,(s+t)−k(xs,t)2

︸ ︷︷ ︸
ωs,t(xs,t)

f?(xs,t)

ps,t(xs,t)
. (4.5)

All components in this equation can be computed very efficiently by caching some additional data for

every sampled vertex. We refer to the excellent thesis by Veach for the implementation details [106].

4.3.2 Direct Light Paths

Direct light paths are paths sampled by strategies that directly connect an emitter subpath to a point

on a sensor or that are emitter subpaths that randomly hit the sensor. These are paths generated

by connection strategies with s ≤ 1. Note that connection strategies with s = 0 are only applicable

when the sensor is not of infinitesimally small extent (i.e. it is not a pinhole camera). These types of

paths are extremely important to sample caustic paths of the form E(S|D)S+L since the only other

strategies that can produce them are the ones where the sensor subpath randomly hits the emitter

(i.e. t = 0). However, we need to take special care of direct light paths since we cannot effectively

control to which pixel(s) they might contribute. This means with s ≤ 1 we do not know a priori to

which pixels p the paths measurement contribution f?p (xs,t) will have a positive contribution. This

has several consequences:

First, recall from Section 4.2 that path tracing allows for simple parallelization of the algorithm

by evaluating image tiles in parallel processes. Since light paths cannot be generated such that we

know a priori to which tile they contribute, a light path generated from any process can contribute

to any location in the image. To avoid synchronization between the processes, each thread stores an

own “light image”. This is an image that exclusively stores path samples with s ≤ 1 generated by

that thread. These light images are then combined after rendering is finished and added to the “eye

image” that is used to store paths created with all other connection strategies.

However, we must also consider that the density of direct light paths in the image plane will be

very non-uniform, which leads to the second consequence: in order to find the final color values we

must incorporate this density into the final image. That means if more direct light paths land in a

specific pixel than elsewhere, this pixel has to be brighter. We can ensure this by normalizing the

light image by D/N where N is the total number of sampled paths and D the number of pixels.

Note that this is different to what is done for the eye image where all paths that are contributing to

a pixel are averaged together in some way (see Section 4.2.1).

2Connection strategies lead to paths with a throughput of zero when one of the connection vertices is specular. This
is analogous to NEE.
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4.3.3 Limitations

As with path tracing there are also paths that are notoriously hard to sample with BDPT. There are

types of paths that can only be sampled by one single connection strategy, which essentially means

that the MIS estimator of BDPT degenerates to an ordinary importance sampling estimator. This

is called the problem of insufficient techniques [59]. Paths of the form E(D|S)∗SDS(D|S)∗L, short

SDS-paths, are the most problematic paths for BDPT. The main problem is that the SDS part of

the path can not be sampled by a deterministic connection. It must be sampled purely from one

direction. If this SDS part happens to carry a lot of energy and requires a very specific configuration

of the three involved vertices, then f?(x)/p(x) becomes very big and we get spike noise in our image.

A common example for these are caustics seen through a mirror like in the left close-up in Figure 4.1.

There we can see that BDPT can even perform worse than unidirectional path tracing at equal

computation time when the overhead of creating bidirectional samples does not pay off.

It turns out that also more common types of paths are problematic: for instance direct illumination

seen through a mirror or glass, i.e. ES+DL. These paths can only be sampled by connection strategies

with t ≤ 1 which essentially degenerates BDPT to path tracing with NEE. Even scenes that only

consist of purely diffuse materials can be problematic when the light from the emitter needs to follow

a very specific path to reach the sensor. A simple example for this is a scene setup with two rooms:

the sensor is located in one of the rooms and the light source in the other one. If light can pass from

one room to the other only through a thin crack in the wall, then the BDPT connection strategies

will almost always fail due to occlusion. The only other way for a sensor- and emitter subpath to

connect, is when the unlikely case happens that one of them passes through the crack. A famous

example of such a scene is the Door scene used in the next chapter in Figures 5.11 and 5.13.

All these examples have in common that they have high energy regions in path space that are

strongly localized and that cannot be sampled effectively by deterministically connecting parts of the

paths, be it because of the material properties or because of the geometry setup.

Mitigating the problem of sampling SDS paths with BDPT has been achieved with vertex merging

that combines BDPT with photon mapping [28, 33]. Solving the path space integral for certain paths

more efficiently can also be achieved by reusing the light subpaths for multiple eye subpaths [91].

4.4 Metropolis Light Transport

In Section 3.3.3 we discussed that importance sampling is an effective strategy to reduce variance

that essentially tries to find PDF p(x) that is as similar as possible to f?, and from which we can

draw samples. Unfortunately, finding such a function turns out to be very challenging since the

function f? is high-dimensional, complex and unpredictable. Therefore, selecting good samples from

the high dimensional path space directly is out of reach. Instead, methods like path tracing or BDPT

accept suboptimal sampling strategies that rely on local information only. However, this is also the

fundamental limitation of these approaches since there is no guarantee that the local strategies or

any combination of them is powerful enough to handle all possible path configurations well.

A more principled solution was developed by Veach and Guidas [109], where they realized that
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Metropolis sampling (Section 3.4) can be used to importance sample arbitrary path spaces directly.

The main idea of the algorithm is to use Metropolis sampling to distribute samples proportionally to

f?, i.e. to sample according to p(x) = f?(x)/b where b =
∫

Ω f
?(x)dµ(x) is a normalization constant.

Plugging this PDF into Equation 4.1 yields

Ip ≈
1

N

∑

i

Wp(xi)
f?(xi)

f?(xi)/b
=

b

N

∑

i

Wp(xi). (4.6)

This would mean perfect importance sampling of the path space. However, f? usually returns a

spectral value, i.e. one value per color-channel that is sampled (see Section 2.1.1), while Metropolis

sampling only works with scalar functions. There is no real notion of how to sample according to

a multivalued function. However, in Equation 4.6 Metropolis sampling is only used as a means to

perform importance sampling of the throughput function f?. The target function of the metropolis

sampler does not need to be the integrand f?. It is for instance perfectly valid to perform Metropolis

sampling with a target function L and to compute f? based on samples distributed with the density

of L. We can thus generalize Equation 4.6 to:

Ip ≈
1

N

∑

i

Wp(xi)
f?(xi)

L(xi)/b
(4.7)

where now b =
∫
L(x)dµ(x). To solve the problem with the spectral sampling we can distribute

samples according to the luminance of the throughput. There is of course a strong correlation between

the luminance of the throughput and the values of every channel. Thus in general this is still an

excellent importance sampling strategy. Note that Hoberock et al. [41] suggest that using other

target functions can be beneficial in some cases.

There are still two problems left: first, we need to somehow compute b and second, we need to

avoid start-up bias. Start-up bias describes the problem with Metropolis sampling that the desired

distribution, in our case L, will only be reached in the limit, that is after sampling an infinitely long

Markov-Chain. Thus, without further refinements, MLT would only be consistent and not unbiased.

Both problems can be solved by performing MLT in two passes: in a first pass an arbitrary light

transport algorithm is used to generate a set of initial path samples and to compute b. Veach [109]

suggested to generate the initial samples by using BDPT, but any other unbiased path sampling

technique would work too. The value b does not depend on the pixel, it is the integral of the

throughput of all paths,
∫
P Ipdp, where P is the entire image plane. Thus, even when using only a

few samples per pixel we will typically have several hundred thousands or millions of estimates for b.

In a second pass these initial samples are used to start one or more Markov-chains as described in

Section 3.4. By taking some precautions that will be discussed below in Section 4.4.1, start-up bias

can be avoided and thus all samples will be generated with a PDF of L/b. We evaluate Equation 4.7

for every sample x by computing its normalized sensor response bf?p (x)/L(x) and then adding the

value at the corresponding pixel locations p in the image. Similar to how we store pixels in PT and

BDPT, we compute all normalized sensor responses for a sampled path at once, since every path

contributes only to a small number of pixels.
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We can further increase efficiency by exploiting the expected value of the integrand. The idea

of this method is very simple: if we have a process that repeatedly samples x with an acceptance

probability of a and y with an acceptance probability of (1 − a), then the expected value of this

process is ax+ (1− a)y. Following this argument we do not need to waste rejected samples in the

Markov-chain: rejected samples can be added to the estimate after being weighted by (1− a), while

accepted samples are weighted by a. Algorithm 4.1 describes the full Metropolis light transport

algorithm with the subtleties described in this section. The main point that we still need to discuss

is how start-up bias is removed and how to design the mutation strategies.

Algorithm 4.1 Metropolis Light Transport

1: Generate Q seed paths zi with BDPT
2: Compute b = Q−1

∑Q
i f

?(zi)/p(zi)
3: Pick initial path x0 from all zi
4: for i = 1, ..., N do
5: Compute tentative sample x′i using T (xi−1 → x′i)

6: Compute a = min(1,
L(x′i)
L(xi−1)

T (x′i→xi−1)

T (xi−1→x′i)
)

7: for all pixels p with Wp(x
′
i) > 0 do

8: Ip+ = a b
N

f?p (x′i)
L(x′i)

9: end for
10: for all pixels q with Wq(xi−1) > 0 do

11: Iq+ = (1− a) bN
f?q (xi−1)

L(xi−1)
12: end for
13: Sample random number r ∈ [0, 1]
14: if r ≤ a then
15: xi = x′i
16: else
17: xi = xi−1

18: end if
19: end for

4.4.1 Start-up Bias

As mentioned above, with Metropolis sampling, the desired distribution will only be reached in the

limit, that is after sampling an infinitely long Markov-Chain. If the initial sample x0 was drawn from

a distribution different from the stationary distribution then the sample distribution of Metropolis

sampling will be biased towards this initial sample after a finite number of samples. This is called

the start-up bias. A pragmatic solution is to simply ignore the first k samples of the Markov-Chain,

but this is wasteful and it is unclear how big k should be to reduce the bias to an acceptable level.

A much better solution is to weight every sample of the Markov-Chain by a MLT correction weight

WMLT = L(x0)/p(x0) such that the estimator using these samples becomes unbiased again. In WMLT,

p(x) is the distribution that was used to draw L(x) in the initial step. A proof for the unbiasedness

of this approach can be found in the appendix of Section 11 of Veach’s thesis [106]. Intuitively, it

adds the noise of the initial sample to the complete chain such that the expected value is still correct.
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However, there is one problem with this approach: if the initial sample x0 is zero, then all samples

of the Markov-chain will be zero too. The solution is to sample n different paths with any sampling

strategy (for instance BDPT) in the first step. Out of these n paths k << n paths denoted by x0,j

with 0 ≤ j < k are selected that will be used to initialize k independent Markov-chains. The MLT

correction weight for all these chains is then W ′MLT = k−1
∑

j L(x0,j)/p(x0,j). In practice this weight

is not tracked across the chain but instead the k seed paths are sampled from the much larger set of

initial paths with discrete probabilities proportional to L(x0,j)/p(x0,j). The samples from all these

chains are then accumulated in the end of the rendering process into one single buffer to produce a

final image. As a nice side-effect this allows to naturally distribute the computation effort of MLT

onto multiple cores.

4.4.2 Mutation Strategies

As discussed in Section 3.4, the main degree of freedom when designing a Metropolis-Hastings

algorithm is in the choice of the mutation strategies. A mutation strategy in the context of light

transport is a procedure that transforms a path x ∈ Ω into another path y ∈ Ω according to some

stochastic process. Recall that having local as well as global mutation strategies is crucial for a

Metropolis sampler to explore the integrand efficiently. From a practical point of view there are

two additional properties that should be satisfied to have an efficient algorithm: first, the mutation

strategies should be accepted as often as possible, and second, mutating a path should be as cheap as

possible. While the global mutation simply amounts to occasionally re-sample a completely new path,

the local mutation strategies are more complicated. Consequently, many different local mutation

strategies have been proposed for MLT.

Primary Sample Space Mutations

Primary Sample Space (PSS) mutations as described by Kelemen et al. [53] operate directly on

the input random values that are used to generate the path, and are used in primary sample space

Metropolis light transport (PSSMLT). This method uses the fact, that path sampling can be formulated

as an operation that maps random values onto paths. Formally, we define a function Q : Rn → Ω

with

Q(p) = x, (4.8)

where p = p0, ..., pn−1 is a sequence of n random values and x ∈ Ω a path in path space. p can be

interpreted as the sequence of random numbers that was used by the sampling process to generate a

path. In a simple path tracer the random values pi would control the sampled outgoing direction ωi at

each intersection. Similarly, the pi’s can be used to sample other quantities during path sampling like

the positions on emitters when NEE is used, which component of a multi-layered BSDF is sampled,

where on a participating medium a scattering event occurs and so on. We call the domain on which p

lives the primary sample space (PSS). Kelemen et al. [53] proposed to let mutations directly operate

on this space instead on the path space, this means

x′ = Q ◦M ◦Q−1(x)
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Figure 4.4: PSS Perturbation. This figure depicts a path of length 5 in blue that is created from
PSS numbers p = p0, p1, p2, p3. Factors that are directly controlled by PSS numbers are visualized
in purple. The value p0 controls the direction of the initial ray, p1 and p2 control the outgoing
directions with respect to the local shading normal (green arrows), and p3 determines the point on
the light source for light sampling. Changing only the first PSS number (p0 to p′0) is a typical PSS
perturbation strategy. The result of such a perturbation is shown in yellow. In this example the
mutated path is very different from the original path since the curvature on the second surface leads
to a strongly changed outgoing direction after the second bounce.

where M is the mutation. The reasoning behind this approach is that similar inputs p and p′ usually

lead to similar paths x and x′. Local mutation strategies can thus be implemented by simply changing

p a little bit. For instance, a mutation could be defined as a small random perturbation δ of one of

the values of p:

M(p) = M(p0, ..., pn−1) = p0, ..., pi−1, pi + δ, pi+1, ..., pn−1 = p′

The path x′ should then be similar in path space to x. Implementing such mutation strategies is very

simple. However, in practice these mutations have problems since parametrizing paths by their PSS

values is suboptimal due to the potentially large partial derivatives of the throughput ∂f?(Q(p))/∂pi.

To illustrate this, consider a path that is constructed with a path tracer. Modifying the value p0 that

controls the initial outgoing direction ω0 will lead to diverging paths if the surfaces are not planar or

if we are not using perfectly diffuse materials. This means that the vertices of x and x′ can be on

very different surfaces after several bounces, which can lead to very different throughputs. Such an

example is depicted in Figure 4.4. Since there is some considerable freedom in how to construct a

path given a PSS mapping, each path x could have been generated by different PSS values that have

been used with different mappings Qi(pi) = x. Hachisuka et al. [31] exploited this in the context

of PSSMLT by using serial tempering that allows the Markov-chain not only to focus on the high

contribution paths but also to focus on the best PSS mapping strategies for every region of path

space. While being more powerful than the original PSSMLT algorithm, it still cannot rival some of

the path space mutation strategies described in the next section for sampling SDS paths.
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Figure 4.5: Bidirectional mutation. The base path is in blue and the perturbed path in yellow. In
this example the subpath x2 is deleted. The new path consists of an eye subpath yE = x0, x1, y2, y3

and a sensor subpath yL = z2, x3, x4. Both subpaths are then connected at the segment y3z2 that is
depicted in green.

Path Space Mutations

Path space mutations describe a set of local and global mutation strategies that have been proposed

by Veach and Guidas with their original MLT approach. Given a path x = x0, ..., xn the perturbation

will operate on the vertices of the path and create a new path y = y0, ..., ym where n is not necessarily

equal to m. Veach made a distinction between mutations and perturbations. Mutations denote

modifications of paths that can drastically change the path and lead to large jumps in path space,

while perturbations are ”small” mutations that aim at exploring local neighbourhoods of paths. In

order to simplify the following discussion we will refer to subpaths consisting of only one type of

interaction as either specular chains or diffuse chains.

Bidirectional Mutation A randomly chosen subpath of the current path is replaced by a new

subpath. To do so first a subpath of x = x0, .., xn of the form xl, ..., xk with 0 ≤ l ≤ k < n is deleted

from the current path. This yields two subpaths xE = x0, ..., xl−1 and xL = xk+1, ...xn. The goal is

now to create a new subpath that connects these two subpaths. We do this by first sampling which

length t the new subpath should have and decomposing this length into two numbers p and q with

p+ q = t. From subpath xe we then sample p new vertices in the importance direction, and from xL

q new vertices in the radiance direction. This yields two new subpaths yE = x0, ..., xl−1, yl, ..., yl+p−1

and yL = zk−q+1, ..., zk, xk+1, ..., xn. If yl+p−1 and zk−q+1 can be connected we have a new full path

y = yEyL, if not we reject the path since it has zero contribution. While len(y) can differ from

len(x), t should have a high probability of yielding paths of same length to ensure similarity of both

paths. Furthermore, there should be a non-zero chance that the deleted subpath is the entire current

path, i.e. l = 0 and k = n, which means that the complete path gets replaced. By allowing this we

ensure ergodicity. Figure 4.5 shows an example of this mutation where l = k = 2, p = 2 and q = 1.

Lens Perturbation This mutation is designed to exploit the correlation of the pixel integrals such

that parts of paths that contribute to one pixel can be reused for paths that contribute to other

pixels in the neighbourhood. It does so by replacing the beginning of the unperturbed path of the
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Specular Diffuse
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Figure 4.6: Lens perturbation. The paths have the same color coding as Figure 4.5.

SpecularDiffuse

Diffuse

Figure 4.7: Caustic perturbation. The paths have the same color coding as Figure 4.5.

form ES∗D(D|L) by slightly perturbing the primary outgoing direction −−→x0x1. This perturbation is

propagated along the path until the first diffuse vertex yk is hit. Note that the vertex positions of

y1, ..., yk will differ from the unperturbed path. The vertex yk is then deterministically connected

to the next vertex xk+1 of the unperturbed path. If xk+1 is specular then the mutated path will

have zero throughput. Figure 4.6 shows an example where y1 is on a specular surface, therefore the

perturbation gets propagated to the next vertex which yields x0, y1, y2. The vertex y2 is diffuse and

is then connected to x3.

Caustic perturbation This mutation is designed to explore the path space around caustics. To

do so the end of an unperturbed path of the form (E|D)DS∗L is replaced by first perturbing the

direction that connects the emitter to the last vertex −−−−→xnxn−1. The change of direction is then

propagated along the radiance direction until a first diffuse vertex yn−k is hit. Similar to the lens

perturbation this means that if there is a specular chain between emitter and the diffuse vertex,

the perturbation is propagated through it. The vertex yn−k is then deterministically connected to

xn−k−1. Similar to the previous mutation, this perturbation also leads to zero throughput paths if

xn−k−1 is specular. Figure 4.7 shows an example where yn−1 = y3 is on a specular surface which

means that the perturbation gets propagated further. The vertex y2 is on a diffuse surface and is

then connected to x1.
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Figure 4.8: Multi-chain perturbation. The paths have the same color coding as Figure 4.5. Note that
the main difference to the caustic perturbation is that the outgoing direction at y2 is perturbed. The
outgoing direction −−→y2y3 can thus be sampled from a cone of directions around −−→x2x3. If the outgoing
direction at y2 was the same as at x2 (green arrow) then the perturbed path would not hit the light
source any more in this set-up. This is depicted with the dotted gray line.

Multi-chain perturbation Neither lens nor caustic perturbation are able to perturb paths of

the form ES+DS+L. An example for this is a caustic on the bottom of a swimming pool seen

from above the water surface. The multi-chain perturbation is able in certain cases to perturb these

types of paths. This perturbation is similar to the lens perturbation in that it perturbs the primary

direction −−→x0x1 to replace the subpath of form ES+D. We denote the last vertex that is changed

by this propagation as yk1. However, instead of deterministically connecting yk1 to xk1+1 as with

the lens perturbation, it perturbs the corresponding outgoing direction of the original path −−−−−−→xk1xk1+1

and traces a new chain of vertices until a second diffuse vertex yk2 is hit. A connection is then

attempted with the next unperturbed vertex xk2+1. Alternatively the process is repeated when xk2+1

is specular. Figure 4.8 shows a ESDSL path where the first specular chain x0, y1, y2 is identical to

the one computed in Figure 4.6 with the lens perturbation. A connection to x3 is now not possible

since x3 is on a specular surface. Simply copying the outgoing direction of −−→x2x3 will likely lead to a

path that misses the emitter. The multi-chain perturbation still can create a new path by slightly

perturbing the outgoing direction −−→x2x3 and then tracing a new chain of vertices until a diffuse surface

is hit. In this example the next diffuse vertex yk2 happens to be on the emitter, which makes an

additional reconnection obsolete.

Manifold Perturbation Even with the multi-chain perturbation, MLT in its original form has

difficulties in exploring paths around SDS paths. For instance, consider the path in Figure 4.11.

SDS paths with small emitters make it very difficult for a multi-chain perturbation to still produce

a path with non-zero throughput. The probability of the multi-chain perturbation to perturb the

outgoing direction −−−−−−→xk1xk1+1 such that the light source is still hit can become arbitrarily low for

small or far away light sources. Jakob and Marschner [45] developed a framework called manifold

exploration (ME) that allows to move along specular manifolds in path space. Intuitively, specular

manifolds are connected regions of specular paths in path space that have a non-zero throughput.

Later in this section, we will provide a more formal definition of specular manifolds. Essentially, with

ME we can find new specular paths that are located on the same specular manifold as an already
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Figure 4.9: A motivating example for manifold exploration with fixed vertices xi−1 and xi+1. In
order for the blue path to have any throughput the normal direction (green arrow) and half vector
direction (yellow arrow) at xi must be the same which corresponds to the constraint function ci
to be zero. The position of x2 is thus determined by the adjacent vertices in the path. In a local
neighbourhood of xi, no other vertex fulfils this constraint (grey points).

known specular path. Therefore, ME allows to explore the interesting regions of path space around

specular paths in a much more robust way than the previously discussed perturbations. With the ME

framework, Jakob and Marscher were able to modify the perturbation of the second vertex chain of

the multi-chain perturbation in such a way that a new configuration of vertices is found that connects

yk1 with xk2 (see Figure 4.11). MLT using this perturbation is referred to as manifold exploration

Metropolis light transport (MEMLT).

The basic idea of the method is that the positions of any vertices on specular surfaces in a path

are determined completely by the two adjacent vertices if we want the path to transport any light

(Figure 4.9). Jakob and Marschner motivate this by the observation that any specular vertex xi must

satisfy (−−−−→xixi−1 +−−−−→xixi+1)||ni in order to have any throughput. Note that ni is the shading normal at

xi and“||” is the symbol to denote parallel vectors. This constraint can be reformulated in a form

ci(xi−1, xi, xi+1) =
−→
0 where

ci(xi−1, xi, xi+1) = T (xi)
Th(xi,

−−−−→xixi−1,
−−−−→xixi+1).

Here T (x) is a matrix whose columns form a basis for the shading tangent plane and h(x, v, w) is the

generalized half vector. Note that c ∈ R2. These constraints state that the generalized half-vector at

xk projected onto the shading tangent plane of xk should be zero. With this tool, specular paths with

non-zero throughput in a neighbourhood of x, denoted by ΩN(x),
3 can be described by the specular

manifold

S(x) = {y ∈ ΩN(x) : C(y) =
−→
0 },

where C(x) is the stack of the constraints ci for every specular vertex xi in x. Jacob and Marschner

noted that this manifold can be parametrized because of the implicit function theorem [101] with

3Neighbourhood essentially means that vertices stay on arbitrarily small surface patches around the vertices of x.
It is not possible to have a global parametrization since for any two diffuse vertices separated by a specular chain there
could be several very different specular chains in path space that connect them.
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Figure 4.10: An example of one iteration the prediction-correction approach discussed below. A
specular chain (blue dots) starting at x0 and ending at x4 should be modified such that its endpoint
is shifted to x′4. Prediction step: the endpoint x4 is shifted towards the target endpoint x′4 yielding
an intermediate endpoint x4 +β(x′4−x4). The vertex positions along the specular chain are modified
according to a locally linear prediction model, potentially leading to vertices that are not located on
surfaces any more (red circles). Correction step: instead of using of using these predicted positions

directly, a new specular chain (yellow dots) with an initial direction of
−−−→
x0x

+
1 (red arrow) is traced.

a function Q that determines the positions of all specular vertices in x as a function of all diffuse

vertices in x. The goal is to develop an algorithm that allows to move on this specular manifold.

More specifically, given a subpath x = xk1, ..xk2 where xk1 and xk2 are diffuse vertices and the rest

in between is specular, we want to have an algorithm that allows us to either move xk1 or xk2 while

automatically modifying the positions of the specular vertices xk1+1, ..., xk2−1 such that the modified

subpath still transports light. In order to do so the position of the specular vertices xk1+1, ..., xk2−1

must be expressed as a function of xk1 and xk2. To do so, Jakob and Marschner compute a Jacobian

of the constraint matrix C, denoted by ∇C. The matrix ∇C consists of 2× 2 blocks ∂ci/∂xj . We

denote the columns of ∇C as Bj and set A = [B1, ..., Bn−1]. The movement of all specular vertices

x1, ..., xn−1 with respect to the endpoint xn can then be computed as

∂(x1, ..., xn−1)

∂xn
= −A−1Bn.

With this it becomes possible to compute how the first specular vertex x1 in the chain must move

for the path to remain on a specular manifold if we move the diffuse endpoint xn to x′n. However,

C is only defined for a infinitesimally small region around x. Thus non-infinitesimal movements of

xn will lead to prediction errors where the specular vertices may not even be on surfaces any more

(Figure 4.10). To correct for this, Jakob and Marschner used a Newton-like prediction-correction

approach, where the predicted location x1 is only used to perturb the outgoing direction from x0.

Given a target endpoint x′n, β = 1 and a error-tolerance of ε the approach works as follows:

1. Compute x+
1 , ..., x

+
n according to −A−1Bn of the current specular chain x0, ..., xn when moving
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SpecularSpecular

Diffuse

Figure 4.11: Manifold exploration perturbation of a SDS path. The first specular chain x0, x1, x2

is propagated identically as in the lens perturbation yielding x0, y1, y2. The second specular chain
x2, x3, x4 uses a manifold walk to be shifted onto y2, y3, x4.

xn to xn + β(x′n − xn) by tracing a new chain from x0 with a modified direction
−−−→
x0x

+
1 .

2. If a new chain could be traced and ||x+
n − x′n|| < ||xn − x′n|| set x1, ..., xn = x+

1 , ..., x
+
n and

β = min(1, 2β), or else set β = β/2.

3. Repeat step 1 and 2 until ||xn − x′n|| < ε or fail if we exceeded the maximum number of

iterations.

Note that this algorithm is guaranteed to converge, however it can fail when the maximum number

of iterations is reached before convergence. An analogous algorithm for moving the starting point of

the chain can be used. There, ray tracing occurs in the reverse direction and we aim at finding a

new incoming direction
−−−−→
xnx

+
n−1 when moving x0 to x0 + β(x′0 − x0) based on −A−1B0.

A perturbation strategy based on this approach called manifold perturbation is designed to perturb

subpaths of the form (E|D)S+DS+(D|L). It works as follows: first perturb −−→x0x1 and propagate the

perturbation until the first diffuse vertex is reached yielding x0, y1, ..., yk1. Now perform a manifold

exploration of chain xk1, ..., xk2 by moving the first vertex xk1 to yk1. The manifold exploration then

yields a new specular chain yk1, yk1+1, ..., xk2. See Figure 4.11 for a simple example.

It is noteworthy that recently related perturbation strategies based on directly mutating the

half-vectors in the specular chain and finding new valid paths on the specular manifold have been

developed by Kaplanyan et al. [52] and later refined by Hanika et al. [35]. In another line of work Li

et al. [70] discussed the difficulties of MEMLT to sample strongly anisotropic specular manifolds and

proposed a method based on Hessian-Hamiltonian Monte-Carlo to perturb paths more efficiently.

4.4.3 Limitations

When rendering images with PT or BDPT it is very predictable how the image will be resolved over

time. The noise will go down at roughly the same rate everywhere in the image, and in the limit a

clear image will be rendered. For artists this is very useful since it allows previewing scenes with low

sample counts. Since many artists improve their scene assets incrementally, speeding up the feedback

loop of changing the scene and getting some results is paramount for quickly getting complex scene

assets in production rendering.
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Unfortunately MLT does not have such a predictable convergence behaviour. The reason is that

MLT can explore a region around challenging paths very well once such a sample has been found,

but MLT provides no mechanism other than bidirectional mutations to find such paths in the first

place. As a consequence, small details in the image like small caustics may remain “undiscovered”

for a very long time during the render process. In extreme cases an otherwise converged looking

image can still be missing some features of the image that have simply not been discovered yet by

the Markov-chains. This makes it hard to judge when an image is really converged and also makes

non-converged images bad predictions for the converged image, since entire parts of the illumination

might be missing. Also, up to date, no generalization of MLT over several frames for animation

exists. Consequentially, MLT can lead to wild flickering in animations when the images are not very

close to convergence. This problem is amplified since with MLT stratification techniques are not

directly applicable. Because of these issues, to the best of our knowledge, MLT has not been used

for production rendering anywhere.

A related method, energy-redistribution path tracing (ERPT) [10], tries to mitigate these issue by

creating a very large number of very short Markov-chains each starting with paths that are stratified

on the image plane and using local perturbation strategies only. This leads to a more uniform

coverage of the sampling space and thus to a convergence behaviour that is more similar to PT and

BDPT. Still, similar to MLT this algorithm also suffers from low frequency noise that makes it hard

to use in animation rendering.

4.5 Adaptive Sampling and Reconstruction

The path sampling methods discussed above all suffer from noise artefacts when using finite numbers

of samples since f? is generally not band limited. Every pixel is computed mostly independently -

even with MLT - and each sensor response will be approximated with slightly different error. The

different errors from pixel to pixel will appear as high frequency noise to the viewer. The magnitude

of this noise will, on average, depend on the number of samples and the used sampling strategy and

will usually vary over the image plane because the complexity of the pixel integrals also varies greatly

in a single image.

Adaptive sampling and reconstruction (ASR) methods try to recover the desired signal by removing

this non-uniform noise from the image. They do this by attacking the problem from two sides. First,

they aim at constructing an image that is as good as possible by adapting the reconstruction filter

Wp locally for every pixel p. Second, they adapt the sampling densities such that the error of the

image reconstructed with Wp is minimized. Adaptive sampling and adaptive reconstruction can be

applied independently but they are usually combined in order to maximize efficiency. ASR methods

are typically used on top of path tracing since path tracing allows for simple control of where in

the image how many samples should be computed. However, they can also be used to some extent

for BDPT4 and for any other rendering method that allows for control of the sample density in

image space. The reconstruction part alone could however be used for any rendering method as a

post-process (i.e. also for MLT). ASR methods are in general not unbiased for two reasons, first

4Although the density of direct light paths in image-space cannot be controlled that easily.
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reconstructing a smooth signal from noisy data will typically lead to some bias and second, as pointed

out by Kirk and Avro [58] adaptive sampling can lead to bias. However, while not being unbiased

most of the discussed methods are at least consistent.

The remainder of this section will give a brief overview of methods related to ASR. We will follow

the classification of ASR methods by Zwicker et al. [115] into a priori methods that use analytical

models of the light transport problem to compute good local reconstruction filters and sampling

densities, and a posteriori methods that use empirical information obtained during the sampling

process.

4.5.1 A Priori Methods

These methods increase efficiency of rendering by analysing the local properties of the light transport

problem. These types of algorithms have been sparked by the frequency analysis of light transport

developed by Durand et al. [19], where they performed a frequency analysis of local light field

around single path samples. This work showed that one single sample could be enough to determine

appropriate sampling densities and reconstruction filters in a local neighbourhood. However, due to

complexity of this analysis most methods following this line of work only support subsets of the effects

encountered in light transport. For instance Durands original paper was limited to direct illumination

with glossy surfaces. A number of similar approaches were developed to support other effects like

motion blur [23], soft shadows [22], ambient occlusion [21], depth of field [100], participating media

[5] or to some extend even indirect illumination [6, 77].

Somewhat related are methods that perform an analysis based on the structure of a light field

without relying on frequency analysis. The most notable methods reproject samples to multiply the

amount of samples. The initial idea presented by Lehtinen et al. [66] was to exploit the light field

structure to improve sampling of distributed effects like motion blur, depth of field or direct soft

shadows. The method was later extended to support diffuse indirect illumination [67].

Another set of methods analyses local derivatives. Intuitively, by analysing partial derivatives

of light transport one can recognize regions where the light transport is smooth or even locally

constant. In context of sampling and reconstruction, detecting such regions is important since large

reconstruction filters can be used on them without biasing the result too much and thus lower sampling

rates are required. This idea was initially used in irradiance caching (IC) [112]. IC computes the

irradiance gradients in image space and uses this information to determine local sampling densities

for the irradiance as well as reconstruction kernels for reconstructing the irradiance independently of

the direct light. The original approach was however restricted to diffuse surfaces. Later, the method

was extended to support glossy surfaces [61] and participating media [48].

4.5.2 A Posteriori Methods

A posteriori ASR methods use data obtained during the rendering process to guide sampling and

reconstruction. Often this is implemented as a feedback loop that periodically updates the sampling

densities and the reconstruction filters as more data is acquired. Compared to a priori methods these

methods tend to be more general since they are based on statistics that may not depend on any
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(a) unfiltered images (b) reconstructed images

Figure 4.12: Example of an a posteriori ASR method as discussed in Section 4.5.2. The method used
in this example is RDFC. This figure was recreated from Rousselle et al. [95].

specific light transport effect. On the other hand, sample distributions and reconstruction filters only

become efficient over time when enough data about the light transport was gathered, thus for very

low sampling rates a posteriori ASR methods might perform poorly.

One of the earliest a posteriori ASR methods was developed by Mitchell [79]. This method only

operates in the image space dimension. It subdivides the image space dimension into cells and decides

whether the cells should be further subdivided based on a simple contrast metric of the samples

generated so far. The adaptive sampling of this method is restricted on the image space dimension

only. No adaptive sampling of any other dimension of the path space integral is performed (see

Figure 4.1). Thus methods of this type are called image-space ASR method.

More recently, Hachisuka et al. [30] developed an algorithm that adaptively samples paths in

multi-dimensional spaces. To do so, the path space is subdivided by a kd-tree and in each node

statistics are stored of samples belonging to the corresponding subspace. Based on this, additional

samples are distributed into each subregion. Additional dimensions like the position of the sensor

for depth of field, the position on light sources for soft shadows or the point in time for motion blur

allow to sample these effects much more efficiently than could be done with image space adaptive

sampling. In addition the method also proposes to use different anisotropic reconstruction filters

based on the sampling density. The methods main disadvantage is that its efficiency decreases with

increasing number of dimensions that we want to sample adaptively, thus adaptively sampling the

entire path space remains challenging. The idea of sampling in the multi-dimensional space directly

was used by many of the a priori methods discussed earlier.

An approach operating on image space only that could use much more powerful filters than

Mitchells approach was introduced by Overbeck et al. [88]. This method aims at sampling and

reconstructing the image in a wavelet basis. The image is reconstructed by performing wavelet

shrinkage and additional samples are distributed according to some prior function that estimates the

quality of the reconstruction locally. A similar method targeting interactive ray tracing has been

proposed shortly after it by Dammertz et al. [15]. The crucial part of Overbecks’ algorithm is the

feedback loop between the estimation of the error of the reconstructed image and distribution of

additional samples according to the reconstruction error. A body of work by Rousselle et al. adapted

this method to directly reconstruct an image from a filter bank, where at each pixel the reconstruction
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filter with the best trade-off between variance and bias is chosen. The initial method was restricted

to use a filter bank of isotropic Gaussians [93], but it was later extended to use non-local means

filters[94], joint bilateral filters [71] and mixtures of joint bilateral and non-local means filters [95].

The latest of these algorithms called robust denoising using feature and color information (RDFC)

is shown as an example of an a posteriori ASR methods in Figure 4.12. Recently, a similar method

was developed that applies adaptive sampling and reconstruction separately on different illumination

effects that are then composed to a final image, at the same time motion vectors of each effect are

tracked over different frames to provide a high quality reconstruction for animations [114].

While the aforementioned methods distribute samples all based on variance estimates of the

samples or the reconstruction, other methods were proposed that use more sophisticated metrics to

guide the sample distribution. For instance, Delbracio et al. [16] use information about the histogram

of samples to detect similar pixel integrals and Sen et al. [96] use the correlation of input noise and

output noise to be able to distinguish Monte-Carlo noise from high frequency geometry or textures

that might produce similar patterns.

Other research is based on the realization that performing a reconstruction by filtering can

be interpreted as performing a regression analysis over image patches to find simple function that

approximate these patches. Filtering is then the result of averaging many such overlapping windows.

One such filter yielding similar results as a bilateral filter is the guided image filter [38] that was

later used in an ASR algorithm [4]. A similar approach with a more powerful regression based on

auxiliary feature data was proposed by Moon et al. [83]. This approach has later been extended to

use regressions of higher order [85] and also been adapted to allow interactive rendering at the price

of some quality [84].
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Chapter 5

Gradient-Domain Rendering

In this chapter we will discuss previous work on gradient-domain rendering upon which all our

contributions are built. Gradient-domain rendering was first introduced in the context of Metropolis

Light Transport by Lehtinen et al. [68] and then applied to path tracing by Kettunen et al. [57]. We

will first discuss gradient-domain rendering in a general way independently of specific light transport

algorithms and provide an end-to-end analysis that explains why gradient-domain rendering is

beneficial. In the later parts of this chapter we will dive into the the specifics of gradient-domain

rendering applied to path tracing and Metropolis light transport.

5.1 Motivation

For rendering images one separate integral must be solved for every pixel in the image. These

integrals are usually strongly correlated for pixels that are close-by in image-space. This means there

is inherently a large amount of redundant computation occurring when all pixel color values are

estimated independently from each other. It is therefore natural that several methods in rendering try

to exploit this. The most successful ones are reconstruction techniques in which samples belonging

to one pixel are reused to estimate the color values of several pixels. In Section 4.5 we discussed

how this is done by applying image filtering or sample re-projection. However, these techniques are

biased. Further, many of these methods only work on a subset of the lighting phenomena or have a

performance that strongly depends on the amount of additional information that can be obtained

during the rendering process. Another type of techniques exploiting pixel correlation are MCMC

rendering techniques (Section 4.4) that mutate paths such that subpaths can be reused for several

pixels. These methods are unbiased but introduce correlation between the path samples that lead to

an increase in low-frequency artefacts. This is especially disturbing in animations.

We will explore an alternative way of exploiting the similarities of the pixel integrals. Recall

that correlated sampling1 (Section 3.3.6) is a variance reduction technique tailored specifically for

sampling the difference of similar integrals in an efficient way without the need of analytically knowing

both integrals a priori. Despite rendering consisting of such similar integrals, correlated sampling has

not found much interest in the rendering community until recently. However, if we could formulate

1In the sense of common random numbers, not control variates.

65
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Figure 5.1: Gradient-domain rendering methods sample the finite differences of the throughput Idx

and Idy alongside a much noisier color image Ic. A smooth image Î is then reconstructed from this
data with a screened Poisson reconstruction. These images were rendered with G-PT (Section 5.4).

the sampling problem in rendering in terms of color differences instead of pixel colors, correlated

sampling could be applied on rendering.

It is well known that images can be modified by editing their gradients [89]. The gradients

can be approximated by the finite differences in the x and y direction of the image. The desired

modified image is then formulated as the image that minimizes the error in a set of linear equations

that encode constraints on the finite differences and colors of the image. This amounts to solving a

screened Poisson equation. The same machinery can be used in rendering to construct an image out

of sampled finite differences and a potentially much noisier color image.

Thus, the basic idea of gradient-domain rendering is to compute the finite differences of pixels

with correlated sampling alongside the pixel colors and then to reconstruct a much smoother image

based on these sampled quantities by solving a screened Poisson equation (Figure 5.1).

5.2 Basics

In gradient-domain rendering the main quantities that are sampled are, as the name implies, gradients.

More specifically, we want to compute the image-space finite differences of an image I:

∆x(Ii,j) = ∆1,0(Ii,j) = Ii+1,j − Ii,j
∆y(Ii,j) = ∆0,1(Ii,j) = Ii,j+1 − Ii,j

where Ii,j denotes the color value of the pixel with image-plane coordinates (i, j). We can generalize

this to differences between arbitrary pixels with

∆δ(Ip) = Iq − Ip (5.1)

where p and q are any 2D image-plane coordinates p = (i, j) and q = (i′, j′) and δ = q − p is the

offset.
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5.2.1 Sampling Gradients

Recall that computing the finite differences of two pixels corresponds to computing the difference of

two integrals (see Equation 2.24):

∆δ(Ip) =

∫

Ω
Wq(y)f?(y)dµ(y)

︸ ︷︷ ︸
Iq

−
∫

Ω
Wp(x)f?(x)dµ(x)

︸ ︷︷ ︸
Ip

. (5.2)

In Section 3.3.6 we describe how the variance of the difference of two similar integrals can be reduced

by using correlated sampling. In order to be able to perform correlated sampling we will reformulate

Equation 5.2 to be an integral of a difference instead of a difference of integrals. The remainder of

this section describes how this can be achieved.

To this end, we define a bijective function Tδ : Ωp → Ωq where Ωp = {x ∈ Ω : Wp(x) > 0}
and δ = q − p. This function transforms a path with image-space coordinates p into a path with

image-space coordinates q. We call such a function a shift mapping. In this context we call x the

base path and Tδ(x) the offset path. Formally, Tδ must fulfil

(1) Wp(x) = Wq(Tδ(x))

(2) T−1
δ (Tδ(x)) = x.

(5.3)

Note that T−1
δ = T−δ. To avoid cluttering we will omit the subscript δ in T whenever it is clear from

the context what the subscript should be. Given such a shift mapping we can follow the algebraic

steps described in Lehtinen et al. [68] to reformulate Iq from Equation 5.2:

Iq =

∫

Ω
Wq(x)f?(x)dµ(x)

=

∫

T−1(Ω)
Wq(T (x))f?(T (x))dµ(T (x))

=

∫

Ω
Wq(T (x))f?(T (x))

∣∣∣∣
∂µ(T (x))

∂µ(x)

∣∣∣∣ dµ(x)

=

∫

Ω
Wp(x)f?(T (x))

∣∣∣∣
∂µ(T (x))

∂µ(x)

∣∣∣∣ dµ(x). (5.4)

The step in the second line is a no-operation where we shift the paths by T but integrate over a path

space that is shifted in the inverse direction T−1(Ω). The next step performs a change of integration

variables from µ(T (x)) to µ(x). This introduces the Jacobian determinant |T | = |∂µ(T (x))/∂µ(x)|.
The final step uses Equation 5.3. Given Equation 5.4 we can rewrite Equation 5.2 as

∆δ(Ip) =

∫

Ω
Wp(x) [f?(T (x))|T | − f?(x)]︸ ︷︷ ︸

gδ(x)

dµ(x), (5.5)
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which can be estimated by using correlated sampling as described in Equation 3.28 by using

Iδp =
1

N

N∑

i=1

Wp(xi)
gδ(xi)

p(x)
. (5.6)

Note that the Jacobian determinant |T | can be interpreted as a correction factor for the fact that

we sample f?(T (xk)) with the PDF p(xk) instead of p(T (xk)). Therefore, the Jacobian determinant

must be |T | = p(x)/p(T (x)). Plugging this into the equation above reveals that Iδp is indeed an

estimator of ∆δ(Ip):

Iδp =
1

N

N∑

i=1

Wp(xi)
f?(T (xi))

p(xi)
p(T (xi))

− f?(xi)
p(xi)

=
1

N

N∑

i=1

Wp(xi)

[
f?(T (xi))

p(T (xi))
− f?(xi)

p(xi)

]

=
1

N

N∑

i=1

Wq(T (xi))
f?(T (xi))

p(T (xi))
︸ ︷︷ ︸

Icq

− 1

N

N∑

i=1

Wp(xi)
f?(xi)

p(xi)
︸ ︷︷ ︸

Icp

, (5.7)

since E[Icp] = Ip and E[Icq ] = Iq and thus E[Iδp ] = ∆δ(Ip). Note, that Equation 5.7 reveals that in the

context of Monte-Carlo sampling the shift mapping T needs to always create offset paths that are

sampleable by the underlying path sampling strategy. This means that we need to ensure that

∀x ∈ Ωp : p(T (xi)) > 0.

We know from Equation 3.27 that the variance of the estimators Iδp decreases with increased

positive correlation between f?(T (x))|T | and f?(x). Therefore the main challenge lies in finding a

shift mapping T that leads to maximal correlation between the throughputs of the base and offset

paths.

5.2.2 Shift Mappings

From the previous section we know that T must fulfil Equation 5.3, this means it must be a bijection

from Ωp to Ωq and T must shift x such that value of importance function of pixel q applied on the

offset path is equal to the value of importance function of pixel p applied on the base path. Further,

T must always create sampleable offset paths, meaning p(T (x)) > 0 for all x. And finally, in order

to maximize efficiency, T should be designed such that

• the correlation between x and T (x) is as strong as possible, and

• the computation of T (x) is as cheap as possible.

In the following we will review how to design shift mappings.
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Primary Sample Space Shift

A simple shift mapping that fulfils our requirements is a primary sample space shift similar to the

PSS mutation described in Section 4.4.2. Such a new shift mapping T ? operates on the PSS variables

directly. The full shift TPSS of a path x to y can be formalized as a transformation from path space

to PSS Q−1, followed by a shift in PSS T ?, followed by a transformation back to path space Q:

Wq(T
PSS(x)) = Wq(Q ◦ T ? ◦Q−1(x)︸ ︷︷ ︸

p

) = Wp(x).

We assume that p = p0, p1, p2, ..., pn where p0 controls the x-position on the image plane, p1 the

y-position and p2, .., pn all other degrees of freedom of the path x. The PSS shift can then be defined

as

T ?δ (p) = p0 + δx, p1 + δy, p2, ..., pn.

Note that TPSS is a bijection from Ωp to Ωq by construction and that the Jacobian determinant is

the same as for the general mapping described in Section 5.2.1:

|TPSS | =
∣∣∣∣
∂y

∂p′

∣∣∣∣
︸ ︷︷ ︸
|Q|

∣∣∣∣
∂p′

∂p

∣∣∣∣
︸ ︷︷ ︸
|T ?|

∣∣∣∣
∂p

∂x

∣∣∣∣
︸ ︷︷ ︸
|Q−1|

=

∣∣∣∣
∂y

∂p′

∣∣∣∣
∣∣∣∣
∂p

∂x

∣∣∣∣ =
p(x)

p(y)

The first step follows from the chain rule, step two from ∂p′/∂p = 1 and step three from ∂x/∂p =

1/p(x).

As for PSSMLT one can implement this shift by simply storing the PSS values of the base path

and then retrace an offset path in the neighbouring pixel with the same PSS values p2, ..., pn. This

is very simple to implement but has several drawbacks:

First, as in PSSMLT, paths can diverge significantly over the bounces due to fast changing

normals. This often leads to rather low correlation between base and offset path. This problem is

amplified by the fact that the values of p could be used for different purposes in base and offset path:

a path shifted in PSS might hit different surfaces with different materials than the base path. These

materials might use different numbers of random values of the PSS sequence than the materials

encountered by the base path. This means a shifted path might use random values for different

purposes which further reduces correlation and can even lead to base and offset path pairs of different

length.

Second, computing the finite difference with this shift requires us to compute two full paths. In

terms of computational costs a finite difference is thus roughly twice as expensive to sample as a

pixel color. We will see in the next paragraph how this overhead can be reduced significantly by

defining T such that the offset path reuses subpaths of the base path.

Deterministic Path Space Shifts

Because the resulting correlation of base and offset path with the PSS shifts is very hard to control,

we want to use shifts that deterministically transform a path based on its geometrical properties.
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Diffuse

Diffuse

Figure 5.2: Simple path space shift mapping. The base path (blue) is shifted on the image plane by
δ, creating a new primary path segment from x0 to y1 for the offset path (yellow). The new sub path
is then reconnected with then next vertex of the base path (green). Note that the segment from x2

to x3 is shared between the base and offset path.

These strategies are similar to the lens mutation used in MLT but are deterministic. One of their

main advantages over PSS is that they allow to reuse parts of the base path to construct the offset

path, which means that less ray intersection operations need to be done for constructing the offset

path.

A simple way to do so is depicted in Figure 5.2. For a given a base path x, a ray is shot through

the image-plane position s(x1) + δ, where s(x1) is the primary vertex x1 projected onto the image

plane. This yields a new primary intersection point y1. The remainder of the path is simply computed

by trying to connect y1 to x2 and if successful directly reuse x3, ..., xn for y.

However, the reconnection between y1 and x2 can lead to BSDF values at y1 and x2 that are very

different from the corresponding BSDFs in the base path. For instance, if either y1 or x2 is on a

near-specular or perfectly specular material, the BSDFs of the offset path will become very small or

zero. This will reduce the correlation between the throughput of the base and offset path significantly.

The key to handle such cases is to delay the re-connection to a later point along the path where the

BSDFs are less sensitive to changes in direction. The challenges in designing such an approach lie in

(1) determining when during the offset path reconstruction we can reconnect to the base path and

(2) how to shift the vertices occurring before that reconnection such that the throughputs remains

correlated. G-MLT and G-PT solve these challenges in slightly different ways that will be discussed

in detail in Sections 5.4.2 and 5.5.2.

On top of those challenges a path space shift must be defined as a bijection from the sampleable

paths in Ωp to Ωq, which in contrast to the PSS shift is not necessarily true and hard to achieve

in practice. G-PT was developed after our paper presented in Chapter 6 and uses the formalism

developed there. Specifically, symmetric gradients that allow to relax the bijection requirement of the

shift mappings. Therefore we will - somewhat redundantly - already discuss this symmetric gradient

formulation in the next subsection.

Symmetric Gradients

Since bijective shifts Tδ from the set of sampleable paths in Ωp to the set of sampleable paths in Ωq

are hard to realize in practice, we will relax this constraint by sampling a gradient always from two
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Figure 5.3: Symmetric gradients. Visualizes left the forward gradient and on the right the backward
gradient. The quantities Ωpq, Ωqp, Ωp, Ωq, Ωp and Ωq are directly visualized. Note that the black
regions are also part of Ωp respectively Ωq and visualize regions where T−1(T (x)) 6= x respectively
T (T−1(y)) 6= y. This figure is reproduced from Kettunen et al. [57].

directions: in a backwards and in a forwards computation. Specifically, we can split the computation

of ∆δ(Ip) into computing two directional gradients, namely a forward and backward gradients with

∆δ(Ip) =
−→
∆δ(Ip) +

←−
∆δ(Ip). (5.8)

The simplest possible definition of such directional gradients is

−→
∆δ(Ip) =

1

2

∫

Ωp

Wp(x)gδ(x)dµ(x),

←−
∆δ(Ip) = −1

2

∫

Ωq

Wq(x)g−δ(x)dµ(x).

Here the forward gradient
−→
∆δ(Ip) computes the finite difference by shifting a path in pixel p with Tδ

to pixel q = p+ δ. The backward gradient
←−
∆δ(Ip) computes the same finite difference by sampling a

path in pixel q, shifting it with the reverse shift T−1
δ = T−δ to pixel p and finally flipping the sign of

the gradient. Note that the quantities computed by the forward and backward gradient are identical

if T is a bijection of sampleable paths and that these directional gradients will not fulfil Equation

5.8 otherwise.

In the remainder of this section we will construct directional gradients that fulfil Equation 5.8

even if the shift mapping T : Ωp → Ωq is not a bijection between sampleable paths. To that end, let

us define a subset of Ωp called the reversible part of Ωp,

Ωpq = {x ∈ Ωp : T−1(T (x)) = x ∧ p(T (x)) > 0}.

Intuitively, Ωpq describes the subset of Ωp where T is locally a bijection and shifts the base path

to a sampleable offset path. The complementary region in Ωp, that is Ωp = Ωp \ Ωpq, is called the

irreversible part of Ωp. Analogous subsets Ωqp and Ωq are defined for Ωq with respect to T−1. With

these definitions we can modify T to operate only on the reversible parts of Ωp and Ωq, that is

T : Ωpq → Ωqp and T−1 : Ωqp → Ωpq. This is implemented by simply returning a dummy offset

path y = T (x) with f?(y)|T | = 0 whenever T is applied on a base path x with x /∈ Ωpq. Gradients

sampled from the reversible part of the domain are called reversible gradients, all other gradients are
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called irreversible gradients. With these tools we redefine the directional gradients:

−→
∆δ(Ip) = −

∫

Ωp

Wp(x)f?(x)dµ(x) +

∫

Ωpq

ωδ(x)Wp(x)gδ(x)dµ(x)

←−
∆δ(Ip) =

∫

Ωq

Wq(x)f?(x)dµ(x)−
∫

Ωqp

ω−δ(x)Wq(x)g−δ(x)dµ(x).

(5.9)

We will refer to ωδ(x) as gradient direction weights. These weights must fulfil ωδ(x) + ω−δ(y) = 1

when Tδ(x) = y. Note that the weights are only specified for reversible gradients. It is easy to verify

that the sum of these directional gradients satisfies Equation 5.8 regardless of whether T is a bijection

or not:

−→
∆δ(Ip) +

←−
∆δ(Ip) =

∫

Ωp∪Ωpq

Wp(x)f?(x)dµ(x)

−
∫

Ωq∪Ωqp

Wq(x)f?(x)dµ(x)

= ∆δ(Ip) (5.10)

With these tools it becomes much easier to design shift mappings since the mappings do not have

to be bijective any more. Parts of the domain where the shift is not reversible are automatically

handled by using naive gradient sampling, i.e. gradient sampling without correlation of the base and

offset paths. When designing a shift mapping one should still aim at making the reversible parts

of the sampling domain as large as possible, since non-reversible parts will tend to introduce more

variance due to the uncorrelated base and offset path pairs.

For completeness’ sake we show how the directional gradients can be sampled with Monte Carlo

estimators
−→
I δp and

←−
I δp:

−→
∆δ(Ip) ≈

−→
I δp = N−1

∑

i

Wp(xi)
−→
G δ(xi)

←−
∆δ(Ip) ≈

←−
I δp = N−1

∑

i

Wq(xi)
←−
G δ(xi) (5.11)

with

−→
G δ(x) =




ωδ(x)gδ(x)/p(x) if Tδ(x) is reversible

−f?(x)/p(x) else.
,

←−
G δ(x) =




−ω−δ(x)g−δ(x)/p(x) if T−δ(x) is reversible

f?(x)/p(x) else.
(5.12)
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5.2.3 Reconstruction

We define estimators Idxp , Idyp and Icp with

E[Icp] = Ip

E[Idxp ] = ∆x(Ip)

E[Idyp ] = ∆y(Ip)

Given these estimates for every pixel p = (i, j), we can construct an image Î that minimizes

∑

p

(
α||Icp − Îp||k + ||Idxp −∆x(Îp)||k + ||Idyp −∆y(Îp)||k

)
. (5.13)

We call the first term the image fidelity since it ensures that the colors of Î are similar to the sampled

color values, and the second and third term together the gradient fidelity since they ensure that the

finite differences of Î are similar to the sampled finite differences. The parameter α can be set by the

user to balance the gradient- and color fidelity of the new image Î with respect to the sampled data.

The power k determines which type of distance we are trying to minimize.

L2-Reconstruction

If we set k = 2 in Equation 5.13 then we minimize the squared Euclidean distance between the

sampled data and reconstructed image. The equation system is then linear and corresponds to a

screened Poisson equation. Since our system of equations is linear we can rewrite Equation 5.13 with

k = 2 in matrix form as

argmin
Î

∥∥∥∥∥∥∥



αHId

Hdx

Hdy




︸ ︷︷ ︸
A

Î −



αIc

Idx

Idy




︸ ︷︷ ︸
b

∥∥∥∥∥∥∥

2

(5.14)

where Ic, Idx and Idy are column vectors in which the constraints for all pixels p are stacked, HId is a

identity matrix and Hdx and Hdy are Laplace matrices that map an image onto its finite differences.

Note that HId, Hdx and Hdy each have a dimensionality of |p| × |p| where |p| is the number of pixels

in the image. Thus, A ∈ R3|p|×|p|, Î ∈ R|p| and b ∈ R3|p|. Note that for an image with c color channels

the Î and b vectors are expanded to Î ∈ R|p|×c and b ∈ R3|p|×c, which means that the equation system

is solved for all color channels simultaneously.

From this follows that Î = Sb with S = (A>A)−1A>. If b is sampled in a unbiased way, i.e.

E(b) = (αI>,∆x(I)>,∆y(I)>)>, then it is trivial to show that Î is a unbiased estimator of I because

of the linearity of S:

E[Î] = E[Sb] = SE[b] = I.
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(a) L2 reconstruction (b) L1 reconstruction

Figure 5.4: Result of the reconstruction with k = 2 and k = 1. These images were rendered with
G-MLT (Section 5.5).

L1-Reconstruction

Reconstructing images using the Poisson reconstruction with the L2-norm is problematic since it

cannot resolve contradicting information very well. For instance, if the information in Ic, Idx and Idy

is contradicting, then the Poisson solver tries to re-conciliate this information by introducing ringing

artefacts (Figure 5.4a). One way to avoid this is by using the L1-norm in Equation 5.13, i.e. k = 1.

The effect of the L1-norm is that ”bad” constraints that lead to large residuals are weighted down.

Since large residuals occur in regions of the image where the information is contradicting, L1 effectively

prevents the solver from re-conciliating this information and thus helps avoiding the ringing and

dipole artefacts (Figure 5.4b). However, in contrast to the L2-reconstruction, the L1-reconstruction

is only consistent and not unbiased.

Implementation

The reconstruction under the L2-norm is a linear least squares problem. This can efficiently be

solved on GPUs by using a conjugate gradient solver (CGS) on the normal equation of the problem

A>AÎ = A>b.

The L1 reconstruction requires minimizing ||AÎ − b|| under the L1-norm. The solution to the

L1 optimization can be approximated with iterative reweighed least squares by iteratively solving

a sequence of i L2 optimizations of the form ||AWiÎi −Wib||2 = 0 where Wi is a diagonal matrix

that weights every constraint differently [27]. Each iteration i can be solved by applying CGS on

A>W 2
i AÎi = A>W 2

i b yielding an intermediate solution Îi. The algorithm is initialized with W0 being

the identity matrix, which means that every constraint is weighted equally. The result of every

iteration Îi is used to update the weight matrix for the next iteration Wi+1. On a intuitive level

Wi+1 is set such that the residual of the previous iteration r = AÎi − b is minimized. This can be

achieved by setting the jth diagonal element in Wi+1 to 1/||rj || where rj is the jth line of r. Note

that in practice some regularization must occur to prevent divisions by zero. This process is repeated

up to a user defined number of maximal iterations k or until the current residual ||Îi − b|| is below a

threshold. The last computed Îi with i < k is then an approximation of the L1 optimization.
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Lehtinen et al. [68] reported that on modern GPUs the L1 reconstruction of a mega-pixel image

can be obtained in the orders of seconds with this method. Thus, compared to the rendering time

for reasonably complex scenes which is usually in the orders of minutes or hours, the overhead due

to the reconstruction is negligible.

5.3 Theoretical Analysis

This section describes an end-to-end analysis of the sampling and reconstruction process involved in

gradient-domain rendering. We present a complete analysis that pinpoints why gradient sampling

followed by Poisson reconstruction is beneficial. Under certain simplifications, the analysis predicts

precisely by how much gradient-domain rendering reduces variance in each frequency compared to

conventional sampling. We first study the error in gradient estimation compared to usual pixel esti-

mation that is caused by Monte Carlo integration. Then we analyze screened Poisson reconstruction

(Section 5.2.3) to understand the error distribution over frequencies of the final image2.

5.3.1 Error analysis of Gradient Estimation

Gradient estimation involves computing and sampling path differences, Monte Carlo integration over

path space, and pixel filtering. To make this problem amenable to Fourier analysis, we make the

following simplifications: First, we work with 1D images to reduce clutter in the notation. Next,

we assume paths are parameterized over a Cartesian hypercube, akin to the primary sample space

by Kelemen et al.[53] described in Section 4.4.2, and the first path dimension is the image axis x.

This means a path in this parametrization is described as (x,p). The image contribution function is

thus f?(x,p). We restrict the analysis to uniform random sampling in this parametrization. We also

assume that sampling is a wide-sense stationary stochastic processes. This implies that it extends

over an infinite domain, which simplifies its frequency analysis because there are no boundary effects,

but also means that we cannot model the restriction of the sampling grid to the unit hypercube.

Assuming sampling over an infinite domain instead of restricting the samples around the non-zero

support region of the integrand overestimates variance compared to practical algorithms. Finally, we

use a simple shift mapping that only shifts the image coordinate by one pixel and leaves the other

parameters untouched. This mapping has a unit Jacobian and determinant.

Given an image contribution function f? defined over an image axis x and an arbitrarily long

vector of path parameters p (Figure 5.5a), the problem is to integrate over p to obtain a sampled

image and its gradients. We model gradient-domain rendering by first defining the shift mapping

T and the corresponding path difference function g in path space (similar to the one defined in

Equation 5.5). For this analysis we use a simple shift mapping T (x,p) = (x − 1,p). We omit the

indices (i, j) because we employ this same shift everywhere over the image. Therefore, the path

difference function is simply g(x,p) = f?(x,p)− f?(x− 1,p), which we may write as a convolution

g(x,p) = (d ∗ f?)(x,p) with a difference operator d(x,p) = δ(x) − δ(x − 1). This is shown in

2The text and the figures used in this section were published earlier as part of the publication Gradient-Domain
Path Tracing by Kettunen et al. [57] that was co-authored by the author of this thesis.
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Figure 5.5: Overview of the frequency analysis (a-f) and its main results (g,h). Given an image
contribution function f? that we need to integrate over path dimension p to get an image (a), we
express gradients g as a convolution of f? with a gradient operator d in path space (d). We analyse
stochastic sampling of f? (b,c) and g = d ∗ f? (e,f) in the frequency domain. The error due to
sampling turns out to be constant over all frequencies. It appears as a flat, gray background in (c,f),
and it is typically smaller for gradients (f). Next, integration over path dimension p corresponds to
slicing along the red lines in (c) and (f). Poisson reconstruction combines the two slices to form the
final image using a parameter α. Our main results include the derivation of the optimal parameter
α∗ that leads to the highest error reduction over conventional rendering (g), and an error analysis
of the final output that shows how high frequency error (close to the Nyquist frequency 1/2 of the
image sampling grid) is strongly reduced (h). Empirical results of the 2D example shown here (red
lines in g,h) closely match our theory.

Figure 5.5d, where we apply finite differencing horizontally along the image dimension x, but not

vertically over path parameters p.

In the Fourier domain (Figure 5.5b and 5.5e) g = d ∗ f? is a multiplication G = DF where F and

D are the Fourier transforms of f? and d. The power spectrum of the path difference function |G|2

is related to the power spectrum of the image contribution function |F |2 by

|G(ωx, ωp)|2 = (2− 2 cos(2πωx))|F (ωx, ωp)|2 = |D(ωx, ωp)|2|F (ωx, ωp)|2, (5.15)

where ωx and ωp are frequencies over the image and path space, respectively, and |D|2 = (2 −
2 cos(2πωx)) is the power spectrum of the finite-difference operator (as opposed to the continuous

derivative, which would attenuate frequencies by 1/ω2
x). We get the well known result that finite-

differencing cancels out the DC, attenuates low frequencies, and boosts square magnitudes of high

frequencies by a factor up to four for the Nyquist limit ωx = 1/2 of the image (unit pixel spacing).
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We then analyze stochastic sampling of both the image contribution F and the path difference

function G in the frequency domain (Figure 5.5c and 5.5f), and we derive the mean square error

(MSE) introduced by sampling, which is equivalent to the variance. Sampling is a multiplication by

a union of Diracs in the primal and a convolution in the Fourier domain, and we can interpret the

error due to sampling as aliasing [17, 18]. We model uniform random sampling as a Poisson process,

whose power spectrum is flat except for a Dirac at the DC [69]. As a key consequence, the stochastic

convolution results in constant expected errors |εF (ωx, ωp)|2 and |εG(ωx, ωp)|2 for all frequencies for

both pixels and gradients,

|εF (ωx, ωp)|2 =
1

n
‖F‖2,

|εG(ωx, ωp)|2 =
1

n
‖G‖2,

(5.16)

which are inversely proportional to the sampling density n. In addition, the constants ‖F‖2 and ‖G‖2

are given by the total energy of the signals, that is, the integral over image and path dimensions of

the power spectra in Equation 5.15,

‖F‖2 =

∫
|F (ωx, ωp)|2dωxdωp,

‖G‖2 =

∫
(2− 2 cos(2πωx))|F (ωx, ωp)|2dωxdωp.

(5.17)

The MSE appears as a flat gray background in Figure 5.5c and 5.5f. The difference in brightness of

the flat background indicates the difference in MSEs of the sampled signals.

Next, we model integration over path space to obtain the sampled image and its sampled gradients

by slicing in the Fourier domain. After slicing, we convolve with an ideal pixel filter, which eliminates

errors in frequencies above the Nyquist limit ωx = 1/2. We denote the resulting MSE of the integrated

pixels |εF (ωx)|2 = |εF (ωx, 0)|2 and the MSE of the gradients |εG(ωx)|2 = |εG(ωx, 0)|2, and conclude

|εF (ωx)|2 =
1

n
‖F‖2, if |ωx| < 1/2, otherwise 0,

|εG(ωx)|2 =
1

n
‖G‖2, if |ωx| < 1/2, otherwise 0.

(5.18)

Our MSEs come out as energies instead of variances here because of our sampling assumptions, which

are crucial to be able to perform the derivation in simple terms. The means of our functions over the

infinite sampling domain are zero, hence their energies represent their variances.

Discussion The integrals for ‖F‖2 and ‖G‖2 are the same except for the weight |D(ωx)|2 =

(2− 2 cos(2πωx)) introduced by finite differencing. This reveals that the difference between the pixel

error |εF |2 and gradient error |εG|2 depends on the relative amount of low and high frequencies in

the image contribution function. In the best case for gradient estimation, all the energy is in the low

frequencies, and as |D(ωx)|2 weights them down, the gradient energy can be arbitrarily smaller. At

worst, all the energy is in the high frequencies and gradient estimates are four times as bad as pixel

estimates. Interestingly, the spectra of typical image contribution functions appear to be favourable
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Figure 5.6: MSEs of sampled pixels |εF |2 and gradients |εG|2 for two image contribution functions, a
(multidimensional) checkerboard, and band-limited noise, for different pattern frequencies φc and φn.
For the checkerboard, the MSE of gradients oscillates between values zero and two, as the pattern
switches between positive and negative correlation with the finite differencing stencil. The pixel MSE
is independent of the checkerboard frequency, since we sample uniformly without stratification. The
dotted line indicates the Nyquist frequency of the pixel grid. Even for pattern frequencies close to
the Nyquist limit, gradients exhibit less MSE than pixels.

to gradient estimation: like natural images, they are dominated by sharp edges, and hence follow an

inverse square power law.

In Figure 5.6 we illustrate the benefits and limitations of gradient compared to pixel sampling for

two prototypical signals. The first defines the image contribution function as a (multidimensional)

checkerboard pattern, and the second uses band-limited noise, both with amplitude one. Both cover

an infinite domain of arbitrary dimensionality (arbitrary many path parameters p). Dimensionality

does not matter for our analysis since the difference operator |D|2 does not change the frequency

spectra over the path dimensions.

For the checkerboard pattern (Figure 5.6a), we compare the MSE of the pixels |εF |2 and the MSE

of their gradients |εG|2 (given by the energies ‖F‖2, ‖G‖2, Equation 5.16) for different frequencies

φc of the checkerboard tiles. Frequency φc = 0.5 means the side-length of tiles is one pixel unit

(two pixels for one cycle of the pattern). For the noise pattern (Figure 5.6b), we show the same

comparison for different band-limits φn of the noise. Similarly, φn = 0.5 means noise is cut off at the

Nyquist frequency of the pixel grid.

In both cases, as the pattern frequency increases, their energies become less and less dominated

by low frequencies. Hence the gradient MSE increases, and climbs above the pixel MSE for high

frequency patterns close to the Nyquist limit. This is to be expected since |D|2 amplifies the square

magnitudes of these frequencies by a factor of up to four. But for frequencies not much below,

gradient MSEs drop below pixel MSEs. For the square wave, the frequency where gradients have less

MSE is at exactly φc = 0.25, which corresponds to checkerboard tiles of only two pixels (four pixels

per cycle). For the noise pattern, gradients have less MSE than pixels at even slightly higher noise

cutoff frequencies φc ≈ 0.3. This indicates that gradient sampling is effective even for high-frequency

patterns close to the Nyquist limit of the pixels.
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Figure 5.7: Poisson reconstruction combines noisy pixels with MSE |εF |2 and gradients with MSE
|εG|2 using a parameter α, weighting the influence of these two inputs. Reconstruction |εR0 |2 with
α = 0 (blue lines) uses only gradients. It reduces high frequency error, but error explodes at low
frequencies. At the optimal α∗ (red lines), the reconstruction error is at most the pixel variance |εF |2
at low frequencies, but is smaller than |εF |2 by a factor > 4‖F‖2/‖G‖2 at high frequencies. The signal
on the left corresponds to a checkerboard pattern with a tile size of eight pixels (‖G‖2/‖F‖2 = 0.25
corresponds to φc = 0.0625, and 1/(2× 0.0625) = 8). The signal on the right corresponds to a tile
size of about 2.5 pixels.

5.3.2 Analysis of Screened Poisson Reconstruction

We conclude the end-to-end analysis by deriving the spectral MSE of the final image obtained

through screened Poisson reconstruction. Screened Poisson reconstruction combines the image and

its gradients using a parameter α that specifies the relative weights of the sampled image and

the gradients. We explicitly include the MSEs of the input image pixels |εF |2 = ‖F‖2/n and

their gradients |εG|2 = ‖G‖2/n (Equation 5.16) in our analysis and derive the per-image frequency

reconstruction error

|εRα(ωx)|2 =
1

n

α4‖F‖2 + |D(ωx)|2‖G‖2

(α2 + |D(ωx)|2)2
. (5.19)

Discussion To clearly understand the benefits of Poisson reconstruction, we plot the frequency-

dependent reconstruction error |εRα(ωx)|2 for different values α (Figure 5.7). If we set α = ∞, we

consider only the pixel information and the reconstruction error becomes equivalent to the pixel error

|εR∞ |2 = ‖F‖2/n. More interesting is setting α = 0, which means we consider only gradients. Then

the reconstruction error amounts to

|εR0(ωx)|2 = 1/n · ‖G‖2/|D(ωx)|2 = 1/n · ‖G‖2/(2− 2 cos(2πωx)). (5.20)

This confirms that gradient rendering is most beneficial for high frequencies and has a singularity

for the DC. The image frequency where it may become beneficial depends on the relative energy of

the path difference function and the image contribution function, ‖G‖2/‖F‖2. In the worst case, we

saw that ‖G‖2 is four times bigger than ‖F‖2, and the factor four gets canceled by the denominator
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in Equation 5.20 at the Nyquist limit. Compared to direct pixel rendering, the gradient reconstruction

error therefore is the same for the highest frequency and worse for lower frequencies. As discussed

above, typical image contribution functions tend to follow an inverse square power law. Hence finite

differencing reduces their energies significantly and gradient reconstruction is beneficial for much of

the spectrum except very low frequencies.

A key observation about Equation 5.20 is that the factor 2− 2 cos(2πωx) in the denominator is

the inverse of the finite differencing operator we applied in the beginning to sample path differences.

Hence, both finite differencing and Poisson reconstruction correspond to a per-frequency weighting of

the power spectrum by a cosine function, which appears both in the numerator and the denominator

in Equation 5.20. However, the factors do not cancel each other out, because the error of sampling

finite differences is hidden in the integral of the gradient energy ‖G‖2 (Equation 5.17) due to the

frequency scrambling or aliasing caused by stochastic sampling. It results in a lower energy and lower

sampling error for gradients of functions with a frequency falloff. In contrast, the reconstruction

affects the denominator and applies the inverse weight to the final image, which explains why gradient

solutions reduce high frequency error.

Optimal Reconstruction It is easy to derive the value α∗(ωx) at each frequency that optimally

combines pixels and gradients as α2
∗(ωx) = ‖G‖2/‖F‖2. It is interesting to plot the per frequency

error at the optimal value α∗, which turns out to be

|εRα∗ (ωx)|2 =
1

n

‖G‖2‖F‖2

‖F‖2|D(ωx)|2 + ‖G‖2
,

shown as red lines in Figure 5.7. At low frequencies, the reconstruction MSE approaches the pixel

MSE ‖F‖2/n, but it falls off quickly. For high frequencies approaching ωx = 0.5 we take full advantage

of the gradients and the MSE goes below ‖G‖2/(4n).

It is important to understand that so far we compared conventional sampling with n samples with

gradient-domain rendering with n conventional and n gradient samples. In this setup gradient-domain
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rendering at optimal α∗ cannot be worse than conventional rendering. However, at equal number of

individual path samples (counting each gradient as two path samples), gradient-domain rendering

becomes ineffective if ‖F‖2/‖G‖2 < 1. In addition, The algorithms discussed in Sections 5.4 and 5.5

obtains correlated gradient and conventional samples, and as a consequence, the optimal α∗ is not

applicable in practice.

Main Insights Our complete analysis leads to two main insights: first (Figure 5.5g), under our

simplifications, the optimal reconstruction parameter is given by the ratio of the total energies of

the gradient function and the image contribution function, α2
∗ = ‖G‖2/‖F‖2; second (Figure 5.5h),

gradient-domain rendering reduces high frequency variance of the reconstructed output compared to

conventional sampling by more than 4‖F‖2/‖G‖2.

Finally, we investigate the reduction in total (as opposed to per-frequency) MSE of gradient-

domain over conventional rendering at equal number of base path samples, for 2D images. That is,

we compare the MSE of conventional rendering with n samples to gradient-domain rendering with n

base paths, and in addition, one horizontal and vertical offset path. For this we numerically integrate

a 2D version of the per-frequency reconstruction error in Equation 5.19 over all image frequencies.

We plot the resulting ratio of the total error of conventional compared to gradient-domain rendering

in Figure 5.8 for various ratios energy ratios ‖G‖2/‖F‖2 ∈ {0.2, 0.4, 0.6, 0.8} over values α ∈ (0, 1).

For each ratio, the MSE reduction is best when that ratio is used as α, as described above.

5.4 Gradient-Domain Path Tracing

Gradient-domain rendering can be applied on path tracing by computing gradients alongside the

color image, yielding the gradient-domain path tracing algorithm (G-PT) [57]. In short, for every

sampled path x for pixel (i, j) we compute four offset paths to the adjacent pixels by using a shift

mapping T :

T0,1(x), T0,−1(x), T1,0(x) and T−1,0(x). (5.21)

We use these additional paths to sample the following four directional gradients:

−→
∆0,1(Ii,j),

←−
∆0,1(Ii,j−1),

−→
∆1,0(Ii,j) and

←−
∆1,0(Ii−1,j). (5.22)

Figure 5.9 visualizes the relationship between these terms. The directional gradient samples will be

correlated since they all use the same base path, further the base path is directly used to get a coarse

estimate of the pixel color Ici,j . This introduces correlation between the coarse color and gradient

images. However, the fact that the coarse image comes essentially for free amortizes the need of

more samples due to this correlation [57]. The directional gradient samples can be accumulated in

two buffers, one storing the x-gradient and one storing the y-gradient

∆x(Ii,j) =
−→
∆0,1(Ii,j) +

←−
∆0,1(Ii,j),

∆y(Ii,j) =
−→
∆1,0(Ii,j) +

←−
∆1,0(Ii,j). (5.23)
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Figure 5.9: A visualization in image-space of the base an offset paths used in G-PT. Given a base
path x (blue) in pixel (i, j), x it is shifted to the four adjacent pixels yielding four offset paths
(yellow). The base and offset paths are used to compute four directional gradients (red).

The data can then be directly used to reconstruct an image according to Section 5.2.3. The authors

recommend using an α value of 0.2 [57].

In the remainder of this section we will first discuss how an MIS estimator can be defined

for gradients between their computation directions. Then we will describe in detail a simple shift

mapping that yields strong correlation between base and offset paths that copies half-vectors until a

reconnection to the base path is possible.

5.4.1 MIS for Gradients

When sampling a gradient as described in Equation 5.6 the PDF of the underlying sampler is used.

In the case of G-PT this is the PDF of the base path, p(x), sampled with a path tracer. In path

tracing, the density p(x) importance samples f?(x) (Section 4.2.2). However, this does not imply

that p(x) is good at importance sampling the gradient f?(T (x))|T | − f?(x).

This can be seen by observing what happens when the path sampling density form the base path x

to the offset path T (x) increases: to correct for the fact that T (x) is sampled with p(x) the Jacobian

determinant |T | must be large. Unfortunately, when approaching concave edges or caustic manifolds

this change of density and thus the Jacobian determinant can become arbitrary large. The value

f?(T (x))|T | is thus unbound which potentially leads to large variance in the gradient samples due to

outliers. Note that this variance can become much bigger than the variance of ordinary pixel sampling.

In the L2 reconstruction these outliers can lead to dipole artefact (recall Figure 5.4a). Interestingly

the reverse case when the density from base to offset path decreases is much less problematic. In the

limit the offset paths contribution then becomes zero and we are left with a variance that will never

be worse than the variance of naive gradient sampling.

Ways to avoid these worst case scenarios by combining different strategies for different parts of

path space have been described in [75]. However, it turns out that for gradient-domain path tracing

there is a much simpler way to weight down these problematic cases: we use MIS over the gradient

sampling directions.

Recall, that Equation 5.9 and Equation 5.6 reveal that there are two ways to sample reversible

gradient obtained from a shift mapping T (x) = y with x ∈ Ωpq and y ∈ Ωqp; we can use forward
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gradient sampling

Wp(x)
f?(T (x))|T | − f?(x)

p(x)

and backward gradient sampling

Wq(y)
f?(y)− f?(T−1(y))|T−1|

p(y)
= Wp(x)

f?(T (x))|T | − f?(x)

p(T (x)|T |
.

It is easy to see that both strategies indeed sample the same gradient but with different PDFs. With

this in mind we can easily define the gradient direction weights in Equation 5.9 to be MIS weights

that use the balance heuristic (see Section 3.3.4):

ωδ(x) =
p(x)

p(x) + p(T (x))|T |
.

There are some subtleties to consider when implementing this scheme. Recall that for every base

path we compute four offset path (Equation 5.22), and that each offset path is used to compute a

different directional gradient (Equation 5.23). Thus during sampling we are always computing either

the forward or backward directional gradient of a specific gradient but never both. This means we

are using the one-sample model described in the Veach Thesis in Section 9.2.4 [106]. Consequently

we must consider the probability of choosing one of the strategies. We denote the probability of

using forward respectively backward direction for sampling gradient ∆δ(Ip) with −→c δp respectively
←−c δp. In a path tracer with uniform sample distribution over the pixels this probability is always
−→c δp = ←−c δp = 0.5. This comes from the fact that for an estimand ∆δ(Ip) as many samples are

computed in the forward direction from pixel (p) as are computed in the backwards direction from

pixel q = p + δ. This factor must be multiplied with the used PDF which effectively means that

we must multiply reversible gradients by a factor of 2 when using MIS. A sample of the forward

gradients throughput (see Equation 5.11) for a reversible gradient using MIS is of the form

−→
G δ(x) =

1
−→c δp

f?(T (x))|T | − f?(x)

p(x) + p(T (x))|T |
(5.24)

and analogously for the backward gradient. Renderers with non-uniform sample densities over the

image plane need to adapt the weights appropriately. In these cases the strategy selection probabilities

become

−→c δp = |n|p/(|n|p + |n|q)
←−c δp = |n|q/(|n|p + |n|q)

where |n|p respectively |n|q denotes the number of samples distributed in pixel p respectively q.

5.4.2 Half-Vector Shift

The key of the shift mapping used for G-PT is the observation that a path parametrized by its

half-vectors yields smoother gradients of the throughput with respect to changing parameters than
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Diffuse Diffuse

Specular

Figure 5.10: Half vector shift. The half-vectors (green arrows) of the base path (blue) are copied to
trace the offset path (yellow) until two consecutive diffuse vertices are encountered. In this example
the half-vectors of x1 and x2 are copied to y1 and y2 to trace new rays, since x2 and y2 are on a
specular surface. The reconnection is thus delayed upon the emitter vertex x4.

when surface or direction parametrizations are used [45] [52]. In a nutshell this means that paths

with similar half-vectors usually have similar throughputs, more so than paths with similar positions

or outgoing directions. This stems from the fact that the throughput is often dominated by the

BSDF when we have glossy interactions.

A path space shift mapping should reconnect the offset path back to the base path after as few

vertices as possible, since this reduces the computation costs of performing the shift and is an easy

way to ensure parts of the base and offset path have strong correlation. However, it is crucial not to

perform the connection on a segment that involves (near-)specular materials since this would change

local BSDF evaluations strongly. G-PT therefore uses a scheme that performs the reconnection as

soon as a segment is reached where no (near-)specular vertices are involved. Whether or not a segment

is suitable for reconnection depends on a simple roughness threshold on the involved materials. As

long as reconnection is not appropriate, the mapping samples a new direction on the current shifted

vertex such that the local tangent-space projection of the half-vector of the base path is preserved.

In detail the mapping Tδ(x) = y works as follows:

1. Shift the primary ray by δ in image space. This yields a shifted primary vertex y1.

2. If xi or xi+1 are classified as specular we continue tracing the path. The outgoing direction

from yi is determined by choosing it such that the projected half-vector at yi is identical to the

projected half vector of the base path at xi. Tracing the ray yields yi+1. We always check for

reversibility of the mapping when doing so.

3. If xi,xi+1 and yi are all not classified as specular we connect yi with xi+1. Note that if the

segment yi to xi+1 is occluded, then our shift would not be reversible and we do not need to

do any further computation. If it is not occluded, we can copy the remainder of the path., i.e.

yk = xk for i+ 1 < k ≤ len(x).

See Figure 5.10 for an example of the shift applied on a EDSDL path. Note that checks for

reversibility should always be performed as soon as possible to provide early exists in the offset path

computation. For instance in step 2, as soon as the path configuration of specular and non-specular
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vertices of the offset path differ from the base path, the computation of the offset path can be aborted

immediately. Similarly, we also abort computation whenever refractions in the base path lead to

total internal reflection in the offset path because of the change of incoming direction.

As a technical detail one must take special care of cases when the offset path is connected to

an area light source, since then four strategies exist to sample this gradient: the base path could

have been generated by NEE or BSDF sampling and for each of these possibilities the gradient can

be computed by backwards or forwards gradient computation. In G-PT this case is handled by

performing MIS between all these four strategies [57].

One advantage of this shift mapping is that at any time it only requires local information about

the previous, current and next base vertex, therefore the offset-path can be constructed at the same

time as the base-path is constructed. This allows for simple integration in most existing path tracers

where full paths are never stored for efficiency. We imagine that this could be crucial for future

implementations of G-PT on GPU path tracers. For rendering systems that store all the information

of a path, alternative shift mappings like the ones used in G-MLT [68] or G-BDPT (Chapter 7) could

be used.

5.4.3 Results

Gradient-domain path tracing shifts each base path to its four vertical and horizontal neighbours,

resulting in standard finite difference gradient estimates. As discussed above this means that we

compute four offset paths for each base path. Since the half-vector shift typically connects offset

paths back to base paths after tracing only a few new offset path segments, the computational cost

of offset paths is significantly lower than for base paths. In practice, we observe an overhead of about

a factor 2.5 between G-PT with n base and 4n offset samples per pixel compared to standard path

tracing with n samples per pixel.

Figure 5.11 compares G-PT to standard path tracing. Diffuse scenes like Sponza favour G-PT

the most, because the shift mapping always connects to the second base vertex (excluding the eye)

and BSDF values stay constant under the shift. Scenes with many glossy surfaces like Kitchen

are more challenging because they lead to higher path differences and noisier gradients, but G-PT

still achieves a significant improvements. The close-ups show results at equal number of base samples.

Because of the 2.5 times overhead of G-PT, the images should be compared to the next PT image

diagonally down to the right for an approximately equal time comparison (slightly skewed in favour

of PT, since PT has 4/2.5 = 1.6 times longer to compute these images). The close-ups reveal how

G-PT effectively reduces high frequency noise without blurring texture detail or geometric edges,

which is most apparent in Sponza and Bookshelf. Even in scenes that are notoriously hard to

render for PT, like the Door scene that is entirely illuminated by a light source in another room,

G-PT provides a significant advantage. However, it cannot avoid artefacts and outliers due to the

underlying unidirectional path sampling strategy.
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Figure 5.11: We compare standard path tracing (PT) to gradient-domain path tracing (G-PT) on
five scenes. Counting only base path samples, G-PT has a performance overhead of a factor 2.5 to
compute four offset paths. Hence the close-ups of G-PT (with L1 reconstruction) should be compared
to PT diagonally down to the right for an approximately equal time comparison, although PT takes
4/2.5 = 1.6 times longer to render the corresponding images. G-PT effectively reduces high frequency
noise without blurring details.
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5.5 Gradient-Domain Metropolis Light Transport

G-PT can use an adaptive sampling scheme that concentrates sampling-efforts in regions where the

variance of the gradients is big (Chapter 9). Doing so however suffers from the same problems as

ordinary path tracing does with adaptive sampling. Namely, that adaptive sampling can introduce

bias, that the sampling densities are based on heuristics and that adaptivity can only be achieved up

to a certain granularity of the path space (Section 3.3.2). An alternative is MLT that can perform

importance sampling of the throughput (Section 3.4). Analogously, one can combine MLT with

gradient-domain rendering to allow for importance sampling the finite differences of the throughput.

Ironically, although being based on a much more complicated algorithm than G-PT, gradient-

domain Metropolis light transport (G-MLT) was introduced before G-PT and was the first method

to describe the principles of gradient-domain rendering [68]. Compared to G-PT, there are two major

differences to consider: first, the sampling process of gradients is based on MLT and second, the

shift-mapping is based on manifold walk exploration [45]. We will only discuss the basic G-MLT

algorithm here, an improved algorithm is described in Chapter 6.

5.5.1 Gradient Sampling with MLT

G-MLT uses the same mutation strategies as standard MLT. Mutation strategies are performed

always on the base path x. In contrast to G-PT, G-MLT does not sample all four adjacent gradients

at once. Instead, during each mutation one of the four offset paths from Equation 5.22 is selected

according to a random variable r ∈ [0, 1]. Therefore, we are always computing one of the directional

gradients from Equation 5.23 at a time. To simplify notation in the remainder of this section, we

generalize the notation of the G-terms in Equation 5.11 to incorporate this random choice:

G(x, r) =





−→
G1,0(x) if r < 0.25
←−
G1,0(x) if 0.25 ≤ r < 0.5
−→
G0,1(x) if 0.5 ≤ r < 0.75
←−
G0,1(x) if 0.75 ≤ r

Note that the gradient direction weights ω(x) used in the definition of G in Equation 5.12 are always

set to 0.5.

The key point of G-MLT is to use a target function for the Metropolis sampler that is proportional

to the finite differences of the throughput instead of the throughput itself. In this case, the sampler will

be driven towards sampling paths that create large finite differences. Instead of sampling according

to the luminance of the throughput as in standard MLT, the authors suggested to sample according

to a mix of the luminance of the throughput and the luminance of the finite differences

L(x, r) =
α

4
Lum(f?(x)) + Lum(G(x, r)), (5.25)

where α is a factor that performs a trade-off between sampling according to the throughput and

according to the gradients throughput. The authors suggest to use the same value as for the Poisson
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reconstruction, i.e. using α = 0.2 [68]. The factor 1/4 comes from the fact that every base path can

be sampled as part of 4 different gradients. Thus the base path is sampled 4 times more often than

each of the finite differences that involve this base path. The fact that we always compute only one

gradient direction instead of four like in G-PT might seem wasteful at first, but it enables smaller

granularity in which gradients are actually sampled. This is useful in situations with axis aligned

edges when the x- and y-gradients at a pixel have very different magnitudes. With a G-PT-like

sampling scheme it would only be possible to either sample all gradients around a pixel or none. In

constrast, with the G-MLT sampling scheme it is possible to really only focus on gradients of one

axis and thus save computation time. This benefit gets amplified by the fact that G-MLT uses a

shift mapping that is in general more expensive to compute than the half-vector shift from G-PT.

The gradients are then accumulated into buffers estimating the same four quantities as G-PT in

Equation 5.22 by accumulating Wk(x)G(x, r)/L(x, r) with k = p or k = p+ δ depending on r into

the associated directional gradient buffer. The buffer values are finally rescaled by b/N where N is

the number of mutations per pixels and b =
∫
L(x, r). Note that in order to compute b and in order

to start the Markov-chains with samples taken from the distribution L(x, r), the initial sampling pass

needs to already compute finite differences. Besides computing finite differences during sampling,

we will use the base paths to estimate Ic. Gradients are then stored in the corresponding gradient

buffers similarly to how it is done in G-PT. To this end we accumulate them in an additional buffer

Icp =
b

4N

N∑

i

Wp(x)f?(x)

L(x, r)
.

5.5.2 Manifold Exploration Shift

One of the crucial differences of MLT compared to PT from an implementation point of view is that

PT never stores the full paths. Instead, it accumulates the throughputs and PDFs along the paths

generation. This is the main reason why the shift mapping used in G-PT uses only local information

of the path. For G-MLT we do not have these constraints since paths must always be stored as a

whole in order to perform path space perturbations. Lehtinen et al. [68] thus suggested using a shift

mapping that can use the global information of a path.

At the time when we want to compute T (x) we already know the full configuration of path x.

Given such a path, Lehtinen et al. [68] designed a shift mapping that only modifies the prefix of

the path of the form ES∗DS∗(D|L). Note that the shift of G-PT modifies a prefix of the form

ES∗(DS+)∗D(D|L) which can be much longer. The used shift mapping is essentially the manifold

exploration perturbation (see Section 4.4.2) with a predefined deterministic perturbation that shifts

the first diffuse vertex along the path such that the offset path contributes to the adjacent pixel.

To formalize the shift, we denote the sensor vertex with xa, the first diffuse vertex along the path

with xb and the second diffuse vertex along the path with xc. We call xa, ..., xb the first specular

chain and xb, ..., xc the second specular chain, and xc, ..., xn the suffix of path x. The shift works as

follows:

1. Shift the primary ray by δ in image space. Propagate the shift through all vertices of the first

specular chain, yielding a new specular chain x0, y1, ..., yb.
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Figure 5.12: Manifold exploration shift. This figure uses the same color coding as Figure 5.10 and
also the same base path configuration. The specular chain x1, x2, x3 of the base path is replaced by a
new specular chain y1, y2, x3 for the offset path. y2 is found by performing a manifold exploration on
the invalid chain y1, x2, x3. Note that compared to Figure 5.10 the manifold exploration shift allows
the offset path to reconnect earlier to the base path (vertex x3 instead of x4).

2. If xb+1 = xc directly attempt to connect yb with xc. Otherwise perform a manifold walk on the

second specular chain xb, ..., xc where xb is shifted to yb which yields yb, ..., yc−1, xc.

The full offset path is then y = x0, y1, ..., yc−1, xc, ..., xn. See Figure 5.12 for an example.

5.5.3 Results

Figure 5.13 compares G-MLT to manifold exploration MLT [45]. G-MLT can concentrate efforts on

regions of the image where the gradients are large and is able to resolve smooth parts of the image

with less samples than MEMLT. Using the same rendering time, G-MLT thus leads to images that are

much smoother than MEMLT. However, similar to G-PT, G-MLT inherits the sampling behaviour

from its underlying sampler that is used to generate the base paths. In Figure 5.13 the base paths

of G-MLT are sampled with MEMLT. On one hand this means that G-MLT is good at sampling

difficult specular paths that work well with MEMLT. For instance the caustic of the Glass-Egg

scene is resolved rather quickly with G-MLT and would take much longer to be resolved with G-PT.

On the other hand G-MLT also suffers from problematic convergence behaviour of all MCMC based

methods that make them impractical for animation rendering (Section 4.4.3). Additionally, G-MLT

has problems in resolving regions around concave edges correctly. This effect is most prominent in

the crop of the Sponza scene. This comes from the fact that shift mappings close to concave edges

can lead to large Jacobian determinants |T | and that in contrast to G-PT, G-MLT performs no MIS

between the gradient sampling directions that could mitigate this problem (Section 5.4.1). In the

next chapter we will introduce methods for G-MLT to mitigate some of these problems.
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Figure 5.13: Comparison of MEMLT [45] to G-MLT [68] in different scenes. The top and bottom
images used roughly equal time to render.
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Figure 1: Our generalized framework for gradient-domain Metropolis rendering includes three techniques to avoid sampling artifacts and
reduce variance in sampled gradients. We (OURS) achieve visually and numerically improved results compared to previous work (GDMLT).

Abstract

We present a generalized framework for gradient-domain Metropo-
lis rendering, and introduce three techniques to reduce sampling
artifacts and variance. The first one is a heuristic weighting strat-
egy that combines several sampling techniques to avoid outliers.
The second one is an improved mapping to generate offset paths re-
quired for computing gradients. Here we leverage the properties of
manifold walks in path space to cancel out singularities. Finally, the
third technique introduces generalized screen space gradient ker-
nels. This approach aligns the gradient kernels with image struc-
tures such as texture edges and geometric discontinuities to obtain
sparser gradients than with the conventional gradient kernel. We
implement our framework on top of an existing Metropolis sam-
pler, and we demonstrate significant improvements in visual and
numerical quality of our results compared to previous work.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
generation—Display Algorithms;

Keywords: global illumination, metropolis light transport

Links: DL PDF WEB

1 Introduction

Monte Carlo sampling is firmly established as the most practical re-
alistic image synthesis approach because of its flexibility and gen-
erality, but variance, which appears as visually distracting noise in
the results, is a persistent challenge. In this paper, we build on the

∗The research for this project was done while Fabrice Rousselle was a
student at the University of Bern.

gradient-domain Metropolis light transport (GDMLT) algorithm of
Lehtinen et al. [2013]. They realized that image space gradients
between neighboring pixels, that is, pixel differences, can be sam-
pled with little noise by sampling pairs of paths through the cor-
responding pixels such that they are close to each other in path
space. Such paths tend to make similar contributions to the image,
and hence they contribute small values to the gradient. By combin-
ing the estimated gradients with a noisy image using an L2 Poisson
reconstruction step, they obtained unbiased rendering results with
significantly lower noise and lower error compared to sampling the
image pixels only. Their approach, however, suffers from frequent
sampling artifacts and singularities in the gradients, partially can-
celing their potential benefit. As a consequence, they proposed a
reconstruction step using an L1 error metric to increase robustness
towards outliers, at the cost of introducing bias. Our goal is to avoid
these issues by developing more robust gradient sampling schemes.

Here, we introduce a generalized framework for GDMLT that fol-
lows the same basic procedure as the original algorithm: first, we
compute a coarse image and finite-difference gradients in image
space using Metropolis sampling, and then reconstruct a higher
quality image using a Poisson solver. Our contributions include
three novel techniques that reduce sampling artifacts and variance
in the sampled gradients, leading to significantly improved perfor-
mance, both in L2 (unbiased, see Figure 1) and L1 reconstruction.

Our first technique provides a way to combine multiple gradient
sampling strategies and weight them, akin to multiple importance
sampling. In practice, we use a heuristic binary weighting func-
tion that weights down gradient samples around singularities and
falls back to standard finite differencing there, effectively handling
problematic paths more robustly. The two remaining techniques
exploit the considerable freedom to determine neighboring paths to
obtain a gradient integrand with significantly lower variance. In the
second technique, given two pixels defining an image space gradi-
ent, we introduce a strategy to determine better path space neigh-
bors that lead to more similar path contributions than in Lehtinen et
al.’s [2013] original approach. In particular, our method automat-
ically cancels out certain singularities that previously led to visual
artifacts. In the third technique, we generalize the notion of image
space gradients to include differences between arbitrary pairs of
pixels. We show that by selecting pairs of similar pixels, we obtain
gradients with smaller magnitudes and therefore less noise. In addi-
tion, we show that our technique more effectively preserves image
structures during Poisson reconstruction than previous approaches.
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We implement our framework on top of an existing Metropolis sam-
pler using manifold exploration [Jakob and Marschner 2012], and
we demonstrate significant improvements in visual and numerical
quality of our results compared to previous work. In summary, we
make the following contributions:

• We introduce a generalized framework based on gradient-
domain Metropolis light transport. It provides more flexibility
for sampling gradients, leading to fewer artifacts.

• We describe how to evaluate gradients by computing multiple
weighted integrals. We use a heuristic strategy to determine
the weighting functions to avoid gradient singularities.

• We introduce a new method to determine path space neigh-
bors when computing gradients between given pixel pairs. We
leverage path space manifold walks to cancel out singularities.

• We generalize the concept of gradients to allow for more flex-
ible image space gradient kernels.

2 Related Work

Physically-based Light Transport Physically based light trans-
port algorithms render images by integrating over all possible light
paths from a source to an image sensor. In its general form, the
rendering equation [Veach and Guibas 1997]

Ij =

∫

Ω

hj(x)f∗(x) dµ(x) =

∫

Ω

fj(x) dµ(x) (1)

describes the radiance value Ij for each pixel j. The integral is
over the space Ω of all light paths of finite length (path space), hj
is the pixel filter of the jth pixel, and f∗(x) is the spectral image
contribution function representing the amount of light reaching the
sensor through a given path x in a given wavelength. We will also
use the path contribution function fj(x) = hj(x)f∗(x), which is
the contribution of a path to a specific pixel j. A path x of length
k consists of a sequence of vertices x0, . . . ,xk, and dµ(x) is the
area product measure

∏k
i=0 dA(xi).

Unbiased Monte Carlo rendering algorithms evaluate the pixel in-
tegrals with probabilistic methods. Basic Monte Carlo integration
with importance sampling exploits that the integral Ij equals the
expected value of fj(X)/p(X), with X a random variable dis-
tributed according to p(X). Path tracers repeatedly draw random
paths, evaluate the path contribution, and accumulate the weighted
sample f/p, employing multiple importance sampling (MIS) when
bidirectional samplers are used [Veach and Guibas 1995].

Adaptive Sampling and Reconstruction A large body of light
transport algorithms adaptively sample the image (or the transport
integrand), followed by an image reconstruction step. They attempt
to direct computation so as to maximize attained image quality per
unit of effort expended. Several techniques sparsely sample radi-
ance and its (semi-analytic) gradients [Ward and Heckbert 1992;
Dayal et al. 2005; Ramamoorthi et al. 2007], whereas we focus
on the finite differences between pixels. Adaptive sampling (and
reconstruction) techniques distribute more samples in image loca-
tions estimated to need them, and employ various sophisticated fil-
ters for reconstructing the final image [Rousselle et al. 2011; Bolin
and Meyer 1995; Hachisuka et al. 2008; Overbeck et al. 2009; Egan
et al. 2009; Egan et al. 2011]. They produce excellent results, but
with no guarantee of unbiasedness.

Smart Filtering Filtering radiance estimates using auxiliary in-
formation gleaned from properties of the primary hits, such as nor-
mals, world space positions, and materials, is a powerful approach

for reducing noise in Monte Carlo renderings [Ward et al. 1988;
McCool 1999; Kontkanen et al. 2004; Sen and Darabi 2012; Rous-
selle et al. 2013]. These techniques make the natural but largely
heuristic argument that the illumination solution correlates strongly
with local scene features; thus, noisy estimates from “similar” re-
gions can be blended to reduce variance. We build on the same
observation, but as a crucial difference to earlier work, we present
an unbiased algorithm that merely takes suggestions from such sim-
ilarities.

Gradient-Domain Image Processing Finite difference gradi-
ents form the basis for an immense range of powerful image edit-
ing algorithms [Pérez et al. 2003]. We employ similar machinery
to determine the image from computed gradients. We generalize
standard finite differences, however, to include arbitrary pairs of
pixels. This leads to generalized, data dependent Laplacians, sim-
ilar to the Laplacians used in image segmentation [Shi and Malik
2000] and matting [Levin et al. 2008; Chen et al. 2013]. Recent
work by Krishnan et al. [2013] shows how to solve the resulting
Poisson problems efficiently. Like previous work, we also use a
coarsely sampled primal image to aid reconstruction [Bhat et al.
2010; Lehtinen et al. 2013].

Metropolis Sampling Markov Chain Monte Carlo (MCMC)
techniques draw random samples distributed according to functions
that are difficult or impossible to sample from directly. In partic-
ular, given a target equilibrium distribution f(x) and a tentative
transition function τ(x → y), the Metropolis-Hastings algorithm
[Metropolis et al. 1953; Hastings 1970] constructs a Markov chain
of samples distributed according to f . Starting with an initial state
x0, it applies, at each step, a carefully chosen random change to
the current state xt to obtain the next state xt+1. In the limit, the
samples will be distributed proportional to the desired target.

Metropolis Light Transport Assuming a converged chain, the
samples produced by the Metropolis process can be used for inte-
grating arbitrary (potentially vector-valued) functions. Metropolis
Light Transport [Veach and Guibas 1997], short MLT, directly ap-
plies the above machinery to Equation 1 by generating a Markov
chain of paths distributed according to the scalar luminosity f(x)
of their image contribution f∗(x), and evaluating

Ij ≈ C

N

∑

i

hj(xi)f
∗(xi)

f(xi)
. (2)

The paths are distributed according to their luminance contribu-
tion to the image, and C is the integral of f∗ estimated using
other means, usually standard Monte-Carlo integration. Veach and
Guibas propose several mutation schemes that act on the path it-
self. To alleviate the difficulty of implementation, Kelemen et al.
[2002] introduced primary sample space mutations that remove the
need to compute transition probabilities due to symmetry; however,
some power is lost compared to path space mutations. Jakob and
Marschner [2012] introduced a new mutation strategy, manifold ex-
ploration, that substantially improves the treatment of specular and
highly glossy paths. Our algorithm builds on this approach.

Gradient-domain Metropolis Light Transport [Lehtinen et al. 2013]
directly evaluates the horizontal and vertical finite differences
Ij+1−Ij between neighboring pixels without computing the actual
values first. It does so by directly integrating in an extended path
space that contains nearby pairs of paths, one through each pixel in
question. Feeding the difference estimates and a low-fidelity ver-
sion of the actual image to a screened Poisson solver [Bhat et al.
2010] then produces the final result. We defer further discussion to
Section 3.1, as our novel derivation subsumes theirs.
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3 Gradient Domain Rendering Framework

Here we introduce our gradient domain rendering framework, and
three techniques to reduce variance in the gradient estimation. We
first review the basic idea of computing gradient integrals in Sec-
tion 3.1. In Section 3.2, we formulate a symmetric expression for
these integrals, which is necessary to compute gradients in prac-
tice. In Section 3.3, we extend this approach to multiple weighted
gradient integrals, which allows us to avoid sampling artifacts sim-
ilarly to multiple importance sampling. In Section 3.4 we introduce
an improved piecewise mapping function that leads to higher qual-
ity gradients than in previous work. Finally, in Section 3.5, we
introduce generalized image space gradient kernels, which further
improve the gradient quality. We simplify exposition using scalar
radiance, and extension to the usual tristimulus (or spectral) render-
ing is easy.

3.1 Background

We start from Equation 1, which determines pixel intensities. The
core idea in gradient domain rendering is to directly sample gradi-
ents, defined as differences between pairs of pixels, in addition to
the pixel values themselves. This is beneficial because it is possi-
ble to sample the gradients with less variance than pixel intensities.
Having sampled gradients and pixel values, we reconstruct the final
image by solving a (screened) Poisson equation, where we use the
pixel values as an additional constraint. This leads to results with
less noise compared to the pixel values themselves.

Let us define a gradient ∆i,j as the difference between two pixels i
and j, where the pixel values Ii and Ij are given by their path space
integrals. Hence,

∆i,j = Ii − Ij =

∫

Ω

fi(x)dµ(x)−
∫

Ω

fj(x)dµ(x).

Instead of evaluating these two integrals separately, in gradient do-
main rendering we evaluate a gradient by sampling a single integral,

∆i,j =

∫

Ω

(
fi(x)− fj(Tij(x))

∣∣∣∣
dTij
dx

∣∣∣∣
)

dµ(x). (3)

Here Tij is a shift mapping that deterministically maps a base path
x to an offset path x̃ = Tij(x). Below we drop the subscript from
Tij to reduce clutter. The indices will be clear from the context.
The factor |dT/dx| denotes the determinant of the Jacobian of T (x)
accounting for the change of integration variables for fj .

A core idea is that we can design T such that fi(x)−fj(x̃)|dx̃/dx|
generally has less variance than fi(x). Note that T (x) usually only
modifies a few vertices on path x while leaving the rest unchanged.
Lehtinen et al. [2013] provide details on how to construct a suitable
shift mapping, and we will build on and improve their method.

3.2 Symmetric Gradient Computation

For efficiency reasons, it is useful to sample the integrals for the
pixel values Ii and the gradients ∆i,j using the same probability
density. This allows us to reuse a sample of the path contribution
fi(x) for both Ii and ∆i,j . A probability density designed to sam-
ple the pixel integral correctly, however, may not sample the gra-
dient correctly. In Metropolis sampling, for example, paths x with
zero image contribution f∗(x) = 0 are never sampled. Yet, the
corresponding offset paths may have a non-zero throughput, that is,
f(T (x)) > 0, meaning that the sampler may not correctly sample
Equation 3. Lehtinen et al. [2013] circumvented the issue by specif-
ically checking for reversibility of the shift mapping, and weighting
samples accordingly when local bijectivity was violated.

T

T -1

Ωi Ωj

Ωi,j Ωj,i

Ωj

Ωi

Figure 2: Notation for the symmetric gradient computation: Ωi
is the region of path space contributing to pixel i. The region Ω̄i
contributes to pixel i, but cannot be sampled from Ωj via the inverse
mapping. In contrast, Ωij can be sampled from Ωj .

We address this issue more generally by formulating an expression
for the gradient ∆ij that is symmetric in i and j. Specifically, we
will integrate not only over differences fi(x) − fj(T (x))|dT/dx|
using the forward mapping T , but also fi(T−1(x))|dT−1/dx| −
fj(x) using the inverse mapping T−1.

Let Ωi be the region of path space that contributes to pixel i, that
is Ωi = {x|hi(x)f(x) > 0}, and similarly Ωj , illustrated in Fig-
ure 2. We will apply the forward mapping only to paths in Ωi,
and the backward mapping to paths in Ωj . In addition, we define
Ω̄j = Ωj\T (Ωi), that is, the paths that contribute to pixel j but that
we do not sample using the forward mapping (because the corre-
sponding base path has zero image contribution, f∗(x) = 0, or the
corresponding base path has hi(x) = 0 and does not contribute to
pixel i). Similarly Ω̄i = Ωi \T−1(Ωj) are the paths that contribute
to pixel i but that we do not sample using the backward mapping.
Finally, Ωji = Ωj \ Ω̄j are the paths that contribute to pixel j and
that we do sample using the forward mapping, similarly Ωij , and
T (Ωij) = Ωji. This means that we sample the differences between
base-offset path pairs in Ωij and Ωji twice (using the forward and
backward mapping), whereas for paths in Ω̄i and Ω̄j we sample the
differences only once.

Hence, when sampling Ωi using the forward mapping we compute
its contribution ∆i

ij to the gradient ∆ij as

∆i
ij =

∫

Ω̄i

fi(x)dµ(x)

+
1

2

∫

Ωij

fi(x)− fj(T (x))

∣∣∣∣
dT (x)

dx

∣∣∣∣ dµ(x)

︸ ︷︷ ︸∫
Ωij

fi(x)dµ(x)−
∫
Ωji

fj(x)dµ(x)

, (4)

where we exploited x ∈ Ω̄i ⇒ fj(T (x)) = 0, therefore we do
not need to evaluate this in Ω̄i, and the factor 1/2 compensates
for duplicate sampling. In practice, we evaluate ∆i

ij using one set
of path samples x. We distinguish whether x ∈ Ω̄i or x ∈ Ωij
and add a sample of the corresponding term to ∆i

ij . We proceed
analogously when sampling Ωj and compute

∆j
ij =−

∫

Ω̄j

fj(x)dµ(x)

+
1

2

∫

Ωji

fi(T
−1(x))

∣∣∣∣
T (x)−1

dx

∣∣∣∣− fj(x)dµ(x)

︸ ︷︷ ︸∫
Ωij

fi(x)dµ(x)−
∫
Ωji

fj(x)dµ(x)

. (5)
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The desired gradient is then simply the sum of these two auxiliary
values,

∆i,j =

∫

Ω̄i∪Ωij

fi(x)dµ(x)−
∫

Ω̄j∪Ωji

fj(x)dµ(x)

= ∆i
ij + ∆j

ij .

This strategy also works with partial mappings that may fail and
not produce an output path at all for certain inputs, that is, T (x)
may be undefined for some x. This may happen for example due to
numerical problems. For each x in Ωi, if T (x) fails, or T−1(T (x))
fails, we can simply treat x as not belonging to Ωij . In addition, if
we use an identity mapping for T (i.e., the offset and base paths co-
incide) the above symmetrized computation reduces to usual finite
differencing between pixel intensities, since the Jacobian becomes
unity and the identity mapping leads to Ω̄i = Ωi, Ω̄j = Ωj and
Ωij = Ωji = ∅.

3.3 Multiple Weighted Gradient Integrals

In the standard area product form, the path contribution function
fi(x) consists of the product of the pixel filter, values of the BSDFs
at the scattering event vertices, geometry terms, and light emission
at the vertex on the source [Veach 1997]. Due to the geometry
terms, fi(x) contains singularities, that is, it takes on infinite val-
ues for paths x where several vertices coincide. Besides paths with
singularities, however, also paths close to them (paths with very
short segments) are ill-behaved because their geometry terms con-
tain divisions by small numbers. This leads to “exploding” path
contributions. These issues can be observed in methods using vir-
tual point lights where weak singularities occur in proximity of the
cache entries [Kollig and Keller 2006; Walter et al. 2012]. In basic
path tracing algorithms, however, this is not a problem — except
numerically — because the geometry terms appear in both fi(x)
and the sampling density p(x), and thus cancel out in the sample
weight.

Computation of ∆i,j is not as forgiving. Because we sample both
fi(x) and fi(x)− |T (x)/dx|fj(T (x)) with the same density over
x (see also Section 3.2), cancellation between |T (x)/dx|fj(T (x))
and p(x) does not occur like it does with fi(x) and p(x). Hence,
a shift mapping T (x) that moves offset paths closer to (or away
from) singularities may lead to large finite differences between the
two paths. Note that this is not incorrect as such: it merely means
that the integrand that defines ∆i,j has high variance, and is hence
difficult to sample properly.

Our goal in this section is to design a method that detects cases close
to singularities, and automatically falls back to a better-behaving
sampling strategy when necessary (another approach is to design
better shift mappings, cf. Section 3.4). In practice, we switch be-
tween two sampling strategies in a binary fashion. We show the
validity of this approach by introducing a more general formalism
that extends the integral in Equation 3 to multiple weighted inte-
grals using a partition of unity defined by weight functions wk(x),
with

∑
k wk(x) = 1,∀x. In addition, we apply a different mapping

Tk to each weighted integral and obtain

∆i,j =
∑

k

∫

Ω

wk(x)fi(x)− wk(Tk(x))fj(Tk(x))

∣∣∣∣
dTk
dx

∣∣∣∣ dµ(x).

This formulation is similar to multiple importance sampling, ex-
cept that we determine the weights using different heuristics. The
key idea here is that by adjusting the weights wk(x) locally in path
space according to the properties of the mappings Tk(x), we can
avoid sampling artifacts by automatically weighting down the sam-
pling scheme close to a singularity. In practice we evaluate the

a) GDMLT gradients b) MWGI gradients

c) GDMLT reconstruction d) MWGI reconstruction

Figure 3: Avoiding singularities with multiple weighted gradient
integrals (MWGI): (a) basic gradients from gradient-domain MLT;
(b) using our multiple weighted gradient integrals scheme; (c) and
(d) corresponding L2 reconstructions. Note how artifacts in (c)
correspond to outliers visible as bright peaks in the gradients.

symmetric formulation of the gradients with each mapping, but we
omit the explicit formulation, which would be tedious (we simply
need to include the weight functions in Equations 4 and 5). Also,
we sample all integrals simultaneously with a single set of samples.
Given a path sample x, we apply all mappings to it, and then com-
pute a weighted sum of the gradients from all mappings.

We propose a simple approach with two mappings: T1 is the map-
ping described by Lehtinen et al. [2013], with important extensions
designed to minimize the magnitude of gradients (Section 3.4), and
T0 is the identity mapping. As noted above, the identity mapping is
equivalent to computing pixel differences at the end of the Metropo-
lis sampling process. Our goal is to fall back on it when using the
shift T1 is numerically unstable due to singularities. While this ap-
proach is guaranteed not to add singularities to the gradient that are
not present in the base path, it generally produces gradients with
more variance (this is the rationale in using the shift mapping in the
first place).

For this purpose we define binary weights

w0(x) =

{
1 if max

(
‖fi(x)‖
‖fj(T1(x))‖ ,

‖(fj(T1(x))‖
‖fi(x)‖

)
> t

0 otherwise,
(6)

where t is a user specified threshold, and w1(x) = 1−w0(x). This
strategy falls back to using the identity mapping T0 to compute the
gradient if the offset path contribution fj(T1(x)) relative to the cur-
rent path contribution fi(x) is above a threshold t. In Figure 3, we
show that this simple strategy effectively reduces artifacts, although
it comes with the disadvantage of requiring a user parameter. We
leave the development of more sophisticated weighting strategies
for future work.

3.4 Improved Mapping to Reduce Variance

Recall that in some geometric configurations, the offset path con-
tribution function contains singularities due to divisions by zero in
the geometry terms. In this section, we describe a novel shift map-
ping that reduces the occurrence of these singularities and variance
caused by them compared to previous work [Lehtinen et al. 2013].
The result is a better-behaved integrand for ∆i,j that is amenable to
sampling with less noise.
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We start by introducing the necessary notation to describe our ap-
proach. Let us denote a path parameterized by its vertices as
x = {x0, . . .xn}, where x0 is the eye vertex, x1 is the primary
hit vertex, and xn is a vertex on a light source. The screen posi-
tion of x1 is s1. The offset path produced by the mapping T is
x̃ = T (x) = (x̃0, . . . x̃n), and s̃1 is the screen position of x̃1. In
addition, let us assume each vertex is classified deterministically
either as diffuse or specular based on its BSDF properties. Let
a < b < c be the indices of the first three diffuse vertices along
a path, where the eye vertex is classified as diffuse by definition, so
a = 0. Finally, G(xi ↔ xj) is the (generalized) geometry term
between vertex i and j [Jakob and Marschner 2012].

We build on the mapping proposed previously [Lehtinen et al. 2013]
to obtain a gradient between pixels i and j. We review the previous
approach first before introducing our improvement. The mapping
consists of a concatenation of two steps: the first step updates ver-
tices xa, . . . ,xb, and the second step updates the rest, that is xi
with i > b. The Jacobian determinant of this concatenation is sim-
ply the product of the Jacobian determinants of both steps. In the
first step, we calculate x̃1 such that s̃1−s1 corresponds to the screen
space offset between the centers of pixels i and j. Then if b > 1,
the vertices xi with 1 < i ≤ b are updated by ray tracing to main-
tain a specular chain between x̃ and x̃b. The second step makes a
case distinction based on whether xb+1 is diffuse or specular:

• Diffuse: The mapping T leaves all other vertices xi with
i > b unchanged, that is, the second step is identity and its
Jacobian determinant is one. Below we focus on analyzing
and improving this case. Also note that in this case c = b+ 1.

• Specular: We update the path segment xb, . . . ,xc such as to
maintain the specular chain between xb and xc. We achieve
this using a manifold walk [Jakob and Marschner 2012].

Analysis We now analyze the offset path contribution
|dx̃/dx|fj(x̃) for the diffuse case. We discuss a common
cause for singularities and variance, and then propose an approach
to reduce them. Remember that the path contribution function is a
product of BSDFs at the scattering vertices, (generalized) geom-
etry terms between vertices, and light emission and importance
functions. We observe that after the first step of the mapping, x̃b
and x̃c may get arbitrarily close, which may lead to a singularity in
the geometry term G(x̃b ↔ x̃c). We illustrate this schematically
in Figure 4(a). Conversely, xb and xc may be very close in the base
path, and move away from each other in the offset path, leading
to a much smaller geometry term. Both cases cause variance in
the gradients. In addition, the Jacobian of the first step of the
mapping does not involve x̃c, and the Jacobian of the second step
is identity, hence it is impossible that the Jacobian determinants
would somehow cancel the problematic geometry term.

We illustrate the effect of singularities on the gradients in Fig-
ure 5, where we visualize the gradients next to the geometry terms
G(x̃b ↔ x̃b+1). In concave regions, very large gradients occur,
and outliers in the geometry terms and gradients correlate closely.

Canceling Geometry Terms Our key observation and improve-
ment is that the problems in concave regions can be addressed by
modifying the second step of the mapping. Instead of doing noth-
ing in the second step, we treat vertex b + 1 as specular, update
the index c accordingly, and then run a manifold walk on the chain
{xb, . . . ,xc} while shifting xb to x̃b, similarly to the specular case
(Figure 4(b)). Interestingly, one can show that the problematic ge-
ometry term G(x̃b ↔ x̃b+1) cancels out with the Jacobian induced
by the manifold walk. Intuitively, this is because the manifold walk
changes the path densities as shown in Figure 4(c) and (d).

xb x~b

s1
s~1

xa = x~a

xc = x~c

xb

s1
s~1

xa = x~a xc

x~b

xb+1
x~b+1

(a) Previous T, xc stays (b) Proposed T, xb+1 moves 

xb x~b

s1
s~1

xb

s1
s~1

x~b
(c) Density, base paths (d) Density, proposed T

U
niform

 density

Increasing density

Figure 4: (a) With Lehtinen et al.’s mapping T , singularities occur
if x̃b and x̃c get arbitrarily close (red bar), which happens often
in concave regions. (b) Declaring xb+1 specular and mapping it
to x̃b+1 using a manifold walk on the segment xb,xb+1,xc to pre-
serve the half vector of xb+1 (green arrows) avoids this problem.
Figures (c) and (d) explain this: (c) shows a family of base paths
with uniform vertex density on the vertical surface. Because the
proposed mapping T preserves the half vectors, it transforms these
paths such that the vertex sampling density on the vertical wall in-
creases as the geometry term G(x̃b ↔ x̃b+1) approaches a poten-
tial singularity in the corner. Mathematically, the change of vertex
densities is reflected in the Jacobian of the proposed mapping T ,
which cancels out the problematic geometry terms.

For a mathematical explanation of this effect we need some more
notation. First, a path segment xbc := {xb, . . . ,xc} may be repa-
rameterized in the projected half vector domain [Kaplanyan et al.
2014] as hbc = M(xbc) = {xb,h⊥b+1, . . . ,h

⊥
c−1,xc}, where the

h⊥i are the half vectors at the vertices projected onto the tangent
planes. Now we can express our approach to map the path segment
xbc as

x̃bc = M−1(S(M(xbc))),

that is, a reparameterization M into the half vector space, followed
by a shift mapping S, and finally mapping back to area parameteri-
zation. The shift mapping h̃bc = S(hbc) simply moves vertex xb to
x̃b, where x̃b is obtained in the first step described above. The key
is that S operates in the half vector parameterization, and it does
only shift the starting vertex xb, but it keeps the half vectors con-
stant. Hence our procedure can be implemented using a manifold
walk, which is designed to preserve half vectors while moving a
single vertex position in a path.

Let f(xbc) be the factors of the image contribution function of f(x)
that include only the vertices i with b ≤ i ≤ c (we use the image
contribution function f , since the pixel filter is not involved). We
can now write the corresponding contribution f(x̃bc) after our map-
ping,

f(M−1(S(M(xbc))︸ ︷︷ ︸
h̃bc

))

∣∣∣∣
dM(xbc)

dxbc

∣∣∣∣
∣∣∣∣
dS(hbc)

dhbc

∣∣∣∣
∣∣∣∣
dM−1(h̃bc)

dh̃bc

∣∣∣∣

= g(h̃bc)

∣∣∣∣
dM(xbc)

dxbc

∣∣∣∣
∣∣∣∣
dS(hbc)

dhbc

∣∣∣∣ ,
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a) No manifold walk b) Geometry terms

c) One step INCMW d) INCMW

Figure 5: (a) Gradients without our technique; (b) max-ratio of
geometry terms G(x̃b ↔ x̃b+1) over G(xb ↔ xb+1) (or vice-
vera; blue is 1, red is high); (c) gradients where only vertex b + 1
may be classified as specular, that is, one step of our incremental
approach (one step INCMW); (d) gradients with the incremental
approach (INCMW). We visualize gradient magnitudes and scale
them for better visibility. The green close-ups show the result of the
L1 reconstruction in the close-up region. All images used structure-
adaptive gradients (Section 3.5).

where the Jacobians account for the change in integration vari-
ables. In addition, g(h̃bc) can be interpreted as the image contri-
bution function in the half vector parameterization. Kaplanyan et
al. [2014] showed that in g(h̃bc) all geometry terms are canceled
by the Jacobian of M−1, except for the geometry term G(x̃c−1 ↔
x̃c), where x̃bc = M−1(h̃bc). In addition, since S is a shift by a
constant its Jacobian is identity. Also the Jacobian ofM is given by
the base path but independent of the offset path. Intuitively, the can-
cellation of the geometry terms by the Jacobian corresponds to the
change of densities in Figure 4(d). Hence our approach avoids the
potential singularity produced by G(x̃b ↔ x̃b+1), and the benefits
of this approach can be seen in Figure 5(c).

Incremental Approach An intuitive idea to avoid the remaining
singularities from G(x̃c−1 ↔ x̃c) would be to declare further ver-
tices as specular and increase the index c, until xc is sufficiently far
from xc−1. Unfortunately, this leads to “gaps” in the output of the
mapping from xbc to x̃bc, as illustrated in Figure 6(a), causing bias
in the resulting images.

We avoid this problem using a different heuristic, shown in Fig-
ure 6(b), where the key is that we decide for each vertex xi, one-
by-one, in ascending order, whether it should be declared specular,
in such a way that the decision does not depend on xi itself. We
observe that singularities tend to occur in paths where subsequent
vertices are close to each other. Intuitively, such path configurations
are common in regions of high ambient occlusion. If xi−1 lies in
a region with high ambient occlusion, chances are high that xi is
close-by. In this case, we are likely close to a singularity. In prac-
tice, we test the ambient occlusion factor at xi−1, and if it is above

x3 x~1x1 x
~

3

x2

x~2
xb= x1

xc= x2

(a) Distance criterion (b) Ambient occlusion criterion

x~b

x4

Figure 6: (a) Assume we determine whether x2 should be declared
specular using a threshold on the distance to x1. The threshold
distance is indicated by the thick gray line. For a path on the de-
cision boundary, the two possible offset paths (dotted lines) on ei-
ther side of the boundary (red bar: identity mapping, green bar:
manifold walk) leave a gap in path space, indicated by the black
bar below x2. (b) The gray bars indicate regions where vertices
are declared specular because of high ambient occlusion. The in-
cremental manifold walk first generates x̃2 by applying a manifold
walk on x1,h2,x3 while shifting x1 to x̃1. Then it generates x̃3 by
applying a manifold walk on x2,h3,x4 while shifting x2 to x̃2.

a threshold, then xi is considered specular. If xi is declared specu-
lar, we map the vertex position xi to x̃i using a manifold walk on
xi−1,xi,xi+1, where the shift of xi−1 is given by the difference to
x̃i−1, which was obtained in the previous step. Since this approach
amounts to a concatenation of mappings via manifold walks, the
overall Jacobian determinant is simply the product of the Jacobian
determinants of each step. In addition, since each step is a valid bi-
jective mapping, this also applies to the concatenation of the map-
pings. We illustrate the benefits of this approach in Figure 5(d).

3.5 Structure-Adaptive Gradient Kernels

A basic intuition why gradient domain rendering reduces noise is
that high-dimensional path contribution functions of neighboring
pixels are often very similar, and one can exploit this similarity us-
ing suitable mapping functions in path space. Such mappings com-
pute gradients as differences between similar base and offset paths,
which are in general much smaller than the variance of the path
contributions of either pixel. Hence the sampled gradients have less
variance than the sampled path contributions. Our key observation
is that we may compute gradients between arbitrary pairs of pixels,
and select pairs such that their path contribution functions are as
similar as possible. We find pixel pairs that are usually more sim-
ilar than pairs among the 4-connected neighborhood of usual finite
difference gradients. Therefore, the differences between base and
offset paths become even smaller, and we further reduce variance.

Motivated by this, we define structure-adaptive gradients at each
pixel as the pairwise differences to the n most similar pixels in a
small window, as opposed to standard gradients consisting of pixel
differences between horizontally and vertically adjacent pixels. We
describe an affinity function used to determine similarity below.
Given the similarity relations between pixels, we then define a gen-
eralized Poisson reconstruction problem.

More precisely, assume that the gradient ∆ij occurs in the
structure-adaptive kernel. Then we add a constraint Ĩi − Ĩj = ∆ij

to our equation system, where Ĩi and Ĩj are the unknown pixel
values we would like to reconstruct. Like previous work, we also
use the noisy “primal” image obtained as a by-product of gradient
sampling as an additional constraint, and obtain an overconstrained
equation system even if the structure-adaptive gradient matrix is
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φk ωk ω n best

Figure 7: Structure adaptive gradients are defined using the most
similar neighbors. First, we compute bilateral weights ωk for each
feature φk in a box shaped neighborhood (brighter pixels mean
bigger weights). For every pixel in the neighborhood we denote the
weight of the most restrictive feature as ω. Finally, we select the n
neighbors with the n biggest ω weights (here n = 4).

arbitrarily rank deficient. This corresponds to the reconstruction
used by Lehtinen et al. [2013], except with differences computed
between adaptively-determined neighbors.

Pixel affinity We estimate similarities of path contribution func-
tions by leveraging auxiliary per-pixel features (Figure 7). Features
such as normals, depth, texture, and so on, serve this purpose well,
since path contribution functions across feature discontinuities tend
to be quite different. Indeed, using features for cross-bilateral fil-
tering is highly successful for denoising Monte Carlo renderings
[Ward et al. 1988; Dammertz et al. 2010]. Hence, we estimate the
similarity between pixels i and j as ω(i, j) = mink[ωk] with

ωk = exp

(
− (max(0, |φk(i)− φk(j)|2 − τk)

σ2
k

)
(7)

where φk(i) is the kth feature at pixel i, τk a user-defined threshold
and σk a bandwidth parameter for feature k. In other words, we
define ω(i, j) similarly as a cross-bilateral filter weight using the
feature that is least similar between i and j. We compute ω(i, j)
for all pixels around i in a box shaped neighborhood. We define
our n structure-adaptive gradients at each pixel as the differences
to the n pixels with the largest weights in the neighborhood.

Since pixel differences are signed quantities, we should select one
of the two possible orderings for each pixel pair defining a gradient.
We choose to avoid this issue as follows to simplify implementa-
tion: Let ij be the ordered pair of pixels i and j. In addition, let
P be the set of all pairs generated by our data adaptive procedure
above, where i is always the center pixel and j a neighbor. Note
that ij ∈ P does not imply ji ∈ P . Now we distinguish two cases:

• Non-Symmetric Neighbors: If only ij ∈ P but ji /∈ P , we
include the constraint Ĩi − Ĩj = ∆ij in the equation system.
We sum ∆i

ij and ∆j
ij to ∆ij as described in Section 3.2.

• Symmetric Neighbors: If both ij ∈ P and ji ∈ P , however,
we add two separate constraints Ĩi−Ĩj = 2∆i

ij , and Ĩj−Ĩi =

2∆j
ji. This works because the second constraint is equivalent

to Ĩi − Ĩj = 2∆j
ij (note ∆j

ij = −∆j
ji), hence the average of

these constraints represents the desired gradient.

4 Bilateral-Domain Metropolis Light Trans-
port

In this section we present an MLT algorithm that implements the
ideas presented in the previous chapter. We call the algorithm
Bilateral-Domain Metropolis Light Transport. As per common
practice, we apply the algorithm only to indirect illumination, and
handle direct illumination separately in a prior pass using a sim-
ple recursive ray tracer. Our approach is currently limited to box
functions as pixel filters.

Structure-Adaptive Gradients To compute the neighbors for
structure-adaptive gradients, we gather pixel features in the direct
illumination pass. We store features such as normals, depths and
textures in auxiliary images, assuming that the features contain only
insignificant residual noise. We achieve this by using sufficiently
many samples in the direct illumination pass, or by denoising the
features images [Rousselle et al. 2013].

Ambient Occlusion for Incremental Manifold Walk We guide
our incremental manifold walk (Section 3.4) using screen space
ambient occlusion coefficients, which we compute together with
the feature images in the direct illumination pass. We define a
threshold on the length of secondary ray segments, and for each
pixel compute its ambient occlusion coefficient as the percentage of
secondary rays whose lengths are below this threshold. Since our
gradients are defined in screen space, we also define the threshold
length in terms of its projection to screen space. As a consequence,
the world space threshold increases for primary hit points further
away from the camera. Following the iterative scheme from Sec-
tion 3.4, we decide whether a vertex xi should be perturbed using a
manifold walk based on the ambient occlusion value at vertex xi−1.
Since we use a screen space ambient occlusion map, we project
the position of xi−1 to screen space and read the corresponding
value. We perform a depth test to check whether xi−1 is occluded
from the camera, and only use the ambient occlusion value if it is
not occluded. While this approach is limited to path vertices that
are visible to the camera, it is still effective at removing the most
prominent artifacts due to near singular geometry terms in concave
regions visible in the image. In addition, we suppress occasional re-
maining singularities with our weighting scheme from Section 3.3.

Gradient Sampling Here we describe in more detail how we
sample the symmetric gradient integrals from Section 3.2 using a
Metropolis sampler. For this we define an extended path space Ω′i
for each pixel,

Ω′i = Ωi ×Ni,
where Ni is a set of neighbor indices, such that for all neighbors
k ∈ Ni, either k is one of the closest neighbors of i, that is, ik ∈ P ,
or vice versa i is one of the closest neighbors of k, that is, ki ∈ P .
Hence, |Ni| is, in general, different for each pixel i. The Metropo-
lis algorithm samples the union Ω′ of all per-pixel extended path
spaces, Ω′ =

⋃
Ω′i. Denote a path in Ω′ by z, consisting of a

usual path x and a neighbor index j. Since we use box filters, x is
uniquely assigned to a pixel i, and together with the neighbor index
this specifies a gradient contribution ∆i

ij .

In the Metropolis sampler we use conventional mutators to propose
new paths x. Assuming x belongs to pixel i, we then complete
the extended path z by proposing one neighbor j ∈ Ni randomly.
Finally we evaluate the image contribution f∗(x) and the gradient
contribution ∆i

ij . Since this means we are counting the image con-
tribution |Ni| times more often than each gradient, we multiply the
gradients by |Ni|. This procedure also assures that we sample any
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Algorithm 1: SAMPLE CONSTRAINT

Input: Extended path z, consisting of base path x in pixel i and a
neighbor index j.

1 begin
/* Sum over mappings Tk and weight functions wk. */

2 for k ∈ 0, 1 do
/* Sample gradient contribution ∆i

ij , Equation 4. */
/* Sample called s. */

3 if x ∈ Ωij then
4 x̂ = Tk(x)

s = 1/2(wk(x)fi(x)− wk(x̂)fj(x̂)|dx̂/dx|
5 else
6 s = wk(x)fi(x)

/* Multiply with |Ni|, since we sample only one
gradient for each base path. */

7 s = |Ni|s
/* Check neighbor symmetry, Section 3.5. */

8 if ij /∈ P then
/* Non-symmetric, constraint Ĩj − Ĩi = ∆ji */

9 b(r(j, i)) = b(r(j, i))− s
10 else if ji /∈ P then

/* Non-symmetric, constraint Ĩi − Ĩj = ∆ij */
11 b(r(i, j)) = b(r(i, j)) + s

12 else
/* Symmetric, constraint Ĩi − Ĩj = 2∆i

ij */
13 b(r(i, j)) = 2s

gradient ∆ij symmetrically, because both j ∈ Ni and i ∈ Nj . Fi-
nally, we use a target function f(z) similar to Lehtinen et al. [2013],

f(z) = |Ni|‖∆i
ij(x)‖+ α‖f∗(x)‖,

where the extended path z implies the indices i and j. Again, we
include the factor |Ni| because gradients are sampled |Ni|-times
less often than the image contribution, hence their weight should be
emphasized by the same factor in the target function.

Assembling the Gradient Constraints Algorithm 1 summa-
rizes how we construct the gradient constraints from the sampled
gradient contributions. We represent the gradient constraints as
HĨ = b, where Ĩ is the unknown image we will reconstruct, H
has rows that are zero except for two entries with values −1 and 1
that encode the pixel pair involved in a gradient. The vector b stores
the corresponding gradient values. The function r(i, j) returns the
row index where constraint Ĩi− Ĩj is stored in the equation system.
The pseudo-code takes as input an extended path z obtained from
the Metropolis sampler, and it stores the sampled gradient contri-
bution ∆i

ij in the gradient constraints as described in Section 3.5.
It computes a weighted sum over all mappings as described in Sec-
tion 3.3, although in practice we implement this more efficiently by
exploiting that one of our two mappings is the identity.

Poisson Reconstruction We reconstruct an image that best fits
the gradient constraints and the coarse image that we sampled dur-
ing rendering by solving a Poisson problem,

min
Ĩ
||HĨ − b||2 + ||α(Ĩ − Ig)||22, (8)

where Ĩ is the reconstructed image and Ig is the image obtained by
sampling the path contributions. This approach leads to an unbiased

estimate Ĩ of the true image if we use the L2-norm as above. For
a proof we refer to Lehtinen et al.’s work [2013]. We can also ob-
tain visually improved results by minimizing the L1-norm with an
iteratively reweighted least-squares solver, although this introduces
bias.

5 Results

In this section we report on results and comparisons obtained with
our approach, which we implemented on top of the Mitsuba ren-
derer [Jakob and Marschner 2012].

Parameter Settings We set the threshold t for the binary weight
ω0 in Equation 6 (Section 3.3) to 20 for all scenes, which conser-
vatively suppresses outliers. This is important since a more ag-
gressive, lower threshold will fall back to the identity mapping too
often and reintroduce noise in the gradients. We compute screen
space ambient occlusion coefficients (Section 3.4) using 0.75% of
the image size as the threshold for the length of secondary path
segments projected to image space. The threshold on the ambient
occlusion coefficient that triggers the incremental manifold walk is
0.95, so that weakly concavely curved surfaces do not always lead
to an extended manifold walk.

For the structure-adaptive gradients (Section 3.5) we use σk = 0.01
for all features, since the selection is very insensitive towards this
parameter. The parameter τk is critical to make sure our adap-
tive gradients are not overly sensitive to the features. In partic-
ular, we need to avoid having them degenerate to 1D gradients
along 1D contours in the features. Empirically we found the val-
ues τnormal = 0.02, τtexture = 0.001 and τdepth = 0.01 to work
well for features normalized to range [0, 1] in all tested scenes. In
addition we use a bilateral window of 5×5 pixels to compute affini-
ties ω(i, j) and n = 4 as the number of structure-adaptive gradients
in all our experiments.

Benefits of Each Technique Figure 8 shows how each of our
suggested strategies improves quality of the L2 reconstruction in
certain regions of the DOOR scene. We compare the rMSE (rela-
tive mean squared error) and the per-pixel gradient energy of the
close-up regions. The per-pixel gradient energy is defined as the
sum of squared values of all gradient constraints on each pixel,
that is, ‖HT b‖22. Using structure-adaptive gradients (ADAP, Sec-
tion 3.5) instead of ordinary gradients strongly reduces ringing ar-
tifacts along edges as can be seen in the second row of the red and
green close-ups. Since our adaptive gradients are based on features
from the direct illumination pass only, they do not necessarily min-
imize gradient energy in regions where indirect illumination effects
like caustics or indirect shadows occur. Therefore, the quality does
not improve in such regions compared to using ordinary gradients,
as can be seen in the second row of the blue close-up. Adding our
multiple weighted gradient integrals (MWGI, Section 3.3) to avoid
singularities helps removing bullet hole artifacts. This improves
the quality of regions where structure-adaptive gradients alone are
useless as can be seen in the third row of the blue close-up. Since
avoiding singularities means using the noisier but less singularity-
prone identity mapping T0, regions where a lot of singularities oc-
cur still tend to become noisier. This mostly happens around con-
cave geometry edges, as can be seen in row three of the green close-
up. Adding the ambient occlusion guided incremental manifold
walk (INCMW, Section 3.4) greatly reduces the need to fall back
to T0 in those regions, which effectively reduces noise there (bot-
tom row of the green close-up).
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Figure 8: We incrementally add our techniques on top of
GDMLT in top to bottom order: unmodified GDMLT, structure
adaptive gradients (ADAP, Section 3.5), multiple weighted gradi-
ent integrals (MWGI, Section 3.3) and incremental manifold walk
(INCMW, Section 3.4). For every crop we show the L2 reconstruc-
tion with the relative MSE and the energy of the gradients.

Comparison to Previous Work In Figure 13 we demonstrate the
effectiveness of our approach by comparing it to gradient-domain
Metropolis (GDMLT) [Lehtinen et al. 2013] and manifold explo-
ration MLT (MEMLT) [Jakob and Marschner 2012]. We computed
reference images of the DOOR, SIBENIK and BOX scenes with
MEMLT with 32000 mutations per sample, and for SPONZA and
BIDIR we used bidirectional path tracing with 32000 samples per
pixel. For MEMLT we used the default parameters of Mitsuba,
and for GDMLT we used the parameters suggested by Lehtinen et
al. [2013]. We adjusted the set of path mutators, the maximum
path length, and the length of the Markov chains for every scene
separately. For each scene we used the same parameters for all
compared methods. We applied GDMLT and our method on the
indirect illumination only. We computed direct illumination sepa-
rately and then simply added it to the result of the reconstruction.
Our approach has less than 5% computational overhead compared
to GDMLT.

We compare the relative mean square error (rMSE) and observe
an improvement of our method over GDMLT of 20%-60% using
L2 reconstruction, and of 5%-40% using L1. We also measured
how many mutations per pixel were needed for MEMLT to achieve
similar rMSE as the L1 reconstruction of our method. Results sug-
gest that the required number of mutation per pixel is highly scene
dependent. While for SIBENIK only two and a half times more mu-
tations achieve similar rMSE, for BIDIR we required 20 times more
mutations.

In general we observed that the L2 reconstruction of GDMLT of-
ten performs poorly because the sampling tends to get stuck due to
gradient outliers. Huge gradient values may appear even in smooth

GDMLT OURS

Figure 9: A comparison of the sampling densities of our method
and GDMLT. Note how our method distributes less samples along
edges that are avoided by our structure-adaptive gradients.
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Figure 10: The rMSE for DOOR using our method compared to
GDMLT over increasing numbers of mutations per pixel.

image regions due to geometrical singularities in the offset paths,
which are caused by specular objects in the scene. The Poisson re-
construction then attempts to reconcile these gradient outliers with
the coarse sampled image Ig . This leads to visually and numer-
ically prominent bullet hole artifacts. The L1 reconstruction of
GDMLT suffers less from these problems, since entries in the lin-
ear equation system leading to big errors are weighted down. Yet
some artifacts remain, especially when they occur near edges (see
L1 reconstruction of GDMLT in green close-up of DOOR scene). In
all scenes our algorithm suffers less from singularity artifacts than
GDMLT, as can be seen when comparing L2 reconstructions of our
approach and GDMLT.

In Figure 9 we compare the sampling densities of our approach to
GDMLT in the BIDIR scene using approximately 256 mutations per
pixel. One interesting observation is that our method concentrates
samples exclusively in those regions where gradients occur that are
not detectable in the features we used to generate the structure-
adaptive gradients. GDMLT on the other hand distributes samples
along all gradients of the image. This can be seen at the edges be-
longing to the table. This is a desirable property of our approach
since it means that most samples are concentrated around regions
that require more effort to be rendered correctly (e.g., caustics, in-
direct shadows and so on).

Figure 10 plots the rMSE of GDMLT and our method forL2 andL1

reconstructions against increasing numbers of mutations per pixel
using the DOOR scene. The plotted error values are the averages
over 25 runs. L2 OURS is consistently better than L2 GDMLT.
The difference between L1 GDMLT and L1 OURS is smaller but
still significant. Notably L2 OURS has similar rMSE values as
L1 GDMLT, meaning our unbiased L2 reconstruction is of similar
quality as the biased L1 reconstruction of GDMLT.

Limitations Our binary weighting scheme cannot avoid artifacts
due to singularities in the base path. Considering Equation 6, we
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observe that a singularity in T1(x) but not in x will likely lead to
a big max-ratio and therefore we fall back to sampling strategy T0.
This means the singularity in T1(x) will not affect the final result.
If x instead of T1(x) is close to a singularity, however, our approach
is ineffective. Hence, like in other MLT methods our Markov chain
may sometimes get stuck. Artifacts arising from this are isolated
bright pixels, but they do not cause bullet holes as do outliers in the
gradients.

The global parameters τk and t of our method can lead to locally
suboptimal results in complex scenes: τk leads to a global trade-off
between sensitivity towards a feature and avoidance of degenerate
one-dimensional constraints, whereas t leads to a trade-off between
bullet holes and more noise due to the fall-back to strategy T0.

Like all MLT methods our method suffers from potentially incom-
plete coverage of path space, as can be seen in the missing highlight
on the glass-egg in the BIDIR scene (Figure 13).

Analysis of Adaptive Gradients The Poisson reconstruction
problem in Equation 8 is equivalent to solving

(HTH + αId)Ĩ = αIg +HT b, (9)

where Id is the identity matrix, and the matrix HTH can be inter-
preted as a Laplacian matrix given by the gradient kernels. In Fig-
ure 11 we compare the eigenvectors of HTH of GDMLT and our
approach. We visualize only a subset of all eigenvectors, since there
are as many eigenvectors as pixels in the image. The Laplacian of
the GDMLT kernel is the usual discrete Laplacian, and its eigen-
vectors are 2D sinusoidal functions corresponding to the discrete
Fourier transform. The eigenvectors of our kernels, however, re-
flect and preserve the structures and edges of the feature images that
we used to construct the kernels, even for eigenvectors correspond-
ing to low eigenvalues (that is, low frequencies). Intuitively, the
Poisson solver reconciles contradicting information in the coarse
image and the gradients by suppressing high frequencies (see also
the analysis by Lehtinen et al. [2013]). While suppressing high
frequencies in the Fourier transform is prone to ringing artifacts,
suppressing high frequency eigenvectors in our approach does not
suffer from this problem, since our low frequencies still contain im-
age edges.

In Figure 12 we analyze the contribution of the coarse image Ig and
the gradients HT b to the solution of Equation 9 by simply setting
the other part of the right hand side (Htb and Ig , respectively) to
zero. A comparison of our approach to the conventional gradient
kernel reveals how the image structure is built into our structure-
adaptive kernels. Even if we force gradients to be zero and give lit-
tle weight to errors with respect to the coarse image (low α values,
top row) we still preserve sharp edges. In comparison, conventional
kernels behave like low-pass filters in this setting.

6 Conclusions

In this paper we introduced a generalized framework for gradi-
ent domain Metropolis rendering, which we exploited to develop
three techniques to avoid singularities and reduce noise in sampled
gradients. A common insight that we explore in all techniques is
that there is considerable freedom in how to determine gradients by
computing offset paths in path space.

The first technique introduces the idea of applying several differ-
ent shift mappings simultaneously to generate the offset paths. We
show that we can weigh each mapping, akin to multiple importance
sampling, to suppress the contribution of mappings that yield out-
liers and high variance. The second technique is an improved map-
ping function that avoids certain singularities that lead to artifacts in

GDMLT kernel

Our kernel (SIBENIK)

Our kernel (BIDIR)

Figure 11: Comparison of the eigenvectors corresponding to the
5th, 10th, 20th, 40th and 80th smallest eigenvalues (in that order)
using the GDMLT kernels and our data-adaptive kernels. Note
that the eigenvectors using our kernel adapt to the scene, while
the eigenvectors using the GDMLT kernel do not. All visualized
eigenvectors are normalized to [0, 1].
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Figure 12: Comparison of the effect of α on the Poisson solver
on a close-up region of SPONZA with only 32 mutations per pixel.
The top row shows the contribution of Ig to the solution, the middle
row shows the contribution of the gradients HT b to the solution
and the bottom row shows the L2 reconstruction, which is equal to
the sum of both images above. The tone-mapping of the gradient
contribution has been adjusted to be more visible.

previous methods. This technique leverages the half vector param-
eterization of light paths, which by construction avoids most singu-
larities of the usual area parameterization. Finally, our third tech-
nique builds on the observation that gradient domain rendering is
not restricted to conventional image gradients. We exploit this and
introduce structure-adaptive kernels that encode edges and details
in auxiliary feature images. The structure-adaptive kernels avoid
sampling gradients between pixels with highly different path contri-
bution functions because of geometry or other discontinuities in the
scene. Avoiding such difficult gradients further reduces noise. We
also show that our kernels have interesting properties with respect
to the Poisson reconstruction step. An eigenanalysis of the Lapla-
cian matrix induced by our kernels shows that image structures are
preserved even in eigenvectors with low eigenvalues, which means
that the Poisson reconstruction process is less prone to ringing than
conventional kernels.

We obtain results that significantly reduce sampling artifacts of
previous approaches. Our unbiased L2 reconstructions generally
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Figure 13: Our proposed method using L2 and L1 reconstruction compared to gradient-domain MLT and manifold exploration MLT using
approximatively the same number of mutations per pixel (mpp). MEMLT-Eq shows MEMLT with more samples in order to achieve approx-
imately the same quality in terms of rMSE as L1 OURS. The numbers below the close-ups with exception of MEMLT-Eq show the rMSE of
the full images. All references where generated using MLT with 32k mpp.
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match previous biased L1 results, and our L1 results further im-
prove on this. We believe our work shows that it is possible to
achieve high quality gradient sampling, which may pave the way
to robust, general purpose gradient rendering algorithms. In the fu-
ture, we would like to further investigate robust techniques to sam-
ple gradients, for example by improving our weighting scheme.
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Bidirectional path tracing (BDPT) Gradient-domain bidirectional path tracing (G-BDPT)

Figure 1: We compare results of bidirectional path tracing (BDPT, left) versus gradient-domain bidirectional path tracing (G-
BDPT, right) after thirty minutes of render time. While BDPT still exhibits visible residual noise, G-BDPT is free of artifacts
nearly everywhere with the exception of some difficult regions around caustics.

Abstract
Gradient-domain path tracing has recently been introduced as an efficient realistic image synthesis algorithm. This
paper introduces a bidirectional gradient-domain sampler that outperforms traditional bidirectional path tracing
often by a factor of two to five in terms of squared error at equal render time. It also improves over unidirectional
gradient-domain path tracing in challenging visibility conditions, similarly to how conventional bidirectional
path tracing improves over its unidirectional counterpart. Our algorithm leverages a novel multiple importance
sampling technique and an efficient implementation of a high-quality shift mapping suitable for bidirectional path
tracing. We demonstrate the versatility of our approach in several challenging light transport scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Gradient-domain methods have recently been introduced as
efficient, general techniques for physically-based rendering
[LKL∗13, MRK∗14, KMA∗15]. Instead of directly estimat-
ing the radiance responses for each image pixel, they pro-
duce unbiased estimates of the finite-difference gradients be-
tween neighboring pixels by deterministically shifting paths
between pixels. In a post-process step, the gradient estimates

are integrated with a conventionally sampled, noisy “guide
image” by solving the discrete screened Poisson equation.
Together, these steps yield images with lower variance, and
gradient-domain methods reduce the required render time to
achieve the same quality compared to traditional samplers.

While gradient-domain rendering was originally proposed
in the Markov Chain Monte Carlo (Metropolis) context,
an upcoming paper [KMA∗15] shows, both by theory and
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example, that similar benefits can also be claimed by a
gradient-domain extension of standard path tracing with
next event estimation. It is well known, however, that uni-
directional path tracing is ineffective in scenes where light
sources cannot be reached easily by tracing paths incremen-
tally from the eye. Bidirectional path tracing deals with these
situations much more robustly by constructing subpaths both
starting at the eye and at light sources, and forming complete
paths by making all possible connections.

In this paper, our objective is to combine the advantages
of bidirectional path tracing and gradient-domain rendering.
We describe a bidirectional gradient-domain light transport
sampler (G-BDPT) that builds on bidirectional path tracing
(BDPT). G-BDPT is useful in similar situations as conven-
tional BDPT. This is the case in scenes with realistic light
sources enclosed by light fixtures, or when the directly lit
area is small, i.e., when sources contribute mainly indirect
illumination. In both scenarios, connecting to light sources
via shadow rays often fails, leading to excessive noise in
unidirectional path tracers. In addition, we develop a novel
multiple importance sampling technique, and describe an ef-
ficient implementation of a high-quality shift mapping to
reduce sampling artifacts. Our results show that G-BDPT
performs consistently better than its non-gradient counter-
part, and that it yields significant improvement over standard
(gradient) path tracing in scenarios that benefit from bidirec-
tional sampling.

In summary, we make the following contributions:

• A bidirectional gradient-domain rendering algorithm (G-
BDPT) based on a bidirectional light transport sampler;
• A multiple importance sampling (MIS) technique that

combines MIS on gradients with conventional MIS for
BDPT;
• An efficient implementation of a high-quality shift map-

ping using a modification of conventional BDPT path
sampling.

2. Related Work

We base our work on the path space formulation of light
transport due to Veach [Vea98]. That is, the intensity I j for
each pixel j in the image is obtained by integrating the radi-
ance carried by all light paths with pixel filters:

I j =

(
h(x)∗

∫

Ω
f (x, p̄)dµ(p̄)

)
(x j). (1)

Here x is a pixel position, the p̄ range over the set of all ad-
ditional path parameters Ω, f (x, p̄) is the image contribution
function, and h(·) is the (shift-invariant) pixel filter. We ob-
tain the value I j of pixel j by evaluating the convolution at
its position x j .

Several Monte Carlo methods have been proposed for
evaluating Equation 1. In particular, constructing light paths
using successive independent sampling of scattering events

results in path tracing [Kaj86]; combining the results of suc-
cessive independent sampling from the camera and from the
light yields bidirectional path tracing [LW93, VG94]. While
not always superior to standard path tracing, bidirectional
sampling is particularly effective in reducing noise in scenes
with small, difficult to reach light sources. Our gradient-
domain bidirectional sampler retains this significant advan-
tage. In another vein, Markov Chain Monte Carlo methods
perform random walks on light paths instead of drawing in-
dependent samples [VG97, KSKAC02].

2.1. Gradient-Domain Rendering

We cursorily describe the necessary theoretical background
on gradient-domain rendering, and refer the reader else-
where for complete details [KMA∗15]. Gradient-domain
rendering techniques [LKL∗13, MRK∗14, KMA∗15] build
on strictly the same basis as previous Monte Carlo methods
— that is, they aim to evaluate Equation 1 using Monte Carlo
sampling. In contrast to regular (Markov Chain) Monte
Carlo methods, they do this indirectly by sampling image
gradients (differences in brightness between neighboring
pixels) in addition to the pixel intensities, using pairs of cor-
related path samples. The final intensities for all pixels are
found using the sampled gradients and pixel values by solv-
ing a screened Poisson equation. Recent work has demon-
strated that this, perhaps surprisingly, yields a significant re-
duction in total integration error [KMA∗15], and when used
in the Markov Chain context, diverts computational effort to
regions of path space that contribute to significant changes
in the image [LKL∗13]. Our work follows the same line of
thought.

2.2. Gradient-Domain Path Tracing

In gradient-domain rendering, differences between pixel in-
tensities are computed by directly evaluating the difference
in light throughput between two paths separated by one pixel
and integrating this over all paths. More precisely, we denote
the difference between the intensities of two pixels i and j by
∆i, j. As recently shown [KMA∗15], this can be written as the
integral of a path difference function gi j(x, p̄) instead of the
usual image contribution function f (x, p̄) as

∆i, j =

(
h(x)∗

∫

Ω
f (x, p̄)− f (Ti j(x, p̄))

∣∣T ′i j
∣∣dµ(p̄)

)
(xi)

=

(
h(x)∗

∫

Ω
gi j(x, p̄)dµ(p̄)

)
(xi), (2)

where x is the image coordinate, (x, p̄) is a light path with
additional parameters p̄ connecting a point on a light and
a point on the sensor, f is the image contribution function,
and Ti j is the shift mapping that deterministically maps a
base path (x, p̄) to a close-by offset path Ti j(x, p̄). We only
allow shifts that make sure that the offset path Ti j(x, p̄) has
the same pixel filter value as the base path, so we can express
it as a single convolution. The factor

∣∣T ′
∣∣= |∂T/∂x̄| denotes
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the determinant of the Jacobian of T (x̄) accounting for the
change of integration variables [LKL∗13].

Symmetric Gradients The previous formulation assumes
the shift mapping is a bijection on path space. But this is not
the case in practice because the shift may fail due to numer-
ical reasons (see Section 3.1). In addition, it assumes that
we can sample all paths (x, p̄) that lead to a non-zero offset
path f (Ti j(x, p̄)). Monte Carlo path tracers like BDPT only
guarantee to sample all base paths with non-zero contribu-
tion f (x, p̄), however, and we may miss some non-zero off-
set paths, leading to biased gradients. As shown by Kettunen
et al. [KMA∗15], we can ensure that all relevant paths are
sampled in both pixels by using the symmetric formulation

∆i, j =

(
h(x)∗

∫

Ω
wi j(x, p̄)gi j(x, p̄)dµ(p̄)

)
(xi)+

(
h(x)∗

∫

Ω
w ji(x, p̄)g ji(x, p̄)dµ(p̄)

)
(x j). (3)

The two integrals sample the same difference, once by shift-
ing from pixel i to j and vice versa. The multiple importance
sampling weights wi j and w ji serve two purposes: they are
normalized to add up to one, such that the two integrals cor-
rectly add up to the desired gradients, and they reduce vari-
ance by tempering the effect of the local squeezing of path
space caused by the shift. Finally, we need to take into ac-
count that the shift may not be invertible for some parts of
path space, which means the symmetric formulation cannot
be evaluated in these cases. We deal with this by simply sam-
pling the contributions of paths to the two pixels i and j sep-
arately, without applying any shift mapping, and add them
to (respectively subtract them from) ∆i, j .

Gradient MIS To set the weights in Equation 3, the forward
and inverse mappings are interpreted as two sampling tech-
niques to obtain the same base path x̄ = (x, p̄). This makes it
possible to derive multiple importance sampling weights

wi j(x̄) =
p(x̄)

p(x̄)+ p(Ti j(x̄))|T ′i j(x̄)|
. (4)

Gradients with a large Jacobian determinant |T ′i j(x̄)| obtain a
MIS weight of approximately 1/|T ′i j(x̄)|, which cancels their
large contribution.

G-PT Algorithm The gradient-domain path tracing algo-
rithm (G-PT) simply draws a number of base paths from
each pixel, shifts them to the four horizontal and vertical
neighbor pixels, evaluates the differences between through-
puts, weighted as shown above, and accumulates the re-
sults in a throughput image and four additional gradient im-
ages. The process yields the inputs required by the screened
Poisson solver. When the shift mapping is designed so that
throughput differences between base and offset are small (in-
cluding the effect of the Jacobian), the resulting gradient es-
timates have low variance, which translates to higher quality
in the final reconstructed image [KMA∗15].

3. Bidirectional Gradient Sampling

We now describe a gradient-domain version of bidirectional
path tracing (G-BDPT). We follow the general outline of
Kettunen et al. [KMA∗15], and view the problem as formu-
lating a bidirectional Monte Carlo sampler for Equation 3.

A direct translation of BDPT with multiple importance
sampling to the gradient domain would, however, lead to a
prohibitively expensive algorithm, because the number of in-
dividual paths sampled is large (all connections are made
between the eye and light subpaths). The naive algorithm
that applies the shift mapping to each one turns out to be
too expensive. We alleviate the issue by selectively remov-
ing some bidirectional connection strategies. This reduction
in work allows us to use a more sophisticated shift mapping
compared to [KMA∗15], which we demonstrate to yield a
net performance win.

3.1. Shift Mapping

For G-BDPT we use the shift mapping proposed for
gradient-domain Metropolis rendering by Lehtinen et
al. [LKL∗13], which builds on the manifold perturbation
technique by Jakob and Marschner [JM12]. They express
their shift in the path parameterization by surface position,
which is the natural parameterization for BDPT. Hence, we
can directly reuse their mathematical formulation (and im-
plementation). To apply the shift to a given path we need
to classify its vertices as diffuse or specular, and we follow
their approach using a threshold on the material roughness.

The intuition behind the G-BDPT shift is to preserve half-
vectors at vertices classified as specular, while trying to con-
nect to the base path as soon as possible. The main advantage
over the shift proposed for G-PT is that it always connects
to the base path at the second diffuse vertex (starting from
and excluding the eye), independent of any specular vertices
before that. In contrast, the G-PT shift requires two consecu-
tive diffuse vertices to reconnect to the base path. This means
that the G-BDPT shift generally produces more similar base-
offset pairs than the G-PT shift.

We briefly review the definition of the G-BDPT shift as
introduced by Lehtinen et al. [LKL∗13]. Let us describe a
path x̄ as a sequence of vertex positions xi, x̄ = 〈x0, . . . ,xn〉.
We formulate the shift mapping as the concatenation of a
path reparameterization, a simple shift that only modifies the
image plane intersection of the reparameterized path with-
out changing the other parameters, and a reparameterization
back. We classify vertices into diffuse and specular vertices
based on material roughness as mentioned before. The key
idea now is to design the reparameterization such that the
simple shift described above preserves half-vectors at spec-
ular vertices, while connecting to the base path as soon as
possible.

Let a, b, and c be the indices of the first three vertices clas-
sified as diffuse along the path starting at the eye (including
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a=0
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diffuse
specular

base
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h2
h3

image plane,
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2nd chain

preserved projected half-vectors
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Figure 2: Visualization of the reparameterization and the
shift mapping in G-BDPT. Starting at the eye, the shift pre-
serves two consecutive half-vector chains between the first
three diffuse vertices a, b, and c along the path. It always
connects to the base path at the third diffuse vertex (includ-
ing the eye). In the figure, the first half-vector chain is empty.
In contrast the G-PT shift [KMA∗15] cannot connect to the
vertex c on the light source.

the eye vertex itself, which is classified as diffuse; hence we
always have a = 0). In the reparameterization, we represent
the specular vertices between the eye and b, and the spec-
ular vertices between b and c using projected half-vectors
hi (half-vectors projected onto local tangent planes) instead
of vertex positions xi. We call vertices i with a < i < b
and b < i < c the first and second half-vector chain, re-
spectively. The first chain is empty if b = 1, and the second
is empty if c = b + 1. We write our reparameterization as
x̂ = 〈x0,s1,h1, . . . ,hb−1,hb+1, . . .hc−1,xc, . . . ,xn〉, where
s1 is the image plane intersection of the path, and the posi-
tion of vertex b is determined implicitly by the parameters of
previous vertices. In this parameterization, the simple shift
only moves s1 to a neighboring pixel. We illustrate the repa-
rameterization and the shift in Figure 2.

We implement the shift by moving s1 to a neighbor
pixel, and re-tracing the first specular chain from the eye,
which yields vertex b on the offset path. We reconnect off-
set vertex b to the base path via the second half-vector
chain by applying the manifold perturbation by Jakob and
Marschner [JM12]. To formulate the Jacobian of the shift,
let us denote the shifted offset path in the original parame-
terization by surface position as ȳ, and in the reparameteri-
zation using half-vectors as ŷ. The Jacobian determinant of
the shift is then

|T ′(x̄)|=
∣∣∣∣
∂ȳ
∂x̄

∣∣∣∣=
∣∣∣∣
∂x0, . . . ,xn

∂y0, . . . ,yn

∣∣∣∣=
∣∣∣∣
∂ȳ
∂ŷ

∣∣∣∣
∣∣∣∣
∂x̂
∂x̄

∣∣∣∣ . (5)

We compute the Jacobian determinants of the reparameter-
izations |∂ȳ/∂ŷ| and |∂x̂/∂x̄| as described by Lehtinen et
al. [LKL∗13].

3.2. Efficient Gradient Sampling

The computational cost of the G-BDPT shift is not negligi-
ble, and we need to employ it carefully to avoid large over-
heads. A naive implementation of the shift mapping would
apply it separately to each path sampled by BDPT. For each

eye and light subpath, however, BDPT samples all paths
that can be obtained by connecting these subpaths. Shifting
all connected paths and computing the Jacobians separately
from scratch is prohibitively expensive. We reduce this cost
by slightly modifying the usual BDPT sampling strategy.

Our key modification of usual BDPT is to omit sampling
techniques that include a specular vertex (according to our
classification) as a connecting vertex between eye and light
subpaths. Omitting these sampling techniques has little im-
pact on the effectiveness of BDPT, since connections involv-
ing non-diffuse vertices typically contribute very little. On
the other hand, it allows us to reduce the cost to compute the
shift mappings and their Jacobians.

For the Jacobian of the shift mapping described above
only vertices ≤ c are relevant, since the shift is independent
of the others. With our restriction on BDPT sampling tech-
niques, vertices ≤ c may have been sampled in only three
different ways illustrated in Figure 3: (i) all vertices (both
half-vector chains) are sampled on the eye path, (ii) vertices
up to and including b (only the first half-vector chain) are
sampled on the eye path, and vertices > b on the light path,
(iii) only vertex a is sampled on the eye path (the second
half-vector chain is sampled on the light path). We call such
paths light tracing paths. Case (ii) implies c = b + 1 (the
second half-vector chain is empty), since we do not make
connections with non-diffuse vertices. Also, in this case the
Jacobian is given by vertices ≤ b, since the shift is indepen-
dent of vertex c= b+1. Similarly, case (iii) implies b= a+1
(the first half-vector chain is empty)†.

We take advantage of these observations as follows: Given
an eye subpath x̄E , let us again denote the indices of its first
three diffuse vertices a,b,c. We then apply the shift to ver-
tices xE

a , . . . ,xE
c , yielding an offset path ȳE for the eye sub-

path. Under the previous considerations, this is sufficient to
construct all connected offset paths for cases (i), where the
connection is with a vertex ≥ c on the eye subpath, and (ii),
where the connection is with vertex b . Hence we need only
two different Jacobians for all these paths, in case (i) for the
shift of both half-vector chains a, . . . ,b, . . . ,c,

|T (i)(x̄E)|=
∣∣∣∣
∂xE

a , . . . ,xE
c

∂yE
a , . . . ,yE

c

∣∣∣∣ , (6)

and in case (ii) for only the first chain a, . . . ,b,

|T (ii)(x̄E)|=
∣∣∣∣∣
∂xE

a , . . . ,xE
b

∂yE
a , . . . ,yE

b

∣∣∣∣∣ . (7)

Dealing with light tracing paths in case (iii) is more expen-
sive. Given a ligth subpath x̄L, each of its diffuse vertices
needs to be connected to the eye to form a complete light
tracing path. For each connected light tracing path we need

† Since we assume a pinhole camera, we omit a fourth case where
both chains and the eye vertex are sampled from the light.
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case (iii)
case (ii)
case (i)

c’

b’

a’

eye subpath

light subpath
image plane,
shift base offset

Figure 3: Visualization of modified sampling strategy in G-
BDPT. We do not sample subpath connections that include
a specular vertex. We color code connections according to
three cases: (i) both half-vector chains are sampled from the
eye (the second chain is empty here, but this is not always the
case); (ii) the first half-vector chain is sampled from the eye
(the second one is always empty, since we omit connections
to non-diffuse vertices); (iii) the second half-vector chain is
sampled from the light (implying the first half-vector chain
is always empty). To reduce clutter, the figure does not show
connections of type (i) and (ii) to the last vertex on the light
subpath, and it does not show the corresponding subpath
connections on the offset paths.

to recompute a shift and its Jacobian. Again, we compute all
Jacobians as described by Lehtinen et al. [LKL∗13].

3.3. Multiple Importance Sampling

Let us use the common notation (s, t) to represent the differ-
ent sampling strategies in BDPT, where s is the number of
vertices on the light subpath, and t the number of vertices on
the eye subpath. In BDPT any given path with n vertices can
be sampled using all techniques (s, t) where s+ t = n. Multi-
ple importance sampling (MIS) introduces a weight for each
sampling technique to reduce variance in a provably good
manner [VG95]. Here we extend usual MIS for G-BDPT
by combining it with the gradient-MIS technique outlined
in Section 2.

For each gradient sample we not only consider all the
potential sampling techniques that could be used to sam-
ple the base path, but we also take into account that the
gradient could be sampled using either the forward or the
inverse mapping, as described in Section 2. The combined
MIS weight for a gradient sample using the balance heuris-
tics is then

wi j;st(x̄) =
ps,t(x̄)

k≤s+t
∑

k=0
pk,s+t−k(x̄)+ pk,s+t−k(Ti j(x̄))|T ′i j|

, (8)

where ps,t(x̄) is the probability density function (PDF) for
the (s, t) sampling technique evaluated for the base path x̄.
Note that this implies that the sum of the weights over the
two gradient directions is normalized, that is, wi j;st(x̄) +
w ji;st(Ti j(x̄)) = 1.

Figure 4 illustrates the effectiveness of our combined MIS

Figure 4: Comparison of MIS techniques in G-BDPT using
L2 reconstruction. Left: G-BDPT with modified MIS weights
given by Equation 9, that is, the balance heuristics for BDPT
sampling of base paths with a discrete case distinction to
avoid double counting of gradients. Right: G-BDPT with our
combined MIS from Equation 8. Combined MIS effectively
reduces gradient sampling artifacts in concave regions.

approach. We compare our combined MIS weights from
Equation 8 with a modified approach that only performs con-
ventional BDPT MIS, but does not consider the two tech-
niques to sample gradients. More precisely, the modified ap-
proach uses weights based on the balance heuristics

wi j;st(x̄) =
ri, j(x̄)ps,t(x̄)

k≤s+t
∑

k=0
pk,s+t−k(x̄)

, (9)

where the factor ri, j(x̄) is necessary to make sure we do not
double count gradient contributions in the symmetric formu-
lation (Equation 3). We set ri, j(x̄) = 1/2 if there is a tech-
nique k that samples the gradient from the opposite direction,
that is, there is a k with pk,s+t−k(Ti j(x̄))> 0. Otherwise, the
gradient can be sampled only from one direction, and we
set ri, j(x̄) = 1. The figure shows that combined MIS effec-
tively reduces sampling artifacts in concave regions, which
otherwise can only be avoided with sophisticated shift map-
pings [MRK∗14].

4. Implementation

We implemented G-BDPT on top of the standard BDPT
implementation in the freely available Mitsuba renderer
[Jak12]. The basic structure of G-BDPT is very similar to
BDPT, as shown in the pseudocode in Algorithm 1. For ev-
ery sample, we draw an eye subpath x̄E and a light subpath
x̄L (line 1). Then (lines 3-5), for each of the four horizon-
tal and vertical neighbor pixels, we apply the shift mapping
to the eye subpath to construct four shifted eye subpaths
ȳE, j = Ti j(x̄E). For each we obtain the corresponding Jaco-

bians |T (i)
i j | and |T (ii)

i j | for cases (i) and (ii) as described in
Equation 6 and Equation 7.

We then construct all complete base paths x̄ by connect-
ing x̄E and x̄L with all valid connection strategies (line 6),
skipping connections between vertices classified as specular
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Input: Scene and camera specification, total number of
bidirectional samples N.

Output: Image I, gradient images ∆·,·.
for all pixels and samples do

[1] x̄E , x̄L = sample eye and light subpath
[2] i = screen-space position of x̄E

a,b,c = first three diffuse vertices on x̄E

for all neighbours j of i do
[3] ȳE, j = Ti j(x̄E) // shift eye subpath

[4] |T (i)
i j |=

∣∣∣ ∂[yE, j
a ,...,yE, j

c ]
∂[xE

a ,...,xE
c ]

∣∣∣ // case (i) Jacobian

[5] |T (ii)
i j |=

∣∣∣∣
∂[yE, j

a ,...,yE, j
b ]

∂[xE
a ,...,xE

b ]

∣∣∣∣ // case (ii) Jacobian

end
for all connection strategies (s,t) do

[6] x̄ = connect(s, t, x̄E , x̄L) // base path
[7] i = screen-space position of x̄

a,b,c = first three diffuse vertices on x̄
[8] if case (iii) // light tracing path, t = 1

then
for all neighbours j of i do

[9] ȳ = Ti j(x̄) // recompute shift

[10] |Ti j|=
∣∣∣ ∂[ya,...,yc]

∂[xa,...,xc]

∣∣∣ // Jacobian
[11] ∆i j = ∆i j+

wi j;st(x̄)
[

f (ȳ)|Ti j|− f (x̄)
]
/pst(x̄)

end
else

for all neighbours j of i do
[12] ȳ = connect(s, t, ȳE, j, x̄L)

if case (ii) then
[13] ∆i, j = ∆i, j +

wi j;st(x̄)
[

f (ȳ)|T (ii)
i j |− f (x̄)

]
/pst(x̄)

else
[14] ∆i, j = ∆i, j +

wi j;st(x̄)
[

f (ȳ)|T (i)
i j |− f (x̄)

]
/pst(x̄)

end
end

end
[15] Ii = Ii +wi;st(x̄) f (x̄)/pst(x̄)

end
end

[16] I = I/N;∆·,· = ∆·,·/N
[17] Reconstruct(I, ∆·,·,α)

Algorithm 1: Pseudocode for gradient-domain bidirec-
tional path tracing (G-BDPT).

according to our roughness criterion. We also determine the
pixel index i of the base path (line 7, this may be different
from the pixel index corresponding to the eye subpath). Next
(line 8) we check if the current base path is a light tracing
path, that is, whether it connects a vertex on the light sub-

path directly to the eye (case (iii), meaning t = 1). Because in
these cases the eye subpath has only one vertex (the eye), we
cannot make use of the shifted eye subpaths ȳE, j for shifting
these paths. Instead, we must apply the shift mapping (and
compute its Jacobian) to each light-traced path separately
(line 9 and 10). We then compute the gradient sample con-
tribution and weight it by the MIS weight defined in Equa-
tion 8 (line 11). For connection strategies that do not directly
connect with the eye vertex, we form the offset path by con-
necting the shifted eye subpath ȳE, j with the light subpath x̄L

(line 12). We account for the two cases (i) and (ii) by choos-
ing the correct Jacobian determinants (lines 13 and 14).

We also store the value of the base sample in the primal
image (line 15). The weight ωi;st is the usual power or bal-
ance heuristic, not the one from Equation 8.

Finally, we normalize both the primal image and the gra-
dient images by the total number of bidirectional samples
(line 16), which also accounts for the light paths that are
distributed non-uniformly over the image. Then we per-
form screened Poisson reconstruction on the output of the
renderer (line 17), as in previous work [KMA∗15]. Our
L1 solver is based on iteratively reweighed least squares
(IRLS) implemented through the conjugate gradient method
in CUDA. Its performance is less than a second for a 720p
image.

As an important detail, we treat some situations in a
slightly different manner than implied by the pseudocode.
This is when in lines 9 and 12 the offset paths ȳ cannot be
constructed because the shift failed for numerical reasons, or
when these offset paths are blocked, and when the base path
x̄ (line 6) is blocked. In these cases we fall back to naive gra-
dient sampling, that is, we simply set the contribution of the
offset path to zero, and we use conventional MIS weights for
the base path, instead of combined MIS (Equation 8). In the
case of failing shifts, this is our only option. In the case of
blocked paths, it allows us to take a number of early exits in
our implementation that lead to some performance gains.

5. Results and Discussion

We evaluate G-BDPT by comparing to standard bidirec-
tional path tracing (BDPT), standard path tracing (PT), and
gradient-domain path tracing (G-PT) [KMA∗15]. All meth-
ods were implemented in the Mitsuba renderer [Jak12]. We
generated reference images using BDPT with 32000 samples
per pixel. Except where expressly stated otherwise, all eval-
uations use L1 reconstruction. All results are computed with
24 rendering threads on a workstation with dual Intel Xeon
E5645 processors with a total of twelve cores at 2.5GHz.

For comparisons, we use relative mean squared error
(relMSE), which we compute as relMSE = average[(X −
R)2/(R2 + 0.001)], where R is a reference pixel and X our
estimate. With all four compared methods, two of our test
scenes (GLASS EGG and BOTTLE) suffer from massive
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spike noise due to difficult caustics. Because this corrupts
the metric, we ignored the 0.01% of the highest pixel errors
in the relMSE computation in these scenes‡.

5.1. Evaluation of G-BDPT

In Figure 6, we visually compare the four methods at equal
render time. Full resolution images with error scores are also
provided as supplemental material. In Figure 5, we plot the
numerical convergence of all methods. We now briefly dis-
cuss each scene.

GLASS EGG is a standard benchmark scene for BDPT.
The light from the lamp on the left illuminates most of the
scene indirectly, making it hard for unidirectional PT to con-
nect paths with the light source. Additionally, the glass egg
on the table is lit directly by a second light source which
creates a strong caustic that is notoriously hard to sample
with PT. Unsurprisingly, BDPT performs much better in this
scene than PT. The behaviour of G-PT and G-BDPT is more
interesting: G-PT reduces the error compared to PT by a very
large margin, but for low sampling rates, it improves sub-
linearly with time. The reason for this is that direct caustics
lead to strong spike noise with unidirectional sampling, and
the L1 reconstruction suppresses the effect of such noise as
outliers. This means the L1 reconstruction reduces the error
significantly at the price of removing most of the caustic.
With higher sampling rates, the convergence rate becomes
more linear again since less of the caustic is removed in re-
construction. Since a bidirectional sampler can resolve caus-
tics much better, G-BDPT does not suffer from this. Com-
pared to its non-gradient counterpart, G-BDPT leads to an
improvement of a factor of five, in terms of render time to
same quality.

DOOR is a benchmark scene for testing rendering algo-
rithms under challenging illumination conditions. All visible
light has to pass from another room through a thin crack of
the door into the visible part of scene. For an unidirectional
sampler it is very unlikely to find a path that connects the
eye to the light, since it has to randomly pass through the
thin crack. For bidirectional path sampler this is slightly eas-
ier since it is enough if either the eye subpath or the light
subpath randomly passes through the crack. However, the
somewhat higher chance of finding valid paths is nullified by
the higher overhead of BDPT. Therefore, the performance of
both non-gradient algorithms is approximatively equal. Still,
G-BDPT outperforms G-PT by a factor of approximately
two. This is most likely due to the superior shift-mapping
(see Section 5.3).

BOTTLE is a complex scene with many glossy and spec-
ular surfaces, and a prominent direct caustic due to a small
area light source. Similar to GLASS EGG, PT and G-PT fail

‡ All images, including the references, are available in the supple-
mental material for inspection.

Scene G-PT G-BDPT
w/o LTP

G-BDPT
w/ LTP

G-BDPT
HV

Glass Egg x2.87 x3.83 x5.71 x5.56
Door x3.18 x3.34 x3.49 x3.48
Bottle x2.16 x3.42 x3.48 x3.72
Bathroom x2.39 x3.42 x3.83 x4.12
Sponza x2.47 x3.88 x4.03 x4.14

Table 1: The overhead of the different gradient-domain
methods compared to their non-gradient counterparts at
equal number of base samples. An overhead of 5 means that
gradient and conventional samples are equally expensive.
We compare G-BDPT in three set-ups: without light trac-
ing paths and with the Manifold perturbation shift mapping
(3rd column), with light tracing paths and the Manifold per-
turbation shift mapping (4th column), and with light tracing
paths and the half-vector preserving mapping (5th column).

to capture the caustic in a satisfactory way, while BDPT and
G-BDPT succeed. The non-linear convergence for low sam-
pling rates is stronger here for G-PT than in GLASS EGG

because the caustic covers a bigger fraction of the image.
Again, G-BDPT does not suffer from this, and provides a
benefit over BDPT by a factor of two.

Since the performance of the gradient-domain methods is
highly dependent on the performance of the underlying sam-
pler, we also analyzed scenes where bidirectional sampling
strategies are not beneficial.

BATHROOM is a complex scene that is illuminated by a
large light source from the outside through a glass window.
As the light source is large, even the unidirectional sampler
has a good chance to randomly hit the source, even in pres-
ence of the glass in between, making bidirectional sampling
of not much use. Because of this, the unidirectional meth-
ods (PT and G-PT) both have, at higher sample counts, an
error about 30% lower than their bidirectional counterparts.
Nonetheless, G-BDPT still improves over BDPT by a factor
of six.

Finally, SPONZA is a simple scene consisting of diffuse
surfaces only that are illuminated by a large area light. Since
there are no caustics and no challenging illumination con-
ditions, the overhead of bidirectional sampling is not amor-
tized in equal time comparisons. Thus in comparison both
bidirectional samplers are beaten by the unidirectional ones
roughly by a factor of two. Again, G-BDPT improves on its
non-gradient counterpart, here by almost an order of magni-
tude.

5.2. Computational Overhead

Intuitively, there are two reasons why gradient-domain ren-
dering improves over conventional approaches at equal
render time: first, sampled gradient samples have less
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Figure 5: Error plots of the scenes used in this paper, comparing bidirectional path tracing (BDPT), gradient-domain bidirec-
tional path tracing (G-BDPT), path tracing (PT), and gradient-domain path tracing (G-PT) at equal render time. The error is
measured as relative mean squared error (relMSE).

variance than sampled pixels in general, as shown re-
cently [KMA∗15]; and second, the overhead for computing
a gradient sample is typically cheaper than obtaining a con-
ventional sample, because it does not require tracing a full
path.

To show this empirically, we measured the overhead of
gradient-sampling by comparing the rendering time of gra-
dient and non-gradient methods with the same number of
base samples per pixel. That is, we compare gradient ren-
dering with n base samples and 4n offset paths to conven-
tional rendering with n samples. Hence at equal costs per
sample, gradient-domain rendering would have an overhead
factor of 5 in this comparison. We summarize our empirical
results in Table 1. For G-PT (first column) we measured a
scene-dependent overhead factor of 2.2 to 3.2, which agrees
with Kettunen et al. [KMA∗15]. For G-BDPT we report on
two configurations (second and third column), first without
the expensive sampling strategies for light tracing paths, and
then with it. To make the comparison meaningful we config-
ured BDPT in the same way. The results show that without
light tracing paths the overhead is roughly around 3.5 for all
scenes. Including light tracing paths increases the overhead
in general, but the increase is highly scene dependent. The
overhead can even become larger than 5, meaning that gradi-
ent samples become more expensive than conventional sam-
ples. This is the case in GLASS EGG where many, potentially
long light tracing paths need to be shifted for each base path.
The different overheads of G-PT and G-BDPT without light
tracing paths can probably be attributed to different levels of
code optimization.

5.3. Evaluation of the shift mapping

To justify our decision to use the manifold perturbation shift
mapping from Lehtinen et al. [LKL∗13] we compared it to
the simpler “half-vector shift mapping” from Kettunen et al.
[KMA∗15]. In a nutshell, this shift preserves the half-vectors
of the base path along the offset path starting at the eye, and
reconnects the offset path to the base path as soon as it en-
counters two consecutive diffuse vertices. For the compar-
ison we implemented both shift mappings in our G-BDPT
framework. In all tested scenes, G-BDPT with the manifold
perturbation shift yielded more pleasing results than with the

Manifold Perturbation Half-Vector

Figure 7: Comparison of the Manifold perturbation shift
mapping [LKL∗13] and the half-vector preserving shift
mapping [KMA∗15] on the BATHROOM scene at 1024spp.

half-vector shift at equal time. Figure 7 shows an example.
Surprisingly, despite the gradient descent optimization re-
quired in manifold perturbation, the overhead compared to
the half-vector shift is very small in practice. We report em-
pirical measurements in Table 1, rightmost column, which
shows that the overheads are consistently very similar. There
are two reasons. First, the gradient descent is only applied for
a small fraction of all shifts; second, the manifold perturba-
tion shift can often connect earlier to the base path, and thus
must shift fewer vertices.

6. Conclusions

We presented gradient-domain bidirectional path tracing, a
gradient-domain rendering algorithm that significantly and
consistently improves performance in comparison to stan-
dard bidirectional path tracing. Compared to previous uni-
directional gradient-domain path tracing, this is most use-
ful in scenarios where the additional cost of bidirectional
sampling is justified, in particular for scenes with caustics
or light sources that are not easily reachable for unidirec-
tional path tracers. Our method retains the attractive prop-
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erties of gradient-domain path tracing in that it is an un-
biased estimator when using L2 reconstruction, and can be
used in conjunction with the more outlier-friendly L1 re-
construction. In addition, we have shown that a shift map-
ping based on Manifold perturbation is advantageous com-
pared to the half-vector preserving shift proposed previously
for gradient-domain path tracing, providing improved image
quality at almost no additional cost.

While this paper shows the viability and benefits of
gradient-domain bidirectional path tracing, there are many
attractive avenues for future research to further reduce vari-
ance and sampling artifacts. We will investigate more pow-
erful reconstruction techniques, combining different shift
mappings, and more advanced gradient sampling techniques.
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Figure 6: Visual equal-time comparison of path tracing (PT), gradient-domain path tracing (G-PT), bidirectional path tracing
(BDPT) and gradient-domain bidirectional path tracing (G-BDPT). We provide the full resolution images with numerical error
measurements in the supplemental material.
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Base image, 128spp

Gradients and features L1 reconstruction, relative MSE 0.00662 Regularized reconstruction, relative MSE 0.00126

Figure 1: Our regularized reconstruction for gradient-domain rendering obtains a high-quality image from a noisy base image, the sampled
gradients, and auxiliary features (left). We (right) achieve significantly better images than standard L1 reconstruction (middle). The depicted
features are, from left to right, the vertical and horizontal gradients, normals, texture values, positions and ambient occlusion values.

Abstract
We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain render-
ing. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to
exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints.
We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate
a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the
regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
Algorithms

1. Introduction

With the ongoing path tracing revolution in the movie indus-
try [KFF∗15], there has been a renewed interest in noise reduc-
tion for Monte Carlo rendering. Monte Carlo algorithms are attrac-
tive because they are conceptually simple, general, and based on
a physical model of light transport. Noise artifacts, however, have
remained a challenge for real world applications. Since the level of
noise is inversely proportional to the square root of the number of
samples per pixel, it is often impractical to eliminate visual artifacts
in a brute force manner.

In this paper we build on gradient-domain rendering techniques,
which sample finite difference image gradients, in addition to the
usual pixel values, and then reconstruct final images by solving a
screened Poisson problem using the sampled gradients and pixels.
Gradient-domain rendering was originally proposed for Metropolis
light transport [LKL∗13], but recently Kettunen et al. [KMA∗15]
and Manzi et al. [MKA∗15] showed that it also significantly re-
duces the error compared to standard (bidirectional) path tracing
at equal computation time. Visual artifacts, however, often remain
even at hundreds of samples per pixel as shown in Figure 1. Even

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
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if we minimize the L1 error of the screened Poisson reconstruction,
which leads to bias but noticeably better visual quality than unbi-
ased L2 reconstruction, outlier pixels frequently persist.

Here we propose a technique to reduce these artifacts and fur-
ther increase image quality by leveraging auxiliary image space
information such as per pixel normals, albedo, or world space po-
sition. Our main contribution is to exploit these auxiliary image
features to extend and regularize screened Poisson reconstruction.
The basic idea of screened Poisson reconstruction is to find an out-
put image whose pixel values and finite difference gradients are
similar to the corresponding noisy, sampled data that we acquired
during gradient-domain Monte Carlo rendering. Intuitively, outlier
pixels in the reconstructed output appear if both the sampled pixel
value and its surrounding gradients contain outliers that happen to
be in rough agreement. Our regularization avoids these outliers by
adding constraints based on the features. These constraints encour-
age each small patch in the reconstructed output to be similar to a
weighted average of the corresponding feature patches. As shown
in Figure 1, our approach leads to much cleaner results with signif-
icantly lower numerical error.

We present an error analysis in terms of bias and variance that
allows us to study the influence of the parameters of our approach
on the output error, and choose robust parameters in practice. We
also describe a GPU implementation of our extended reconstruc-
tion technique that reduces the overhead of our method to a few
seconds on megapixel images. Our results show a significant visual
and numerical improvement over standard screened Poisson recon-
struction, and we show that our technique is consistent and con-
verges to the ground truth solution with increased sample counts.
In summary, we make the following contributions:

• An extended screened Poisson reconstruction approach for
gradient-domain rendering that leverages feature patches to reg-
ularize the solution.
• An error analysis that reveals the influence of the main parame-

ters of our method on the bias and variance in the output.
• An efficient GPU implementation that runs in a matter of sec-

onds on megapixel images.

2. Related Work

We discuss previous work in gradient-domain rendering and image
space denoising for Monte Carlo rendering.

Gradient-Domain Rendering. The core idea in gradient-domain
rendering is to sample finite difference image gradients in addition
to the usual pixel values. A gradient sample is simply the differ-
ence between the contribution of two light paths that go through
the neighboring pixels. By generating the two paths in a correlated
fashion such that they are as similar as possible, the magnitude of
their differences tend to become much smaller than their individ-
ual contributions. This leads to less noise in the sampled gradi-
ents compared to the conventionally sampled pixels, and screened
Poisson reconstruction yields output images with a higher qual-
ity at equal computation time compared to conventional rendering.
Gradient-domain rendering was proposed in pioneering work by
Lehtinen et al. [LKL∗13] in the context of Metropolis light trans-

port [VG97]. Manzi et al. [MRK∗14] improved the original ap-
proach by proposing more general gradient sampling techniques.
They exploit feature buffers to construct adaptive gradient kernels,
while we use them to regularize screened Poisson reconstruction.
These Metropolis methods adapt the target distribution that is sam-
pled by the Markov chain to include gradients, and to focus more
samples in regions with high gradients. Kettunen et al. [KMA∗15]
demonstrated that, maybe counterintuitively, adapting the sampling
distribution is not necessary to benefit from gradient sampling.
They describe a gradient-domain path tracer that simply obtains
four additional gradient samples for each conventional path con-
structed by a standard path tracer. Their approach consistently out-
performs conventional path tracing in a variety of scenarios at equal
render time. They also present a Fourier analysis that explains the
benefits of gradient sampling and reconstruction under some sim-
plifying assumptions. Manzi et al. [MKA∗15] subsequently de-
scribe a bidirectional gradient-domain path tracer with similar ben-
efits over the conventional approach. While screened Poisson re-
construction under the L2 norm leads to unbiased results with all
these techniques [LKL∗13], they typically advocate the use of the
L1 norm, which introduces bias but improves the visual quality. Yet
even L1 reconstruction suffers from artifacts as shown in Figure 1.

Image Space Denoising for Monte Carlo Rendering. Image
space filtering for Monte Carlo has a long history, but only re-
cently these techniques attracted renewed interest in the research
community and found application in movie production [Ren]. Here
we focus on the most relevant and recent work in image space de-
noising, and we refer to the work by Zwicker et al. [ZJL∗15] for a
more comprehensive survey. A key idea common to the most effec-
tive techniques to date is to use auxiliary per-pixel features, such as
normals, albedo, world space position, etc., to construct the denois-
ing filter. These features are effective because they are highly cor-
related with the output image, but they are usually much less noisy.
Bauszat et al. [BEM11] were some of the first to exploit this idea for
real-time rendering, building on the guided image filter [HST10].
Dammertz et al. [DSHL10] instead perform a fast wavelet trans-
form that considers the feature information. Shirley et al. denoise
motion and defocus blur [SAC∗11] by leveraging the depth buffer.

A number of approaches targeting off-line rendering exploit the
features by using them to define a cross-bilateral filter [ED04].
Sen and Darabi [SD12] propose an information theoretic approach
to deal with noisy features. Li et al. [LWC12] introduced a per-
pixel error estimate based on Stein’s unbiased risk estimator
(SURE) [Ste81] to select the best filter from a filter bank on a per-
pixel basis. Moon et al. [MJL∗13] apply a non-local means filter
(NL-means) [BCM05] guided by a virtual flash image. Rousselle
et al. [RMZ13] combine NL-means filter weights [RKZ12] for the
noisy color image with a cross-bilateral filter on the features, and
they also use SURE over several candidate filters to minimize the
output error. Kalantari et al. [KBS15] employ machine learning to
predict the parameters of a cross-bilateral filter at each pixel based
on image features. Our approach has similarities to Moon et al.’s
techniques based on local weighted regression [MCY14] and linear
prediction [MIGYM15]. While Moon et al. compute local linear
approximations separately, we use local linear models as regular-
ization terms in a global energy minimization setup.
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Sparse Reconstruction. Our approach is also inspired by image
denoising using sparse representations [AEB06], where the idea is
to express the desired output as a weighted sum of prototype signal-
atoms selected from an overcomplete dictionary. Signal reconstruc-
tion is performed by finding its sparsest representation, that is, a
linear combination of signal-atoms consisting of the fewest pos-
sible elements. Sparsity has been shown to effectively regularize
many problems including image denoising, image superresolution,
deconvolution, and many more. In our context, local patches taken
from the feature images around each pixel seem to be a natural
choice as the signal-atoms, because they contain most of the image
structure. Then it is straightforward to extend the screened Poisson
equation by expressing the image as a weighted sum of the atoms,
and solve for the sparsest representation of the image that satis-
fies the constraints on the output pixel values and the gradients.
In our experience, however, this approach did not lead to satisfac-
tory results. Because our images are often contaminated by sparse
outliers, imposing sparsity on the reconstruction from the dictio-
nary is not effective at eliminating the rare outliers. In addition,
sparse reconstruction of mega-pixel images tends to be expensive
even with fast solvers [vdBF08]. Instead, we require that the recon-
structed image, locally over each image patch, should be similar
to a weighted sum of a small number of predetermined basis func-
tions. These local constraints are overdetermined, since there are
more pixels in each local patch than predetermined basis functions.
We assemble the constraints in a global system that leads to an en-
ergy minimization problem that can be solved with the same simple
methods as the original screened Poisson equation.

3. Background

The key idea in gradient-domain rendering is to sample finite dif-
ference gradients between horizontal and vertical neighbor pixels,
in addition to pixel values. The final image is then reconstructed
by solving a screened Poisson equation. Gradient-domain render-
ing is beneficial because sampled gradients typically contain less
noise than sampled pixels. The noise level of high frequencies in
the reconstructed image is then determined by the noise in the gra-
dients, not the noise in the pixels [LKL∗13, KMA∗15]. While
our results in this paper build on the gradient-domain extensions
of (bidirectional) path tracing [KMA∗15, MKA∗15], our approach
is generic and applicable to all existing gradient-domain rendering
techniques [LKL∗13, MRK∗14].

Let us denote the conventional image sampled by a gradient-
domain rendering algorithm, also called the base image, by Ig and
the horizontal and vertical finite difference images by Idx and Idy.
Screened Poisson reconstruction solves for an image I that is most
consistent with both the sampled image Ig and the sampled gradi-
ents Idx and Idy,

I = argmin
Ī

∥∥α(Ī− Ig)
∥∥+

∥∥∥∥
(

Hdx Ī
Hdy Ī

)
−
(

Idx

Idy

)∥∥∥∥ , (1)

where α weights the relative influence of the pixel and gradient
constraints, and Hdx and Hdy denote the horizontal and vertical fi-
nite difference operators. Solving this equation under the L2 norm
leads to unbiased reconstructions, but is susceptible to visual arti-
facts. In practice, the L1 norm leads to more pleasing results, at the

cost of introducing bias. Even with the L1 norm, however, artifacts
occur frequently if the input pixels and gradients are too noisy.

4. Regularized Reconstruction

The goal of our technique is to regularize screened Poisson recon-
struction from Equation (1) to better suppress artifacts even at high
noise levels in the input. The key idea is to leverage feature images
that contain per pixel normals, albedo, position, etc. Intuitively,
we add regularization constraints that push each local patch in the
reconstruction to be similar to a weighted sum of corresponding
patches in the feature images. Since the feature patches are largely
free of noise and outliers, this leads to much cleaner outputs. We
illustrate our feature patch constraints in Figure 2.

At each pixel p, let us denote its patch neighborhood byNp. The
neighborhood consists of s = (2r+ 1)2 pixels, where we call r the
patch radius. Given the feature images, we first construct orthogo-
nal bases for the local feature patches using truncated SVD, as de-
scribed below. Assuming we have m feature bases, we unroll them
and compile them into a matrix Bp ∈Rs×m. In addition, the matrix
Γp ∈ Rs×n selects the s pixels in the local neighborhood Np from
the desired output image Ī, which has n pixels. Our patch constraint
says that the patch of the desired output image, Γp Ī, should be as
similar as possible to the patch itself projected onto the orthogo-
nal basis of the feature patch (multiplication with BT

p ), followed by
back-projection (multiplication with Bp). That is,

∥∥∥Dp · (BpBT
p − Ids)Γp Ī

∥∥∥= ‖Pp Ī‖ , (2)

should be as small as possible. Here, Ids is the s× s identity matrix,
Dp ∈ Rs×s is an additional weighting matrix, explained in detail
below. We summarize the constraint using an s×n matrix Pp.

We can stack all constraint matrices Pp, p = 1, . . . ,n into a ma-
trix M ∈ Rsn×n, and add these constraints to the original screened
Poisson problem to obtain

I = argmin
Ī

∥∥α(Ī− Ig)
∥∥+

∥∥∥∥
(

Hdx Ī
Hdy Ī

)
−
(

Idx

Idy

)∥∥∥∥

+‖βMĪ‖ , (3)

where we introduced the scalar weight β to control the influence of
the patch constraints. Under the L2 norm, we obtain the minimum
energy by solving the system of linear equations
(

β2MT M+HT H +α2Idn

)
I = αIg +HdxT

Idx +HdyT
Idy (4)

for the desired output image I. For simplicity, we introduced the no-
tation HT H = HdxT

Hdx +HdyT
Hdy, which represents the discrete

Laplacian opertor.

Feature Bases via Truncated SVD. Assume that we have l in-
put feature channels, where each element of vector valued features
(such as per pixel normals) is considered its own channel. At each
pixel p, we can unroll the channels into a s× l matrix Cp. We use
a singular value decomposition (SVD) of Cp to obtain our matrix
Bp that contains the orthogonal feature basis vectors. The SVD fac-
tors the matrix Cp ∈ Rs×l into a product of the form USV T , where
U ∈ Rs×s and V ∈ Rl×l are orthogonal matrices and S ∈ Rs×l is
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weighted
sum of:

Normal

?

Unknown image

Truncated SVD

Used basis vectors

Texture Position Ambient occlusion 

Figure 2: Construction of the feature patch constraints. We try to reconstruct an image Ī where each patch Γp Ī is a weighted sum of the
features in that patch. We orthogonalize the features by using SVD and truncate basis vectors of low singular values to avoid fitting to
residual noise in the features. For better visualization we omit the weighting matrix Dp and show a larger patch size than used in practice.

a rectangular diagonal matrix containing the singular values. The
first s columns of U then form a basis of the range of Cp.

Although the features are less noisy than the sampled image and
gradients, residual noise in the features will negatively impact the
effectiveness of our regularization technique. Hence, we use a trun-
cated SVD to remove noise from the feature subspace similar to
Moon et al. [MCY14]. The vectors in U are ordered by the mag-
nitude of the corresponding singular value. The smaller the sin-
gular value, the more noise is captured in the corresponding sin-
gular vector. This is demonstrated on an example in Figure 2. By
discarding singular vectors with small singular values, one can re-
move noise from the subspace. We follow the approach by Moon
et al. [MCY14] and discard basis vectors with a singular value
that is below a pixel-wise threshold τp. The threshold is defined
as τp = c‖Ep‖2, where ‖Ep‖2 is the spectral norm of Ep and c is a
constant that we set to 0.1 in all our experiments. The entries in Ep
are the square-roots of the pixel-wise variances of the features in
the patch Np. We approximate these variances using a two-buffer
approach, as described below, and approximate the spectral norm
of Ep with the computationally cheaper Frobenius norm.

Per-Pixel Weights. The patch constraints can lead to inaccurate
results if some pixels cannot be predicted well by the patch basis
vectors. For example, a patch may contain pixels belonging to dif-
ferent geometric objects that may be lit differently, such that a sin-
gle linear fit using the patch basis vectors cannot fit all pixels well.
Each row of (BpBT

p − Is)Γp Ī in Equation (2) measures the differ-
ence between a patch and its projection onto the feature subspace
in one pixel for each color channel. The purpose of the diagonal
weighting matrix Dp is to downweight the error of pixels that we
consider too different to fit our model. We calculate the weights
similarly to Rousselle et al. [RMZ13] by considering differences in

features and color to the central pixel in the patch, and taking the
minimum over all color and feature channels as our final weight.

We compute the color weights similar as in NL-means filter-
ing [BCM05, RKZ12], that is, by averaging color differences over
small neighborhoods of pixels. We derive the weights from the so-
lution of the original Poisson problem (using the L1 norm), because
this is less noisy than the sampled pixels in Ig. We also normalize
the color differences using their estimated variance, and we obtain
the variance of the L1 reconstruction using a two-buffer approach.
During rendering we accumulate each half of the samples in two
separate buffers, both for the base image and the gradients. We
then solve the L1 reconstruction twice, and we estimate the vari-
ance of each pixel based on the difference between the two recon-
structed buffers. We blur the resulting variance with a Gaussian
filter with standard deviation of two pixels, and take the maximum
of the blurred two-buffer variance and the raw two-buffer variance.
This reduces noise in the estimate, and it prevents the estimate from
being too small when dealing with strong outliers. Concretely, the
normalized color difference between two pixels p and q is

∆2
i (p,q) =

(ui(p)−ui(q))2− (Vari[p]+Vari[q])
ε+ k2

c(Vari[p]+Vari[q])
,

where p denotes the center pixel of the patch and q a neighboring
pixel, ui, i ∈ {1,2,3} indexes a color channel, and ε = 1e− 10 is
a constant and kc a user parameter. We next compute NL-means
distances by averaging the color differences ∆2

i (p,q) over small
neighborhoods around p and q,

d2
c (P(p),P(q)) =

1
3(2tc +1)2

3

∑
i=1

∑
n∈P(0)

∆2
i (p+n,q+n) ,

where we sum over the color channels i of all pixels in the neigh-
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borhood represented by a set P(0) of pixel offsets. The size of the
neighborhood is given by the radius tc. Finally, the color weights
are derived from the NL-means distances as

wc(p,q) = exp(−max(d2
c (P(p),P(q)),0)). (5)

Similar as for the color differences, we measure differences be-
tween pixels p and q of a feature channel f j as

Φ2
j(p,q) =

( f j(p)− f j(q))2− (Var j[p]+Var j[q])
ε+ k2

f (V j[p]+V j[q]))
,

where we use the same two-buffer estimate for the feature variance
Var j. In the denominator, we threshold the feature variance using

V j[p] = max(10−3,Var j[p],
∥∥∇ j[p]

∥∥2
), where ∇ j denotes the fi-

nite difference gradient, to avoid being too strict with feature dif-
ferences in non-smooth regions. Again, we set ε = 1e− 10, and
k f is a user parameter. We normalize all features to have values
in [0,1]. For vector-valued features, such as the normals, we view
each vector element as one individual feature. We compute NL-
means distances d2

f j
(p,q) equivalently to d2

c (p,q), using a radius t f
instead of tc. Finally, the feature weights are

w f (p,q) = min
j∈{1,...,l}

exp(−max(d2
f j (p,q),0)) , (6)

where l is the number of feature channels. From the color and fea-
ture weights we obtain our final weights

w(p,q) = min(wc(p,q),w f (p,q)). (7)

Finally, the elements of our diagonal weighting matrix are
Dp(q,q) = w(p,q).

It is important to realize that weighting the patch constraints does
not change our patch basis vectors. Even if we downweight the
patch constraint error for a certain pixel to near zero, that pixel is
still included in our patch basis, and it will influence the projec-
tion of all other pixels in the patch onto the basis. We address this
issue by completely removing pixels with very small weights be-
low a threshold of 1e− 10 from the patch, that is, by removing
these pixels from all feature vectors. This leads to patch constraints
corresponding to arbitrarily shaped patches. We orthogonalize the
modified feature vectors using SVD as described above.

5. Error Analysis

We perform an error analysis to better understand the behavior of
our extended Poisson reconstruction approach. We express mean
squared error (MSE) as the sum of squared bias and variance, and
investigate the source of bias and variance separately. Let us write
our noisy sampled image as Ig = Iref +Σg, where Iref is the ground
truth image, and Σg is a vector of i.i.d, zero-mean normally dis-
tributed random variables with variance σ2. Similarly, we write the
sampled gradients as Idx = HdxIref+γΣdx and Idy = HdyIref+γΣdy.
We assume both horizontal and vertical gradients have the noise
variance γ2σ2, which is related to the variance of the pixels by a
factor of γ2. We also assume that the constraint matrix M is not
influenced by noise in the input, and that we minimize the error un-
der the L2 norm. We then express our reconstruction I as the sum
of the ground truth image Iref and a per-pixel reconstruction error

ε, I = Iref + ε. Substituting this into Equation (4) yields
(

β2MT M+HT H +α2Idn

)
(Iref + ε)

= α(Iref +Σg)+HdxT
(HdxIref + γΣdx)+HdyT

(HdyIref + γΣdy).

Taking into account that the ground truth image Iref satisfies the
constraints of the conventional screened Poisson equations, that is,
(

HT H +α2Idn

)
Iref = αIref +HdxT

HdxIref +HdyT
HdyIref, (8)

and after some algebraic reformulation, we obtain an expression for
the error

ε = A−1
(

αΣg +HdxT
γΣdx +HdyT

γΣdy−β2MT MIref

)
, (9)

where, for simplicity, we introduced the shorthand notation

A =
(

β2MT M+HT H +α2Idn

)
. (10)

Bias. We now obtain the expected error, that is the bias, of our
reconstruction as

E[ε] =−A−1β2MT MIref, (11)

where we exploited that the noise Σg, Σdx, and Σdy is zero-mean.
Clearly, bias vanishes if β = 0, or the ground truth image fully sat-
isfies the patch constraints, that is MT MIref = 0. Note that E[ε] ex-
presses the per-pixel bias, and we can obtain the squared bias of an
image (or image region) as E[ε]T E[ε].

Variance. To compute variance we start by formulating ε−E[ε]
by combining Equations (9) and (11),

ε−E[ε] = A−1
(

αΣg +HdxT
γΣdx +HdyT

γΣdy
)
. (12)

The variance over an image (or image region) is E[(ε−E[ε])T (ε−
E[ε])], and we find that

E[(ε−E[ε])T (ε−E[ε])] = σ2
(

α2 tr(A−1T
A−1)

+ γ2
(

tr(HdxT
A−1T

A−1Hdx)+ tr(HdyT
A−1T

A−1Hdy)
))

, (13)

where tr is the matrix trace. We observe that variance goes to zero
for large values of β, because A−1 tends to be dominated by a fac-
tor 1/β2 (see Equation (10)). Using a spectral analysis, one can
also show that for β = 0 variance is minimized at α2 = γ2, which
corresponds to the result from previous work [KMA∗15].

Discussion. In Figure 3, we visualize squared bias, variance, and
their sum (that is, MSE) for a small image region over a range of
the α, β, and kc parameters of our method. On the left we show the
image region (top), and the bias over this region depending on our
parameters. Parameter α varies along the vertical, and β over the
horizontal axis. In addition, for each α we plot a range of kc values
along the vertical axis. We show variance and MSE (middle and
right) for two noise levels, assuming Gaussian noise for pixels and
gradients, where the variance of the gradients is γ2 = 0.2 times the
variance of the pixels. In the top row, the MSE is dominated by the
bias, and in the bottom row by the variance. Our main observation
is that the lowest variance for any β, and the lowest MSE, are both
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Figure 3: We plot the logarithm of the bias, variance and mean squared error of a 64×64 pixels region of Bathroom according to Equation
11 and 13 for different α, β and kc. We show β on the horizontal axis , and the unrolled parameters α and kc on the vertical axis. We plot
variance and MSE for two variance levels σ = 0.01 (low) and σ = 0.1 (high). We encircled the parameters with the minimal MSE in red. The
optimal α and kc are not affected by the noise level, whereas the optimal β gets shifted to the right with increasing noise.

achieved at approximately α2 ≈ γ2. Parameter β provides a bias-
variance tradeoff, where the value of β to minimize MSE depends
on the noise level and on kc.

6. Conjugate Gradient Solver

In practice, including the L1 norm to solve Equation (3) provides
superior results over pure L2 minimization. We use an iteratively
reweighted least squares (IRLS) approach, with the important ex-
tension to provide an estimate of the residual variance of the so-
lution. This enables further post-processing based on the residual
variance to improve the visual quality of the output, as described
below, and to perform error estimation and reconstruction scale se-
lection (Section 7). Solving Equation (3) is equivalent to obtaining

I = argmin
Ī

∥∥∥∥∥




αIn

Hdx

Hdy

βM




︸ ︷︷ ︸
A

Ī−




αIb

Idx

Idy

0




︸ ︷︷ ︸
b

∥∥∥∥∥ . (14)

We estimate the variance of our solution by expressing the right
hand side b as the sum of two image buffers b̂ and b̌, where each
contains one half of the samples that we rendered. We solve sep-
arately for both right hand sides, obtaining two solutions Î and Ǐ.
Because our solutions are linear in the two buffers b̂ and b̌, we have
I = (Î + Ǐ)/2, and we can estimate the residual variance of I as
(Î− Ǐ)2/4.

The matrix AT A is symmetric and positive-definite, hence we ap-
ply the conjugate gradient (CG) method. We summarize our modi-
fied CG algorithm in Figure 4. The main idea is to solve for b̂ and
b̌ simultaneously, while computing the IRLS weights based on the
desired final solution for b = (b̂+ b̌)/2. We use a fixed number of
five reweighting and 500 CG steps. The IRLS weights are stored
in the diagonal W matrix. We use a standard reweighting scheme
(Line 14). We normalize the weights such that they average to one
by multiplying W with the scalar A.rows/tr(W ), where A.rows is
the number of rows in A and tr(W ) the trace of W (Line 16). It is
important, however, to note that we take the L2 norm for the term
‖α(Ī− Ig)‖2 from Equation (3), that is, we do not reweight the cor-
responding elements of our system in Line 15. We found that using
the L1 norm for this term was not necessary thanks to our patch
constraints, and the advantage of the L2 norm is that we avoid the
loss of image brightness due to outlier removal under the L1 norm.
Although we use a combination of L1 and L2 norm in practice, as
opposed to the L2 norm in our analysis in Section 5, we empiri-
cally observe similar behavior of bias and variance as summarized
in Figure 3. In particular, we retain the ability to suppress a lot of
noise by introducing only a little bias as shown in Figure 3.

GPU Implementation. We implemented our solver in CUDA.
The regular structures of our sparse matrices allow us to calculate
indices of non-zero values directly, instead of reading them from
index arrays. As the algorithm is limited by memory bandwidth,
this directly translates into performance gains. We also use shared
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POISSONREGULARIZED(A, b̂, b̌,x0)

1 for k = 1 to 5
2 r̂0 = ATW 2b̂−ATW 2Ax0
3 ř0 = ATW 2b̌−ATW 2Ax0
4 p̂0 = r̂0; p̌0 = ř0
5 for i = 1 to 500
6 q̂ = ATW 2Ap̂i; q̌ = ATW 2Ap̌i
7 α̂ = (r̂T

i r̂i)/(p̂T
i q̂); α̌ = (řT

i ři)/(p̌T
i q̌)

8 x̂i+1 = x̂i + α̂ p̂i; x̌i+1 = x̌i + α̌ p̌i
9 r̂i+1 = r̂i− α̂q̂; ři+1 = ři− α̌q̌

10 β̂ = (r̂T
i+1r̂i+1)/(r̂

T
i r̂i); β̌ = (řT

i+1ři+1)/(ř
T
i ři)

11 p̂i+1 = r̂i+1 + β̂p̂i; p̌i+1 = ři+1 + β̌p̌i
12 e = A(x̂i+1 + x̌i+1)− (b̂+ b̌)/2
13 for j = 1 to A.rows
14 W j j = 1/(||e j||2 +0.05×0.5k−1)
15 W = setRowsToOne(W,1,x0.rows)
16 W =W ·A.rows/tr(W )
17 return [Î = x̂i+1, Ǐ = x̌i+1]

Figure 4: Pseudocode of our modified IRLS CG solver. We com-
pute the solution for two image buffers containing half the samples
separately, which allows us to estimate the variance of the solu-
tion. Crucially, we compute the IRLS weights based on the residual
of the average (Line 12), such that the average of our solution is
equivalent to the solution of the average of the two buffers.

memory and coalesced memory access patterns to further improve
performance.

The most expensive step in the algorithm is the computation of
the sparse matrix-vector product in line 6, where performance is
limited by memory access to load non-zero matrix elements. We
found that for our constraint matrix A it is beneficial to precompute
the matrix product ATW 2A. For a feature patch radius of r = 2, the
product has about seven times fewer non-zero elements than the
matrix A itself. Precomputing ATW 2A reduces the time required to
read matrix elements for the computation of the matrix-vector prod-
uct, and the corresponding performance increase for the matrix-
vector product outweighs the cost of the precomputation.

We use a fixed number of conjugate gradient iterations, but it
would also be possible to return earlier from the algorithm if it
already has converged sufficiently. The convergence speed of the
conjugate gradient algorithm depends on the root of the condition
number of the matrix ATW 2A. Using our patch constraints, the con-
dition number can get significantly larger than in the original Pois-
son problem and the algorithm can suffer from slow convergence.
We thus use a default of 500 conjugate gradient iterations, while the
original Poisson solver only uses 50 iterations. We could resort to
the preconditioned conjugate gradient method, but finding a good
preconditioner can be challenging and is left for furture work.

Post-Processing. The CG solver returns two images Î and Ǐ, and
we estimate the variance in the reconstructed image I = (Î+ Ǐ)/2 as
(Î− Ǐ)2/4. We leverage this estimate in a post-processing step that
is targeted at further reducing variance and artifacts. We achieve
this by filtering I with a cross NL-means filter using weights as

Before post-processing After post-processing
(relative MSE: 0.0176) (relative MSE: 0.0083)

Figure 5: This figure shows the effect post-processing step on
Bookshelf using G-BDPT with 32 samples per pixel and the third
reconstruction scale (Section 7).

described in Section 4, Equation (7). We provide more details in
Section 7. Figure 5 illustrates the post-processing step.

7. Multiscale Reconstruction and Scale Selection

We have shown (Figure 3) that by adjusting the parameters of our
approach we can minimize the reconstruction error depending on
the relative amount of noise in the rendered pixels and gradients (α
parameter), and depending on the levels of bias and variance (β,kc
parameters). Since these properties vary within each image, we ex-
pect to be able to reduce error by adjusting parameters locally. We
employ a multiscale reconstruction and scale selection approach
similar as in previous work to achieve this: we obtain three scales
by running our reconstruction with different parameters, estimate
the error of each scale locally, and combine them into a final image
by selecting for each pixel the scale that minimizes the error.

Reconstruction Parameters. Our goal was to determine the α,β,
and kc parameters for three reconstruction scales by finding param-
eters that minimize the error over a set of training images at differ-
ent sample counts. We found that the other reconstruction parame-
ters are insensitive to local bias and noise levels, and we set them
to constants reported in Section 8. Let us denote the set of recon-
struction scales in our search by P, where scale i has parameters
Pi =

[
αi,βi,kc,i

]
. We determined the combination of three scales

i1, i2 and i3 that yielded the smallest error of all combinations.

For simplicity we ran a brute force search where we evalu-
ated scales with α ∈ {0.05,0.1, . . .0.25}, β ∈ {3,5, . . . ,19}, and
kc ∈ {0.025,0.05,0.1, . . . ,0.35} for a total of |P| = 360 scales,
and 3603 ≈ 47m combinations. For each combination we com-
puted the reconstruction error over the training images. Since
we want to select scales locally, we computed the reconstruc-
tion error for small image patches. We chose 10× 10 pixels in
practice. Let relMSE(i, p) be the reconstruction error of scale i
measured in terms of relative MSE over a patch around pixel p
with respect to a reference image. The error of a combination of
three scales for the patch around p is then relMSE(i1, i2, i3, p) =
min(relMSE(i1, p), relMSE(i2, p), relMSE(i3, p)), and the total er-
ror of each combination i1, i2, i3 is the sum over all local patches in
all training images.
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Variance Bias Error Error
(estimated) (estimated) (estimated) (ground truth)

Figure 6: We compare our error estimate, with variance and bias,
to the ground truth on Bathroom (1024 samples per pixel).

Error Estimation. Given the three scales, which we determined
using the procedure described above, we estimate the MSE of each
scale to enable local scale selection. We express MSE as the sum
of squared bias and variance and estimate each separately.

The bias of a reconstructed scale Ii is defined as the difference
of the expected value of the reconstructed image Ii and the ground
truth image Iref, that is, Bias(Ii) = E[Ii]− Iref. Since the expected
value of the base image Ig is the ground truth we can reformulate
this to Bias(Ii) = E[Ii− Ig]. While Ii− Ig is trivial to compute, Ig is
typically very noisy, which will lead to a high variance in the bias
estimate. Even worse, squaring it to get the squared bias will sys-
tematically overestimate the true bias. Hence, we reduce the noise
of both Ig and Ii by filtering both images with an identical edge pre-
serving filter. We use the color based NL-means distances wc(p,q)
from Equation (5) with the parameters kc = 0.6 and f = 25 as the
filtering weights. Intuitively, this aggregates data of similar regions
to get a more reliable bias estimate. For the variance estimation we
use the squared difference between our two reconstructed buffers
as explained in Section 6. Finally, after adding our variance and
squared bias estimates, we filter this MSE estimate with a small
3×3 box-filter to further remove noise.

Scale Selection. We obtain our final image I by interpolating the
values of the three scales in each pixel with weights that are in-
versely proportional to the estimated errors,

I(p) =
3

∑
i=1

1/(estMSE(Ii(p))+ ε)
∑ j 1/(estMSE(I j(p))+ ε)

Ii(p), (15)

where estMSE(Ii(p)) is our error estimate of scale i at pixel p, Ii(p)
is the reconstructed value of scale i at pixel p, and ε = 10e− 10
prevents divisions by zero. Figure 7 compares a selection based on
our error estimate and a selection based on the true error. Our error
estimation and scale selection effectively reduces the error of the
final image below the error of any of the individual scales.

Final Algorithm. Figure 8 shows the complete reconstruction al-
gorithm. The inputs are the rendering outputs distributed into two
separate buffers, including the base image Îg, Ǐg, the gradients
Îdx, Ǐdx, Îdy, Ǐdy, and features F̂ , F̌ , as well as the reconstruction
scale parameters αi, βi and kc,i, i ∈ {1,2,3}. The features are inter-
preted as images with one channel per feature. Many reconstruction
steps must be applied on both buffers (·̂ and ·̌) separately. We rep-
resent steps that are applied on both buffers separately with the star
subscript (·?). We denote the average of both buffers as avg(·), and
var(·) computes the two-buffer variance as described in Section 6.
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Figure 7: We compare our scale selection to a reference selection
based on ground truth data. The color of the selection maps in the
middle are set according to the border colors of the scales on the
left. To highlight regions where correct scale selection is crucial
we modulated the brightness of the selection map per pixel by the
highest error of any scale in that pixel. We successfully select the
correct scales in regions where the scales differ dramatically (e.g.
the highlights) and obtain an overall numerical benefit.

Line 1 unrolls the input into a 1-d vector, used as the right hand
side in Equation 14. Line 2 removes excess noise from the features
with a NL-means filter, processing each channel of F separately.
This is similar to the feature pre-processing described in Rous-
selle et al. [RMZ13], and we found it to be beneficial in addition
to SVD truncation. We compute filter weights using Equations (5),
(6), and (7). The function nlmFilter(·, ·, ·, ·, ·) takes as arguments, in
this order, the image to be filtered, a guide image and its variance to
compute color weights (Equation (5)), a multi-channel feature im-
age (one channel per feature) and their variances to compute feature
weights (Equation (6)). We set the parameters to k f = 1, the NL-
means radius to t f = 3, and we ignore the color guide image. We
use a filter window size of 11× 11 pixels. Line 3 applies standard
L1 Poisson reconstruction with α = 0.2 on both inputs, and the re-
sulting images G? are used in Line 5 to compute per-pixel weights
for the patch constraints (Section 4).

We apply the reconstruction steps from Line 4 to 10 for each
scale separately. Line 5 and 6 builds the constraint-matrix A of our
equation system. Line 7 is the core of our algorithm where we
perform the regularized reconstruction as described in Section 6.
The found optimal parameters for the three scales are α1,2,3 =
[0.25,0.25,0.1], β1,2,3 = [5,17,19] and kc,1,2,3 = [0.1,0.35,0.15].
For the regularized Poisson step we further set r = 2, tc = 1 and
t f = 0 and k f =∞ for all scales. Line 8 applies the post-process
filter on the reconstruction to get rid of residual noise (see also
Section 6). The parameters for the NL-means filter are kc = 0.45,
k f = 1, tc = 1, t f = 0, and we filter over windows of 21× 21 pix-
els. Finally, we get the reconstruction scale Ii by averaging the two
reconstructed buffers (Line 9). Line 10 estimates the reconstruc-
tion error Ii as described earlier in this section. We obtain our final
output by combining the three scales using Equation 15 (Line 11).
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RECONSTRUCT(Îg, Ǐg, Îdx, Ǐdx, Îdy, Ǐdy, F̂ , F̌ ,α,β,kc)

1 b? = unroll(Ig
? , I

dx
? , I

dy
? )

2 F? = nlmFilter(F?,null,null,avg(F),var(F))

3 G? = poissonL1(I
g
? , I

dx
? , I

dy
? ,0.2)

4 for i = 1 to 3
5 M = buildM(avg(G),var(G),avg(F),var(F),kc,i)
6 A = buildA(M,αi,βi)

7 [x̂, x̌] = poissonRegularized(A, b̂, b̌,avg(Ig))
8 x? = nlmFilter(x?,avg(x),var(x),avg(F),var(F))
9 Ii = avg(x)

10 estMSEi = estimateError(Ii,avg(Ig), x̂, x̌)
11 I = combineScales(I1, I2, I3,estMSE1,estMSE2,estMSE3)
12 return I

Figure 8: Pseudocode of our complete reconstruction pipeline.

8. Results and Discussion

Implementation and Performance. We implemented our ap-
proach on top of the gradient-domain path tracing (G-
PT) [KMA∗15] and gradient-domain bidirectional path tracing (G-
BDPT) [MKA∗15] implementations in Mitsuba [Jak10] by the
original authors. We modified G-PT and G-BDPT to render the
sampling data into two separate buffers and to store feature infor-
mation (position, normal and texture). We also use an ambient oc-
clusion feature that helps to preserve some shading effects. We use
existing Mitsuba functionality to efficiently generate the ambient
occlusion maps. On an NVidia Titan X our approach takes about
one minute to reconstruct a one mega-pixel image. The pre-filtering
of all our features (Line 2) takes 0.5 seconds, solving the L1 recon-
struction for both input buffers (Line 3) 0.3 seconds, building the
patch constraint matrix M (Line 5) 5 seconds per scale, solving the
regularized reconstruction (Line 7) 14 seconds per scale, and post
processing both outputs (Line 8) takes 1.1 second per scale. The
time taken for error estimation and final scale selection is negli-
gible. Memory consumption of our implementation is rather high
since we store ATW 2A on the GPU. For a one mega-pixel image
we require approximately 7.5GB of GPU memory. This could be
reduced by performing the reconstruction on overlapping tiles of
the image separately, at the cost of some performance.

Comparison to Previous Work. We compare the denoising per-
formance of our algorithm in Figure 9 and 10 to gradient-domain
rendering using conventional L1 reconstruction (L1) and to Robust
Denoising with Feature and Color Information (RDFC) [RMZ13].
We measure all errors as relative mean squared error (rel. MSE)
E = mean((I − Ire f )

2/(I2
re f + 10−3)). Figure 10 shows that our

approach outperforms L1 reconstruction by a large margin. While
L1 reconstruction suffers from isolated spikes and low frequency
noise, our reconstruction yields a clean image even at low sampling
counts. In our tested scenes we report a significant improvement in
relative MSE of a factor of 1.5 to 5.

RDFC is representative for recent image space denoising tech-
niques for Monte Carlo rendering, achieving state of the art per-
formance for moderate and higher sampling rates (64 samples per
pixel and higher) [KBS15]. It leverages features similar to our ap-

proach, and for a fair comparison we used the exact same features
for both algorithms, including RGB texture, normal, world space
position, and a scalar ambient occlusion term. We use RDFC with
uniform sampling, since adaptive sampling for gradient-domain
rendering has not been described in the literature yet. We compare
our reconstruction on top of G-BDPT to RDFC on top of BDPT,
and our reconstruction on top of G-PT to RDFC on top of PT. The
authors of G-PT and G-BDPT report an overhead of their meth-
ods of roughly 2.5x for G-PT and 4x for G-BDPT compared to the
base algorithms. Hence, for equal time comparisons RDFC can use
2.5x more base samples when applied on top of PT and 4x more
base samples when applied on top of BDPT. Despite this, we still
achieve slightly better results with our method in our tested scenes.
With PT as base algorithm we show in Figure 10 that our method
improves upon RDFC in Bathroom and Bookshelf by 12% and in
Sponza by 50%. With BDPT as base algorithm we improve upon
RDFC in Bottle by 16%. Finally, Figure 9 demonstrates the con-
vergence of our method for the Bathroom scene using a log-log
plot. We observe that our method converges to the correct solution,
with errors by a factor of three to five lower than L1 reconstruc-
tion. Independent of rendering time, our method also consistently
outperforms RDFC time in this scene.

Discussion. The denoising results of our method and RDFC are
quite similar despite the rather different reconstruction approaches.
In regions that are well captured by features, both algorithms man-
age to remove variance nearly completely without introducing ar-
tifacts. Remaining error concentrates mostly at edges or around
scene details that are not well captured by the features. Our method
seems to benefit from the gradient information in these areas, which
often manages to capture such details with less noise. One such ex-
ample is the shading on the rubber duck in the Bathroom scene
(Figure 10). Gradients do not guarantee to reduce noise, however,
and there are also image regions where our approach has higher er-
ror than RDFC. An interesting observation is that RDFC uses very
large filtering kernels of size 21×21 or even 41×41 pixels, while
our method achieves comparable results using patch constraints of
size 5× 5 (r = 2). This is because our patch constraints are linked
in a global system, and as we showed, the parameter β allows us to
reduce variance independently of patch size.

To ensure a fair comparison to RDFC, we also tried to enhance
RDFC with the gradient information directly. First, we tried to
post-process the conventional screened Poisson reconstruction with
RDFC, and second, we tried to prefilter both gradients and pix-
els with RDFC, followed by conventional screened Poisson recon-
struction. In equal time comparisons, both these variants perform
significantly worse than RDFC without gradients and our proposed
approach.

Our approach is also orthogonal to specifics of the underlying
gradient-domain rendering algorithm, as long as the renderer re-
turns auxiliary feature data. Since variance computation relies on a
two-buffer approach [RKZ12], our technique can also be used with
Metropolis gradient-domain rendering [LKL∗13,MRK∗14], for ex-
ample. This would simply require to run two Markov chains with
different seeds. In summary, our approach closes the gap between
gradient-domain rendering and image space denoising. A key ad-
vantage over existing image space denoising techniques is that it
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Figure 9: Convergence for the Bathroom scene in a log-log plot.
We show path-tracing without de-noising (black), path-tracing with
RDFC (blue), gradient-domain path-tracing using L1 reconstruc-
tion (green), and our reconstruction (red).

will benefit from future improvements in gradient-domain render-
ing, such as improvements in gradient sampling using better shift
mappings, higher order finite differences, or adaptive sampling.

9. Conclusions

We presented an improved reconstruction technique for gradient-
domain rendering that leverages auxiliary image features. A
GPU implementation processes one mega-pixel images in about
one minute. Our approach outperforms previous solutions of the
screened Poisson equation under the L1 norm by a large margin.
We also compare our approach to a state of the art image space
denoising technique for Monte Carlo rendering and demonstrate,
for the first time, that gradient-domain rendering can outperform
conventional denoising. The margin, however, is modest and our
observations raise the challenge to further improve gradient sam-
pling. Since our approach is orthogonal to the underlying sampling
distribution, there are various avenues for future work. For exam-
ple, adaptive sampling based on the estimated error of the recon-
structed image should be straightforward to add on top of our im-
proved reconstruction technique. Finally, enforcing temporal con-
sistency would also be an interesting direction for future work.
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Figure 10: We compare our new algorithm (Ours) on several scenes to gradient-domain rendering using the L1 reconstruction (L1), to
ordinary rendering using Robust Denoising (RDFC) and to the used base algorithm (Base). The base algorithm for Bathroom, Sponza and
Bookshelf is unidirectional path tracing, while for Bottle it is bidirectional path tracing. The rendering times for all methods are approxima-
tively the same (except for the reference image) and are shown on the left of the insets. Below the insets we show the relative mean squared
error of each method for the entire image. The full resolution images on the left-most column show the result using our method.
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Figure 1: a) In addition to standard path sampling, our method also estimates spatial, temporal and mixed finite differences for the frames
of an animation. We then solve a 3D screened Poisson problem to reconstruct the animation whose frames best match the sampled data. b)
Equal-time rolling shutter crops of the animation KITCHEN 2. The rows are extracted from sequential animation frames. Our method often
reduces both spatial variance, seen as horizontal noise, and flickering, seen as vertical noise.

Abstract

We present a novel approach to improve temporal coherence in
Monte Carlo renderings of animation sequences. Unlike other ap-
proaches that exploit temporal coherence in a post-process, our
technique does so already during sampling. Building on previ-
ous gradient-domain rendering techniques that sample finite differ-
ences over the image plane, we introduce temporal finite differences
and formulate a corresponding 3D spatio-temporal screened Pois-
son reconstruction problem that is solved over windowed batches
of several frames simultaneously. We further extend our approach
to include second order, mixed spatio-temporal differences, an im-
proved technique to compute temporal differences exploiting mo-
tion vectors, and adaptive sampling. Our algorithm can be built on
a gradient-domain path tracer without large modifications. In par-
ticular, we do not require the ability to evaluate animation paths
over multiple frames. We demonstrate that our approach effec-
tively reduces temporal flickering in animation sequences, signif-
icantly improving the visual quality compared to both path tracing
and gradient-domain rendering of individual frames.

Keywords: Monte Carlo rendering, gradient-domain rendering

Concepts: •Computing methodologies→ Ray tracing;

1 Introduction

Monte Carlo path tracing is establishing itself as the algorithm of
choice for movie production because of its physical realism and
predictable behavior [Keller et al. 2015]. Rendering animations
with hundreds of thousands of frames is still challenging, how-
ever, due to the significant computational effort it takes to reduce
variance (noise) to acceptable levels. Current production pipelines
employ conventional Monte Carlo rendering techniques that pro-
duce each frame separately, and apply post-process noise reduction
filters. This seems wasteful, as the similarity between temporally
nearby images is not exploited during the rendering process.

In this paper, we introduce a Monte Carlo technique that exploits

temporal coherence during both rendering and reconstruction, as
opposed to just a post-process, and yields consistent results without
heuristic blending of samples across frames or other model-based
reasoning. These properties contrast previous algorithms, including
sample reprojection, spatio-temporal filtering, and the construction
of smooth spatio-temporal function bases for the frames.

Our key idea is to sample the differences between corresponding
pixels in temporally adjacent frames using correlated pairs of paths,
and then integrate the Monte Carlo difference estimates across time.
This effectively suppresses flickering, thanks to the surprising prop-
erty, shown previously in gradient-domain path tracing [Kettunen
et al. 2015], that correlated difference estimates followed by inte-
gration yields significant variance reduction for smooth signals.

Technically, we build on gradient-domain path tracing (GPT) [Ket-
tunen et al. 2015], which samples spatial finite difference image
gradients and reconstructs output images by solving a screened
Poisson problem. We extend both the sampling and reconstruc-
tion steps into the three-dimensional spatio-temporal domain. We
estimate the temporal differences using pairs of paths that share the
same primary sample space coordinates in adjacent frames, further
leveraging motion vectors provided by most standard path tracers
to try to ensure that both paths share a similar primary hit point
of the camera ray. This reduces variance in temporal differences,
and hence increases quality, while remaining consistent. Finally,
we introduce an adaptive sampling technique that exploits the spar-
sity of high variance regions in the gradient domain. Our method
is lightweight and largely non-intrusive in the sense that it can be
implemented relatively easily on top of an existing path tracer.

2 Related Work

Exploiting Temporal Coherence. While there is a broad lit-
erature on taking advantage of spatial coherence through filter-
ing [Rushmeier and Ward 1994] or interpolation [Ward et al. 1988]
to accelerate Monte Carlo rendering of individual images, there has
been much less work on temporal coherence. Early approaches, as
the one by Chen [1990] or Nimmeroff et al. [1996], relied on radios-
ity [Goral et al. 1984], and they focused on incrementally updating
or interpolating radiosity solutions over time. Temporal coherence
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methods are widely studied in real-time rendering [Scherzer et al.
2012], but interactivity is outside the scope of this paper.

In the context of Monte Carlo techniques, Havran et al. [2003] first
proposed to exploit temporal coherence in animations by updating
and reprojecting samples to different points in time. Similarly, in
final gathering in photon mapping [Tawara et al. 2004] and in irradi-
ance caching [Smyk et al. 2005], final gather or irradiance samples
can be sparsely updated and interpolated over time. An alterna-
tive strategy is to remove noise from image sequences produced by
Monte Carlo rendering after the fact, which can be achieved using
various image space filtering techniques. McCool [1999] proposed
to use anisotropic diffusion, for example. He may have been the
first to mention an extension to 3D spatio-temporal denoising for
Monte Carlo rendering, although this was not demonstrated in his
work. Meyer and Anderson [2006] use PCA analysis to construct
a smooth basis for a sequence of images, then they project noisy
images onto this basis for denoising. Recently, various image space
filters have also been demonstrated in the spatio-temporal setting
[Sen and Darabi 2012; Li et al. 2012; Rousselle et al. 2013; Moon
et al. 2014]. Zimmer et al. [2015] further propose a path space
decomposition approach and sophisticated motion estimation tech-
niques to maximize temporal coherence.

A key difference to our work is that we take advantage of temporal
coherence during both Monte Carlo sampling as well as reconstruc-
tion, instead of just filtering in a post-processing step. Furthermore,
we sample temporal differences in an unbiased fashion, and our re-
construction can produce unbiased output if desired. This is not
possible with any of the previous methods that use temporal coher-
ence. In practice, though, an outlier-suppressing L1 reconstruction
is preferred over the unbiased method, like with previous gradient-
domain rendering algorithms.

Gradient-domain Rendering. Gradient-domain rendering relies
on sampling finite difference image gradients in addition to pixel in-
tensities, where a gradient sample is the difference between a base
and an offset light path through neighboring pixels. Offset paths
are generated in a correlated fashion by shifting a base path sam-
pled by a standard path tracer to a neighboring pixel, such that the
two paths remain as similar as possible. Consequently, the magni-
tude of the difference in their throughputs is generally smaller than
their individual contributions. Due to this reduced variance, output
images after screened Poisson reconstruction are of higher quality
compared to conventional rendering. Finally, gradient-domain ren-
dering is unbiased if reconstruction employs the L2 norm.

Lehtinen et al. [2013] originally introduced gradient-domain ren-
dering for Metropolis light transport [Veach and Guibas 1997], and
Manzi et al. [2014] proposed more general gradient sampling tech-
niques to improve the original approach. Kettunen et al. [2015]
showed that gradient sampling is also beneficial in conventional
path tracing, and back their empirical results up with an analy-
sis that studies the gradient sampling and reconstruction process
through Fourier theory. Manzi et al. [2015] extend gradient-domain
path tracing to bidirectional path tracing, combining the advantages
of gradient and bidirectional sampling.

At its core, gradient-domain sampling estimates differences ∆i,j

between the intensities of neighboring pixels i and j as

∆i,j =

(
h(x) ∗

∫

Ω

f(x, p̄)− f(Tij(x, p̄))
∣∣T ′ij

∣∣ dµ(p̄)

)
(xi)

=

(
h(x) ∗

∫

Ω

gij(x, p̄)dµ(p̄)

)
(xi), (1)

where x is the image coordinate, h(x) a pixel filter, Ω the space of
light paths, (x, p̄) a path with additional parameters p̄, and f the

image contribution function. We call Tij a shift mapping that maps
a base to an offset path, and |T ′| = |∂T/∂x̄| is the determinant
of the Jacobian of T (x̄). Gradient-domain rendering techniques
may use various methods to sample base paths (x, p̄) in Equation 1,
such as unidirectional [Kettunen et al. 2015] or bidirectional path
tracing [Manzi et al. 2015]. While estimating the horizontal and
vertical finite differences, they also sample the image itself in a
conventional manner. Finally, finite differences are sampled in both
directions, that is, for each ∆i,j also ∆j,i is sampled, and the two
are combined using multiple importance sampling (MIS).

Depending whether i and j are horizontal or vertical neighbors, let
us classify the differences ∆i,j into horizontal and vertical, and
unroll them into two vectors Idx and Idy . In addition, let Ig denote
the conventional primary image unrolled into a vector. Screened
Poisson reconstruction solves for an image I that satisfies

I = argmin
Ī

∥∥α(Ī − Ig)
∥∥p +

∥∥∥∥
(
HdxĪ
Hdy Ī

)
−
(
Idx

Idy

)∥∥∥∥
p

, (2)

where α weights the influence of the pixel and gradient constraints,
and Hdx and Hdy denote the horizontal and vertical finite differ-
ence operators on the 2D pixel grid. The solution image I simul-
taneously minimizes the pixelwise difference to the primary image,
as well as the difference of its gradient to the sampled gradients.
The solution of Equation 2 under the L2 norm (p = 2) is unbiased,
but often suffers from visual artifacts. The L1 norm (p = 1) yields
more pleasing results, at the cost of introducing bias.

3 Temporal GPT

Our temporal gradient-domain path tracing algorithm introduces
three main conceptual components: finite differences over both
space and time, a temporal shift mapping to obtain these gradients,
and spatio-temporal screened Poisson reconstruction.

3.1 Space-Time Finite Differences

We sample three kinds of finite differences over space and time as
illustrated in Figure 2:

1. regular image gradients over pairs of pixels in individual
frames;

2. the temporal differences for a pixel between neighboring
frames; and

3. second-order mixed space-time differences, that is, temporal
differences between spatial gradients.

Spatial image gradients are computed precisely as in gradient-
domain path tracing [Kettunen et al. 2015], and we will not review
its spatial shift mapping here. In particular, we also evaluate spa-
tial shifts across pixels in both forward and backward directions,
and weight them using MIS. For clarity, our figures only feature the
positive spatial shift. We call the shift mapping between frames the
temporal shift, and the temporal differences consist of base-offset
path pairs in temporally adjacent frames. We compute the mixed
differences after-the-fact by subtracting corresponding spatial gra-
dients between adjacent frames.

3.2 Primary Sample Space Temporal Shift Mapping

For temporal and mixed differences, we propose a temporal shift
mapping that copies the primary sample space [Kelemen et al.
2002] coordinates of the base path to the next frame, just with the
time coordinate incremented by one full frame. This simply means
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Spatial shift               Temporal shift

Spatial differences Temporal differences Mixed differences
t

t+1

Figure 2: Spatial, temporal, and mixed spatio-temporal finite dif-
ferences over adjacent pixels in both space and time. Temporal fi-
nite differences are taken between paths in adjacent frames at times
t and t+ 1. The mixed differences are second order, that is, tempo-
ral differences between spatial gradients in adjacent frames.

the temporal offset path uses, with the exception of time, the same
values for the uniform random variables that specify the base path.

The main advantage of this shift is its simplicity. The shift has unit
Jacobian by construction, and as long as the renderer is determinis-
tic, implementation is trivial. We can render each frame twice, as
a base frame and a temporal offset frame. A base frame is rendered
with conventional GPT as usual. The temporal offset frame is also
rendered with GPT, by re-using the same random variables for each
pixel as the previous base frame. Hence, subtracting a base frame
from its succeeding temporal offset frame yields the temporal and
mixed differences.

We illustrate this process in Figure 3. The red samples form the base
frames, and the blue samples the temporal offset frames. Both base
and temporal offset frames include a primary image (consisting of
the samples indicated with filled circles) and spatial gradient images
(consisting of the differences between the spatial offset samples and
their corresponding primary samples).

The above scheme reduces the overhead of our approach by re-
using computation similar to the original GPT algorithm. Specif-
ically, for each base path (filled red circles) that contributes to the
primal image in the base frame, we re-use it as the base path for
our spatial gradients as in GPT. In addition, we re-use it as the base
path for a temporal difference. Finally, we re-use the temporal off-
set paths, which we computed for the temporal differences, to again
compute spatial gradients which we also use for the mixed gradi-
ents. Kettunen et al. [2015] report an overhead of 2.5× of GPT
over conventional path tracing. Our approach amounts to running
GPT with half the samples for both the base and offset image in
each frame, and hence we inherit the overhead of 2.5×.

A potential disadvantage of the primary sample space shift is that
the path throughput function is often less smooth over primary
sample space coordinates than other parameterizations, potentially
leading to higher variance than the more sophisticated spatial shift
that reuses path vertex positions instead. We address this by lever-
aging motion vectors (Section 4.2) to regain smoothness.

3.3 Spatio-temporal Reconstruction

Spatio-temporal screened Poisson reconstruction is a direct exten-
sion of the 2D case (Equation 2). In addition to spatial gradients, we
now also take into account the temporal and mixed spatio-temporal
differences, and instead of reconstructing a single frame Ī , recon-
struct a sequence of frames Ī simultaneously. Denoting the se-
quence of sampled conventional images by Ig , and the sequences
of sampled spatial, temporal, and spatio-temporal differences by

base path temporal offsetspatial offset

frame t t+1 t+2t-1

x

pi
xe

l i
i+

1

time

Figure 3: We illustrate sampling of spatial, temporal, and mixed-
spatio-temporal differences, using spatial (red) and temporal shifts
(blue arrows). Our approach amounts to rendering each frame
twice using GPT, as a base frame (red samples) and as a tempo-
ral offset frame (blue samples). Each offset frame has identical
primary sample space values as its preceding base frame, which
implements our temporal shift.

Idx, Idy, Idt, Idxdt, and Idydt, we formulate spatio-temporal recon-
struction as

I = argmin
Ī

∥∥α(Ī− Ig)
∥∥p +

∥∥∥∥∥∥∥∥∥∥




HdxĪ
Hdy Ī
HdtĪ
HdxdtĪ
HdydtĪ



−




Idx

Idy

Idt

Idxdt

Idydt




∥∥∥∥∥∥∥∥∥∥

p

, (3)

where Hdx and Hdy are the spatial finite difference operators on
the pixel grid, Hdt is the temporal finite difference operator be-
tween adjacent frames, and Hdxdt and Hdydt are the mixed spatio-
temporal finite difference operators. These are simply the concate-
nations of the temporal and spatial operators, Hdxdt = HdtHdx

and Hdydt = HdtHdy .

To process arbitrarily long input sequences we split them into over-
lapping subsequences, reconstruct each subsequence separately,
and smoothly blend between overlapping temporal regions after re-
construction. Our approach is similar to the temporal extensions
of screened Poisson reconstruction used by Bonneel et al. [2014;
2015]. However, they perform reconstruction in a causal manner,
processing subsequent frames one-by-one over time.

We solve Equation 3 via its normal equations ATAx = ATb and
a conjugate gradient solver in CUDA. The vector x consists of all
pixels in all frames, and matrix A is sparse and its rows represent
all the constraints in Equation 3. For efficiency our solver computes
ATA on the fly without storing A explicitly.

3.4 Frequency Analysis

In analogy to the purely spatial case studied in previous work, the
expected main benefit of adding temporal finite differences to the
sampling and reconstruction process is the reduction of high fre-
quency temporal variance (distracting flickering). To understand
this better, we extend the frequency analysis of gradient-domain
path tracing presented by Kettunen et al. [2015].

For simplicity, we assume that the mean squared errors (MSEs) of
the sampled spatial, temporal, and spatio-temporal gradients are all
equal, and denote them by |εG|2. Note that these directly corre-
spond to their variances. We denote the MSE of the sampled con-
ventional image by |εF |2. Since Monte Carlo sampling produces
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Figure 4: The reconstruction error over temporal frequencies ωt

for different methods. The plot is based on an assumed standard er-
ror of the sampled conventional image |εF | = 0.1, standard error
of sampled gradients |εG| = 0.02, and α = 0.2, which is a typical
scenario in practice. The dotted lines are from an empirical exper-
iment to confirm the theory, where we added Gaussian noise with
known variance to a sequence of images and their spatial and tem-
poral differences, and then performed reconstruction numerically.
The plots show an equal time comparison based on implementation
details as described in Section 5.

white noise, the variances are identical across frequencies, simpli-
fying the analysis. Kettunen et al. derive the relation between |εG|2
and |εF |2 under suitable simplifying assumptions, and show that
typically sampled gradients have lower variance than sampled pix-
els. We take this as given.

Let us denote the Frequency domain MSE of the final screened L2

Poisson reconstruction of the spatio-temporal animation sequence
by |εRα(ωx, ωy, ωt)|2. Following the analysis of Kettunen et al.,
it is easy to see that in contrast to the errors |εF |2 and |εG|2 in the
sampled base image and its gradients, the final reconstruction error
does vary with spatio-temporal frequency ωx, ωy and ωt. Introduc-
ing our temporal and mixed differences into their final reconstruc-
tion error, we get

|εRα(ωx, ωy, ωt)|2 = (4)

α4|εF |2 + |εG|2(|Dx|2 + |Dy|2 + |Dt|2 + |Dtx|2 + |Dty|2)

(α2 + |Dx|2 + |Dy|2 + |Dt|2 + |Dtx|2 + |Dty|2)2
,

where |Dx(ωx, ωy, ωt)|2 = 2−2 cos(2πωx) is the power spectrum
of the finite difference operator along horizontal spatial frequen-
cies ωx, and we omitted the arguments in the equation above for
brevity. The spectra of the other finite difference operators along
vertical spatial |Dy|2 and temporal dimensions |Dt| are defined
analogously. The power spectrum of the mixed finite difference
operator |Dtx|2 is the product |Dtx|2 = (2 − 2 cos(2πωx))(2 −
2 cos(2πωt)), and similar for |Dty|2. The error of screened Pois-
son reconstruction without temporal and mixed gradients, as in
Kettunen et al. [2015], corresponds to Equation 4 without the
|Dt|2, |Dtx|2, and |Dty|2 terms.

To gain insight, Figure 4 plots the reconstruction error from Equa-
tion 4 over temporal frequencies |εRα(ωt)|2, with spatial dimen-
sions averaged over, assuming equal time taken for sampling. We
compare standard GPT without temporal gradients (green) [Ket-
tunen et al. 2015], temporal GPT with only first-order temporal dif-
ferences Idt (red), and the full temporal GPT including also mixed
differences Idxdt, Idydt (black). Note that all algorithms include
standard spatial gradients. The comparisons are produced by omit-
ting the respective terms in Equation 4.

We see that without temporal differences, the error is white noise
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Figure 5: We show the effect of different ratios of variances in tem-
poral and mixed versus spatial gradients on the error in temporal
frequencies. We plot ratios {0.5, 1, 1.5, 2}. Even if temporal and
mixed gradients have more variance than spatial ones, which can
be caused by fast camera or object motion, we still obtain high fre-
quency noise reduction.

over time (green curve). This is expected, as the frames are sam-
pled independently. The main benefit of temporal differences (red
and black curves) is that high frequency temporal noise (distract-
ing flicker) is reduced, in analogy to purely spatial gradient-domain
rendering. In addition, we observe that mixed gradients (black) are
more effective at high frequency noise suppression than using only
temporal gradients (red). At equal computation costs, the tempo-
ral low frequency errors of both are higher than with only spatial
gradients because of the additional overhead to compute the tem-
poral and mixed gradients. This is not as perceptible as fast flick-
ering, however, and the end result is more pleasing. In the figure,
the MSE of conventional rendering without gradients is a constant
|εF |2 = 10× 10−3, which is long outside the range of the plots in
the figure.

In Figure 5, we investigate what happens when the sampled spatial
and temporal gradients have different variances. We slightly extend
Equation 4 by allowing for separate variances for spatial gradients
|εG|2, and temporal and mixed gradients c|εG|2, and denote their
ratio by c. We plot curves for c ∈ {0.5, 1, 1.5, 2}, a typical range
we observe in practice. The main observation is that even if tempo-
ral and mixed gradients have higher variance than the spatial ones,
which may be due to fast object or camera motion, we still obtain
some reduction in high frequency temporal error.

4 Extensions

4.1 Adaptive Sampling

Many previous authors have shown that distributing sampling ef-
forts non-uniformly over the image plane to minimize the error of
the output image may be beneficial. See Zwicker et al. [2015] for
a recent survey. In addition, the energy of the gradients, and hence
their variance, is usually sparsely distributed over the image [Ol-
shausen and Field 1996]. This suggests that adaptive sampling
may be even more effective in gradient-domain rendering, and that
the sampling distributions for gradient-domain rendering will have
stronger non-uniformity than ordinary adaptive sampling.

Ideally, to optimize output quality we should distribute samples ac-
cording to the error of our reconstruction. As this is hard to estimate
directly, we build on the following observation. We have found em-
pirically that for reasonably high sampling rates, the variance of
the L1-reconstruction of individual frames correlates strongly with
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Figure 6: Sampling distribution. Left: Average sampling map
based on the variance of the spatial gradients over 100 runs at 128
samples per pixel in a frame of the RUNNING MAN scene. Right:
Sampling map based on the variance of the L1 reconstruction. We
obtained the variance of the L1 reconstructions by running the re-
construction 100 times on differently seeded input data at 128 sam-
ples per pixel each. The sampling maps look very similar, hence we
use the estimated variance of the spatial gradients in practice.

the sample variance of the spatial gradients. This is illustrated in
Figure 6. While we cannot offer a theoretical justification for this,
we further observe, and our results show, that distributing samples
in each frame in proportion to the estimated variance of the spatial
gradients yields significant improvements.

To get reliable variance estimates we distribute our samples in sev-
eral batches: We distribute a first batch uniformly over the image,
and use it to get an initial estimate of the sampling variance of the
spatial gradients. We distribute all following batches such that they
minimize the relative variance (variance divided by luminance of
the pixel) of the gradients, and we also use them to update the vari-
ance estimates. Although this progressive adaptive sampling ap-
proach introduces bias, we consider it negligible in combination
with our biased L1 reconstruction. Usually the variance estimates
of the gradients remain very noisy even for high sampling counts,
in particular in scenes with specular paths. Hence we apply a 5× 5
median filter on the variance estimates before using them to obtain
sampling density maps. We further smooth the sampling density
maps with a separable kernel [0.1, 0.2, 0.4, 0.2, 0.1] and clamp the
maximum values to eight times the average pixel sample count per
sampling iteration to avoid sudden changes of sampling density.

Figure 7 compares the sampling distributions and final images
achieved by the described algorithm to a standard path tracer with
similar adaptive sampling based on the relative variance of its (reg-
ular) path samples. Adaptive sampling according to variance is
clearly more effective in the gradient domain. This is due to the
gradient sampler’s ability to divert effort away from pixels where
the underlying path space is smooth over the image coordinates.
The regular sampler cannot exploit this, and is forced to a more
uniform distribution by the variance along all path dimensions.

The primary sample space shift over time (Section 3.2) implies that
the time shifted paths must be generated with the same random
seeds as the paths in the base frame. In addition, the temporal offset
frame must use the same sampling distribution as the base frame.
To ensure this, we compute the sampling distribution map once for
the base frame and store it on disk. To render the temporal offset
frame, we read the sampling distribution map back from disk and
distribute samples according to it.

4.2 Motion Vectors

Generating correlated pairs of path samples in two consecutive
frames can be challenging. In presence of object or camera move-
ment, the same primary sample space path shifted from one frame
to the next, as described in Section 3.2, can hit very different ge-

PT, uniform PT, adaptive TGPT, uni. TGPT, adap.

Figure 7: Top: Sampling distribution based on the relative pri-
mal image variance (left) compared to sampling distribution based
on the relative gradient variance (right) on the KITCHEN 1 scene.
We computed the densities with four sampling batches with an av-
erage of 256 samples per pixel each. Bottom: path tracing (PT)
vs. our approach (TGPT) at equal render time, both with uniform
and adaptive sampling using the respective sampling maps from the
top row. Path tracing does not benefit from adaptive sampling here,
while adaptive TGPT benefits from the sparsity in the sampling map
and produces a visible improvement over uniform TGPT.

Offset frame Base frame Offset frame Base frameOffset frame Base frame

Frame tFrame t-1 Frame t+1

Motion
vectors

} } }

} }

Temporal differences Temporal differences

Figure 8: Obtaining temporal differences with motion vectors. We
render each frame twice using GPT, as a base (red) and an offset
frame (blue circles as pixels). We obtain temporal differences as the
difference between the offset frame at time t+ 1 and the base frame
at time t, where pixel correspondences are given by the motion vec-
tors (green arrows). Corresponding pixels use the same random
seed to implement the primary sample space temporal shift (Sec-
tion 3.2). Dotted green arrows indicate temporal differences that
we ignore as described in Section 4.2.2.

ometry in these two frames. This leads to a high variance of the
temporal differences. We mitigate this issue by taking into account
scene and camera motion through per-pixel motion vectors that rep-
resent the motion of primary hit points from one frame to the next:
instead of tracing the temporal offset path through the same pixel
as the base path, we trace it through the corresponding pixel given
by its motion vector. The intuition is that if we construct a tem-
poral difference such that it follows the motion of the underlying
object point, this often reduces the magnitudes of the temporal dif-
ferences, and hence their variance. Of course, this procedure must
be accounted for by the reconstruction algorithm. Note that this
does not break consistency; good tracking decreases variance, but
bad tracking does not break the algorithm. Many renderers, includ-
ing Mitsuba that we build on, provide motion vectors for generating
motion blur effects in post-processing.

4.2.1 Motion-aware Temporal Differences

In our pipeline, we obtain the temporal differences by rendering
each frame twice, as a base and a temporal offset frame (Sec-
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tion 3.2). We render both with GPT, so each consists of a primary
image and its spatial gradients. Then, temporal and mixed differ-
ences are obtained by simply subtracting the base from its succeed-
ing temporal offset frame. Here we discuss how to include motion
vectors in this process, as illustrated in Figure 8.

When rendering the base frame, we also compute motion vectors,
and store them to disk. A motion vector represents the movement of
a surface location between two frames, projected to the image plane
and measured as a 2D pixel offset rounded to the closest integers.
All motion vectors of a frame form a motion vector image. To
render the temporal offset frame, we now read the motion vector
image of the previous frame, compute the pixel correspondences
between the previous and the current frame, and then render the
offset frame using the primary sample space shift (Section 3.2), i.e.,
using the primary sample space coordinates of the corresponding
samples in the previous frame. If adaptive sampling is used, we
also look up the sampling density in the previous frame.

After rendering, we average the base and offset frames to obtain
the primary images Ig and the spatial gradients Idx, Idy . Next we
warp each temporal offset frame onto the previous frame according
to the motion vectors, that is, each pixel in a temporal offset frame
is warped backward along its incident motion vector (green arrows
in Figure 8). Temporal and mixed gradients Idt, Idxdt and Idydt

are then obtained by subtracting the base frame (including its pri-
mary and spatial gradient images) from the warped, temporal offset
frame. As shown in Figure 9, motion-aware temporal differencing
generally significantly decreases the differences’ magnitudes.

4.2.2 Reconstruction with Motion Vectors

Our conjugate gradient 3D Poisson solver computes ATA on the
fly, which requires efficient access to the non-zero elements in rows
of A and AT . Because we use motion vectors, however, the struc-
ture of A is modified, and not shift invariant any more. For sim-
plicity, we explain how we take into account the motion vectors
for the temporal constraints only. Computing the spatio-temporal
constraints follows the same principles.

The temporal constraints consist of pairs of pixels (i, t) and
(φ(i, t), t + 1), where i is a pixel index, t a frame, and φ(i, t) is
the index of the corresponding pixel in the frame t+ 1 given by the
motion vector at pixel i and frame t. The row of A that represents
the temporal gradient for pixel i at frame t has only two non-zero
elements, given by the pixels i in frame t and φ(i, t) in frame t+ 1.
Each row in the transpose AT corresponds to a pixel i at frame t,
and its non-zero elements correspond to all the constraints that (i, t)
is involved in. This includes the temporal difference of some pixel
j from frame t− 1, which maps to i via the motion vectors, that is,
φ(j, t− 1) = i. To find j we need to construct the inverse mapping
φ−1. For this mapping to be well-defined the motion map φ must
be one-to-one, which unfortunately is usually not the case a priori.

We achieve invertibility of φ by also querying for a reverse motion
map from frame t+1 to t. We require that whenever φmaps a pixel
to the next frame, the reverse motion map maps the result back to
the original pixel. We allow a tolerance of one pixel since the mo-
tion vectors are rounded to the nearest pixel. This tests that a pixel
and its correspondence in the next frame represent the same object,
as pixels often represent objects that get occluded in the next frame.
Including temporal difference constraints between different objects
would lead to higher variance. We then check for any remaining
cases of multiple pixels mapping onto one, and keep the ones that
are mapped closest to the camera.

This means that not all pixels have a motion vector, hence some
pixels do not have a temporal difference constraint. This is allowed

Figure 9: Temporal differences with motion vectors. Left: Mo-
tion unaware temporal differences in a frame of the BOOKSHELF
sequence at 512 samples per pixel. Right: Motion aware temporal
differences for the same setup. The motion-aware temporal differ-
ences on the right are significantly smaller (gray represents zero).

since each pixel is still constrained by the primary image and the
spatial gradients. With both the final φ and its inverse φ−1 ac-
cessible for the CUDA kernels, we quickly look up the non-zero
elements in the rows of both A and AT using φ(i, t) and φ−1(i, t).

5 Implementation

We implemented our approach on top of the public GPT code by
Kettunen et al. [2015] and made our code available on our web
page. We built a spatio-temporal screened Poisson solver on the
GPU, and process arbitrarily long animations by reconstructing
overlapping sub-sequences. We use windows with 10 frames and
overlap with the next frame by 5 frames. This limits temporal
data re-use to 10 frames, but we did not observe any benefits of
larger temporal windows in practice. We produce the final output
by smoothly blending the overlapping regions of the sub-sequences.
Reconstructing 10 frames at a resolution of 1280×720 pixels takes
around 15 seconds on an Nvidia GTX Titan and consumes roughly
2.6 GB of VRAM on the GPU. The only user parameter of the re-
construction is α (Equation 3), which we set to α = 0.2 for all our
results.

6 Results and Discussion

In the following figures and the accompanying video we compare
path tracing, gradient-domain path tracing, and our approach. All
results are rendered with motion blur, which our approach handles
without requiring any modifications, with an exposure time of half
a frame. We further include comparisons of our approach with
and without the proposed extensions (adaptive sampling and mo-
tion vectors).

Figure 10 visualizes the effect of temporal gradient sampling. At
the top, we plot the luminance of a pixel over time for the differ-
ent methods. At the bottom, we show a visual comparison using a
space-time image of a short vertical 1D image segment over time.
The plots and visualizations clearly show how our technique im-
proves the temporal smoothness of the result. We also see the bene-
fits of our extensions including adaptive sampling and motion vec-
tors, which further reduce residual noise. The video and Figure 11
feature visual comparisons of our approach with conventional path
tracing (PT), gradient-domain path tracing (GPT), and our approach
(TGPT) at equal computation time. In the figure, we show one
frame of the animation sequences for five test scenes (BOOKSHELF,
SPONZA, RUNNING MAN, KITCHEN 1, KITCHEN 2). In addition
to reducing temporal artifacts, TGPT clearly also suppresses spatial
artifacts that are still visible in GPT.

To disentangle the effect of adaptive sampling and temporal differ-
encing, the video includes a four-way comparison between spatial-
only GPT, spatial-only GPT with adaptive sampling, TGPT with-
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Figure 10: Top: Temporal plots for one pixel in KITCHEN 1 and
BOOKSHELF. Bottom: A 95 × 1 crop centered around the plotted
pixels over time. We track the crops over time using the motion
vectors of the central pixel, such that they are stationary relative to
the surface hit point at the central pixel. Because rounding errors of
the motion vectors accumulate over time, the image crops are still
shifting a bit with respect to the central pixel. “TGPT-” denotes
TGPT without any of the extensions discussed in Section 4.

out adaptive sampling, and TGPT with adaptive sampling using
the RUNNING MAN scene. Comparing the two spatial gradient-
domain algorithms, we observe that the clear improvement due to
adaptive sampling at corners and other high-variance areas comes
at the price of increased temporal flicker in the smooth areas. This
is to be expected, as the sample budget is limited and adaptivity
merely shuffles samples around. Temporal differencing reduces the
flicker drastically, but without adaptivity, corners and glossy areas
still suffer from variance. The combination of adaptation and tem-
poral differencing produces clearly the best results.

We further study the effect of the speed of motion on TGPT in the
video by comparing the RUNNING MAN animation at 1×, 2× and
4× the original animation speed. We can observe that the qual-
ity of the reconstruction degrades with increasing motion speed.
The reason for this is three-fold: First, motion blur becomes more
prominent, and regions where one single motion vector is insuffi-
cient to describe the motion of the underlying pixels become larger.
Second, larger changes in scene geometry from frame to frame lead
to less correlation between the base and offset paths, and hence to
larger temporal differences. And third, larger regions with motion
blur tend to make the adaptive sampling distribution more uniform,
thus making adaptive sampling less effective.

Finally, the video includes an experiment where only the temporal
differences are used in TGPT, that is, we omit spatial and spatio-
temporal gradients. This method is attractive because it merely
augments a simple path tracer with the temporal difference machin-
ery, which operates on primary sample space and is very simple to
implement. Without spatial differences, however, diffusion of the
noise in the reconstruction can only occur along the time dimension.
Hence, much longer temporal reconstruction windows are required
to achieve significant noise reduction, which makes GPU memory
management more challenging. The experiment in the video uses a
temporal reconstruction window of 10 frames and we observe some
noise reduction, but the noise appears glued to the surfaces and the
result is visually unappealing.

6.1 Discussion and Limitations

Standard (spatial-only) gradient-domain path tracing only reduces
noise in regions where the path throughput function is smooth un-
der the shift mapping, i.e., where correlated spatially neighboring
path pairs can be generated. Similarly, TGPT only reduces flicker-
ing in temporally smooth regions. This motivates our use of motion
vectors to find similar pixel pairs in adjacent frames. Fast-moving
or high-frequency moving geometry, however, increases variance
as the temporal signal becomes less smooth. In addition, like all
gradient-domain methods so far, TGPT cannot overcome the weak-
nesses of the underlying sampling method. For instance, it is poor
at resolving caustics, since the underlying path tracer cannot sam-
ple them efficiently. Conversely, when the underlying sampler per-
forms well, TGPT is very effective.

Several alternatives could be explored to reduce the variance of
temporal differences, like adapting the half-vector preserving [Ket-
tunen et al. 2015] or the manifold-walk based shift [Lehtinen et al.
2013] to the temporal domain. This would require information
about the motion of each path vertex from one frame to the next,
however, which is not provided in most existing renderers. We also
experimented with using different weights for the spatial, temporal,
and mixed gradients in the screened Poisson reconstruction, but did
not obtain any significant improvements. We observed, however,
that the local distribution of variances is rather different between
the different types of constraints. This indicates that locally adapt-
ing the weights could be more effective than setting them globally.

7 Conclusions

We presented a temporal extension of gradient-domain rendering
that significantly reduces temporal flickering artifacts compared to
previous work. Our approach is unique in that it exploits temporal
coherence already during Monte Carlo sampling, instead of impos-
ing it solely in a post-process. We propose a simple temporal shift
mapping to obtain temporal gradients using a primary sample space
shift, which can be implemented with only small changes to an ex-
isting gradient-domain renderer. Our approach also uses mixed-
spatio temporal gradients, and a frequency-analysis shows that they
can further reduce temporal high frequency error. In addition, we
proposed extensions to include adaptive sampling and motion vec-
tors, which effectively boost the quality of our results. In the future
we would like to investigate more sophisticated spatial and tempo-
ral shift mappings to further improve the quality of gradient-domain
rendering. We will also investigate other gradient stencils that may
provide additional benefits over our current spatial, temporal, and
mixed stencils. Finally, it would be interesting to analyze the bene-
fits and limits of adaptive sampling from a theoretical perspective.

136 CHAPTER 9. TEMPORAL GRADIENT-DOMAIN PATH TRACING



Acknowledgments

We thank Sampo Rask for RUNNING MAN, and Benedikt Bitterli
and blendswap.com user Jay-Artist for KITCHEN 2. This work
was supported by the Swiss National Science Foundation, projects
143886 and 163045, NSF project 1451830, and the Academy of
Finland, grant 277833.

References

BONNEEL, N., SUNKAVALLI, K., TOMPKIN, J., SUN, D., PARIS,
S., AND PFISTER, H. 2014. Interactive intrinsic video editing.
ACM Trans. Graph. 33, 6 (Nov.), 197:1–197:10.

BONNEEL, N., TOMPKIN, J., SUNKAVALLI, K., SUN, D., PARIS,
S., AND PFISTER, H. 2015. Blind video temporal consistency.
ACM Trans. Graph. 34, 6 (Oct.), 196:1–196:9.

CHEN, S. E. 1990. Incremental radiosity: An extension of pro-
gressive radiosity to an interactive image synthesis system. SIG-
GRAPH Comput. Graph. 24, 4 (Sept.), 135–144.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. 1984. Modeling the interaction of light between
diffuse surfaces. SIGGRAPH Comput. Graph. 18, 3 (Jan.), 213–
222.

HAVRAN, V., DAMEZ, C., MYSZKOWSKI, K., AND SEIDEL, H.-
P. 2003. An efficient spatio-temporal architecture for animation
rendering. In Proceedings of the 14th Eurographics Workshop
on Rendering, Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland, EGRW ’03, 106–117.

KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND
CSONKA, F. 2002. A simple and robust mutation strategy for the
metropolis light transport algorithm. Computer Graphics Forum
21, 3, 531–540.

KELLER, A., FASCIONE, L., FAJARDO, M., GEORGIEV, I.,
CHRISTENSEN, P., HANIKA, J., EISENACHER, C., AND
NICHOLS, G. 2015. The path tracing revolution in the movie
industry. In ACM SIGGRAPH 2015 Courses, ACM, New York,
NY, USA, SIGGRAPH ’15, 24:1–24:7.

KETTUNEN, M., MANZI, M., AITTALA, M., LEHTINEN, J., DU-
RAND, F., AND ZWICKER, M. 2015. Gradient-domain path
tracing. ACM Trans. Graph. 34, 4 (July), 123:1–123:13.

LEHTINEN, J., KARRAS, T., LAINE, S., AITTALA, M., DURAND,
F., AND AILA, T. 2013. Gradient-domain metropolis light trans-
port. ACM Trans. Graph. 32, 4 (July), 95:1–95:12.

LI, T.-M., WU, Y.-T., AND CHUANG, Y.-Y. 2012. Sure-based op-
timization for adaptive sampling and reconstruction. ACM Trans.
Graph. 31, 6 (Nov.), 194:1–194:9.

MANZI, M., ROUSSELLE, F., KETTUNEN, M., LEHTINEN, J.,
AND ZWICKER, M. 2014. Improved sampling for gradient-
domain metropolis light transport. ACM Trans. Graph. 33, 6
(Nov.), 178:1–178:12.

MANZI, M., KETTUNEN, M., AITTALA, M., LEHTINEN, J., DU-
RAND, F., AND ZWICKER, M. 2015. Gradient-domain bidirec-
tional path tracing. In Proc. Eurographics Symposium on Ren-
dering.

MCCOOL, M. D. 1999. Anisotropic diffusion for monte carlo
noise reduction. ACM Trans. Graph. 18, 2 (Apr.), 171–194.

MEYER, M., AND ANDERSON, J. 2006. Statistical acceleration for
animated global illumination. ACM Trans. Graph. 25, 3 (July),
1075–1080.

MOON, B., CARR, N., AND YOON, S.-E. 2014. Adaptive render-
ing based on weighted local regression. ACM Trans. Graph. 33,
5 (Sept.), 170:1–170:14.

NIMEROFF, J., DORSEY, J., AND RUSHMEIER, H. 1996. Im-
plementation and analysis of an image-based global illumination
framework for animated environments. IEEE Transactions on
Visualization and Computer Graphics 2, 4 (Dec.), 283–298.

OLSHAUSEN, B., AND FIELD, D. 1996. Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images. Nature 381, 607–609.

ROUSSELLE, F., MANZI, M., AND ZWICKER, M. 2013. Ro-
bust denoising using feature and color information. Computer
Graphics Forum 32, 7, 121–130.

RUSHMEIER, H. E., AND WARD, G. J. 1994. Energy preserving
non-linear filters. In Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’94, 131–138.

SCHERZER, D., YANG, L., MATTAUSCH, O., NEHAB, D.,
SANDER, P. V., WIMMER, M., AND EISEMANN, E. 2012.
Temporal coherence methods in real-time rendering. Computer
Graphics Forum 31, 8, 2378–2408.

SEN, P., AND DARABI, S. 2012. On filtering the noise from
the random parameters in monte carlo rendering. ACM Trans.
Graph. 31, 3 (June), 18:1–18:15.

SMYK, M., KINUWAKI, S.-I., DURIKOVIC, R., AND
MYSZKOWSKI, K. 2005. Temporally coherent irradiance
caching for high quality animation rendering. Computer
Graphics Forum 24, 3, 401–412.

TAWARA, T., MYSZKOWSKI, K., AND SEIDEL, H.-P. 2004.
Exploiting temporal coherence in final gathering for dynamic
scenes. In Proc. Computer Graphics International, 2004, 110–
119.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In Proc. of the 24th Annual Conference on Computer Graphics
and Interactive Techniques, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, SIGGRAPH ’97, 65–76.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988.
A ray tracing solution for diffuse interreflection. SIGGRAPH
Comput. Graph. 22, 4 (June), 85–92.

ZIMMER, H., ROUSSELLE, F., JAKOB, W., WANG, O., ADLER,
D., JAROSZ, W., SORKINE-HORNUNG, O., AND SORKINE-
HORNUNG, A. 2015. Path-space motion estimation and de-
composition for robust animation filtering. Computer Graphics
Forum 34, 4, 131–142.

ZWICKER, M., JAROSZ, W., LEHTINEN, J., MOON, B., RA-
MAMOORTHI, R., ROUSSELLE, F., SEN, P., SOLER, C., AND
YOON, S.-E. 2015. Recent advances in adaptive sampling and
reconstruction for monte carlo rendering. Computer Graphics
Forum 34, 2, 667–681.

137



BOOKSHELF PT GPT TGPT

SPONZA PT GPT TGPT

RUNNING MAN PT GPT TGPT

KITCHEN 1 PT GPT TGPT

KITCHEN 2 PT GPT TGPT

Figure 11: Comparison of our approach with conventional path tracing (PT), gradient-domain path tracing (GPT), and our proposed
temporal gradient-domain algorithm (TGPT) at equal computation time. We show one frame of the animation sequences for our five test
scenes, and a close-up each. In addition to reducing temporal artifacts, TGPT clearly also suppresses residual spatial artifacts that are still
visible in GPT. We rendered the first three scenes, from top to bottom, with 32 samples per pixel (spp) using GPT and TGPT, and 80 spp using
PT, which amounts to equal time given the 2.5× overhead of GPT over PT. The last two scenes have 256 spp for GPT and TGPT, and 640
spp for PT. TGPT splits the samples per frame into two halves to render each frame twice, as temporal base and offset frame (Figure 8).
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Chapter 10

Conclusions

Photo-realistic computer-generated images that grow in complexity and realism have been a driving

force behind the development of more efficient rendering algorithms. Gradient-domain rendering is

one of these methods. It reduces noise of rendered images by sampling the data in the gradient-

domain. Then is uses this data to create a final image with a screened Poisson reconstruction. In

contrast to adaptive sampling and reconstruction methods that also aim at reducing the noise of

the rendered image (Section 3.3.2), gradient-domain rendering methods are more general. They

do not rely on auxiliary information that is obtained during rendering1 and can be unbiased if the

reconstruction uses the L2-norm. Gradient-domain rendering is based on the idea to sample the

image in a sparser domain than traditional rendering methods. By doing so, we can concentrate on

the regions of an image or path space where something interesting happens. Additionally, it turns

out that the the finite differences of the path throughput that are sampled with gradient-domain

rendering can benefit greatly from correlated sampling techniques.

The first algorithm that used gradient-domain rendering is gradient-domain Metropolis light

transport [68]. However, this algorithm suffers from uneven convergence, is ill suited for animations

and is challenging to implement. This made the algorithm unattractive for being used in industry.

Thus, the goal of this thesis was to develop new algorithms that make gradient-domain rendering

more useful in practice. In this thesis different directions were explored to achieve this goal, including:

• generalizing the finite difference constraints,

• combining different shift mappings,

• adapting gradient-domain rendering to different base path sampler,

• regularizing the reconstruction and

• augmenting the dimensionality of the problem to the temporal domain.

While most of these contributions have been discussed, analysed and implemented separately, com-

bining them is expected to yield even greater benefits.

1With the exception of some of the extensions described in Chapters 6 and 8.
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Our first contribution (Chapter 6) generalizes the original method to use arbitrary difference

constraints instead of finite differences. This leads to an algorithm called bilateral-domain Metropolis

light transport. Intuitively, this generalization tries to take the basic idea of gradient-domain rendering

further than the original method: instead of sampling in the gradient-domain this method uses

precomputed information of the scene to sample in an even sparser domain. Important and easy

to detect features like texture edges or geometrical edges are baked into the Laplace matrices of

the reconstruction such that there is no need to sample those features explicitly. This leads to an

even better usage of the samples. Additionally, we described how several specialized shift mappings

could be combined in an unbiased way such that specialized shift mappings could be used in different

regions of the path space.

Our second contribution (Chapter 7) applies the principles of gradient-domain rendering on

bidirectional path tracing. This leads to gradient-domain bidirectional path tracing (G-BDPT). We

show that applying gradient-domain rendering to BDPT causes a combinatorial explosion of paths

that need to be shifted. We introduce a smarter gradient generation scheme that significantly reduces

the number of required shift operations.

Our third contribution (Chapter 8) modifies the reconstruction step of gradient-domain rendering

to produce smooth results even at very low sample counts. Similar to recent adaptive sampling and

reconstruction methods it uses auxiliary feature information to regularize the image. However, in

contrast to adaptive sampling and reconstruction methods our approach uses a global regularization.

This is achieved by adding new constraints to the reconstruction step. These new constraints enforce

smoothness by regularizing image patches based on auxiliary features. While providing usually better

results than the original screened Poisson reconstruction, this regularized reconstruction generates

consistent but biased results. This method is general enough to be applicable on any gradient-domain

rendering method.

Our final contribution (Chapter 9) is the extension of gradient-domain rendering on the temporal

domain. We discuss how the 2D problem of reconstructing an image can be extended to a 3D problem

of reconstructing a sequence of images. We do so by introducing temporal constraints between pixels

in different frames and reconstructing batches of frames at once. We show how this method greatly

suppresses high frequency noise along the temporal dimension and thus reduces temporal flickering.

This extension makes gradient-domain rendering even more useful for animation rendering. We

further discuss how adaptive sampling according to the variance of the gradients reduces noise even

more.

10.1 Future Work

We believe that gradient-domain rendering provides several avenues for future research. One obvious

improvement would be to develop new shift mappings that lead to even higher correlation than the

existing manifold exploration shift and half-vector shift (Sections 5.4.2 and 5.5.2). Shifts based on

more recent mutation techniques like the natural constraint representation [52, 35] or anisotropic

Gaussian mutations [70] are thinkable. Also, it would be interesting to explore if different shift

mappings can be combined in a way similar to MIS (Chapter 3.3.4) without introducing bias. While
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Chapter 6 describes a method to combine different shift mappings with arbitrary weights in theory,

it only used binary weights to do so. Robust combination schemes would open the door to designing

very specialized shift mappings for specific subspaces of the path space.

An additional generalization of gradient-domain rendering would be to develop shift mappings

that support participating media, since it usually is a strong source of variance with traditional

(MC-)MC methods. Also, since participating media often changes rather slowly over path space,

correlation of the base and offset paths would not necessary decrease by a lot due to participating

media. We thus believe that gradient-domain rendering would be very well suited for reducing this

type of noise.

Further, temporal G-PT (Chapter 9) showed that augmenting gradient-domain rendering by an

additional time dimension helps at reconstructing animations. We believe that similar extensions

over additional dimensions could be beneficial in cases when higher dimensional signals are generated,

e.g. when light-fields or even animated light-fields are rendered as a whole.

Gradient-domain rendering that was originally developed on top of MLT, was later applied on

unidirectional path tracing and BDPT. This shows that gradient-domain rendering is a very general

technique that can be applied on a multitude of path samplers. Naturally, it would thus be interesting

to adapt the algorithm to be applicable to other state-of-the-art MC rendering methods like vertex

merging [28, 33] and many-light methods [56, 14].

Finally, bilateral-domain MLT (Chapter 6) showed that methods based on the same idea as

gradient-domain rendering are not confined to use finite difference kernels to compute the smoothness

constraints of the screened Poisson reconstruction. While there is an analysis for the finite difference

kernels used in G-PT (Section 5.3), no such analysis exists for the structurally-adaptive kernels used

in bilateral-domain MLT so far. We believe that a solid theoretical understanding of the benefits

of those kernels could yield new insights with potential for better structurally-adaptive kernels. In

general it is unclear what kind of kernels would be optimal. For instance, it would be interesting to

explore if higher order finite differences could be beneficial either used alone or in conjunction with

classic gradient-domain rendering. Another avenue could be to move away from sampling differences

of paths altogether. For instance, Overbeck et al. [88] showed that sampling and reconstruction

according to a wavelet basis can be beneficial in the context of adaptive sampling and reconstruction.

The ideas used in gradient-domain rendering could probably be adapted to sample paths in the

wavelet-domain directly. On a more fundamental level this raises the question of what the optimal

domain is in which path space should be sampled in order to minimize the computational effort

to render images. Research in this direction could give raise to new physically-based rendering

algorithms that converge even faster.
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[16] Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps, and Jean-

Michel Morel. Boosting monte carlo rendering by ray histogram fusion. ACM Trans. Graph.,

33(1):8:1–8:15, February 2014.
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