

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the

repository record for this item and our Policy Document available from the repository home

page for further information.

To see the final version of this work please visit the publisher’s website. Access to the

published online version may require a subscription.

Link to publisher’s version: https://doi.org/10.1016/j.future.2018.06.055

Citation: Ghafir I, Hammoudeh M, Prenosil V (et al) Detection of advanced persistent threat using

machine-learning correlation analysis. Future Generation Computer Systems. 89: 349-359.

Copyright statement: © 2018 Elsevier B.V. All rights reserved. Reproduced in accordance with

the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-

NC-ND 4.0 license.

https://doi.org/10.1016/j.future.2018.06.055
https://doi.org/10.1016/j.future.2018.06.055

Detection of Advanced Persistent Threat Using
Machine-Learning Correlation Analysis

Ibrahim Ghafira,b, Mohammad Hammoudehc, Vaclav Prenosilb, Liangxiu
Hanc, Robert Hegartyc, Khaled Rabiec, Francisco J. Aparicio-Navarrod

aDepartment of Computer Science, Durham University, Durham, UK
bFaculty of Informatics, Masaryk University, Brno, Czech Republic

cFaculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
dSchool of Engineering, Newcastle University, Newcastle upon Tyne, UK

Abstract

As one of the most serious types of cyber attack, Advanced Persistent

Threats (APT) have caused major concerns on a global scale. APT refers to a

persistent, multi-stage attack with the intention to compromise the system and

gain information from the targeted system, which has the potential to cause

significant damage and substantial financial loss. The accurate detection and

prediction of APT is an ongoing challenge. This work proposes a novel machine

learning-based system entitled MLAPT, which can accurately and rapidly de-

tect and predict APT attacks in a systematic way. The MLAPT runs through

three main phases: (1) Threat detection, in which eight methods have been de-

veloped to detect different techniques used during the various APT steps. The

implementation and validation of these methods with real traffic is a significant

contribution to the current body of research; (2) Alert correlation, in which a

correlation framework is designed to link the outputs of the detection methods,

aims to identify alerts that could be related and belong to a single APT sce-

nario; and (3) Attack prediction, in which a machine learning-based prediction

module is proposed based on the correlation framework output, to be used by

the network security team to determine the probability of the early alerts to

develop a complete APT attack. MLAPT is experimentally evaluated and the

presented system is able to predict APT in its early steps with a prediction

accuracy of 84.8%.

Preprint submitted to Journal of LATEX Templates June 29, 2018

Keywords:

Cyber attacks, advanced persistent threat, malware, intrusion detection

system, alert correlation, machine learning.

1. Introduction

The volume, complexity and variety of Cyber attacks are continually increas-

ing. This trend is currently being driven by cyber warfare and the emergence of

the Internet of Things [1–3]. The annual cost of cyber attacks was $3 trillion

in 2015 and it is expected to increase to more than $6 trillion per annum by5

2021 [4]. This high cost has brought much interest in research and investment

towards developing new cyber attacks defence methods and techniques [5–8].

Although virus scanners, firewalls and intrusion detection and prevention sys-

tems (IDPSs) have been able to detect and prevent many of cyber attacks,

cyber-criminals in turn have developed more advanced methods and techniques10

to intrude into the target’s network and exploit their resources, targeting both

wired and wireless communications [9, 10]. In addition, many of the defence

approaches against cyber attacks consider those attacks are targeting random

networks, so they assume that if the company’s network is well protected, the

attacker can surrender and move onto an easier target. Nonetheless, according15

to a technical report by Trend Micro [11], this assumption is no longer valid with

the rise of targeted attacks, Advanced Persistent Threats (APTs), in which both

cyber-criminals and hackers are targeting selected organizations and persisting

until they achieve their goals.

The APT attack is a persistent, targeted attack on a specific organisation20

and is performed through several steps [12]. The main aim of APT is espi-

onage and then data exfiltration. Therefore, APT is considered as a new and

more complex version of multi-step attack. These APTs present a challenge for

current detection methods as they use advanced techniques and make use of

unknown vulnerabilities. Moreover, the economic damage due to a successful25

APT attack significant. The potential cost of attacks is the major motivation

2

for the investments in intrusion detection and prevention systems [13]. APTs

are currently one of the most serious threats to companies and governments [14].

Most of the research in the area of APT detection, has focused on analysing

already identified APTs [15–21], or detecting a particular APT that uses a30

specific piece of malware [22]. Some works have attempted to detect novel

APT attacks. However, they face serious shortcomings in achieving real time

detection [23], detecting all APT attack steps [23], balance between false positive

and false negative rates [22], and correlating of events spanning over a long

period of time [24, 25]. The existing work is encouraging. However, the accurate35

and timely detection of APT remains a challenge.

In this work, we have developed a novel machine learning-based system,

called MLAPT, which can accurately, and quickly detect and predict APT at-

tacks in a holistic way, making a significant contribution to the field of intrusion

detection systems (IDS). MLAPT runs through three main phases: threat de-40

tection, alert correlation and attack prediction, the major contributions of this

work include:

∙ Threat detection: the aim of this first phase is to detect threats during

the multi-step APT attack. We have developed eight methods/modules to

detect various attacks used in one of the APT attack steps. These include45

disguised exe file detection (DeFD), malicious file hash detection (MFHD),

malicious domain name detection (MDND), malicious IP address detection

(MIPD), malicious SSL certificate detection (MSSLD), domain flux detec-

tion (DFD), scan detection (SD), and Tor connection detection (TorCD).

The output of this phase is alerts, also known as events, triggered by50

the individual modules. All the methods have been evaluated using real

network traffic.

∙ Alert correlation: this second phase of the alert correlation intends to

correlate the alerts produced in the first phase with one APT attack sce-

nario. The main objective of using the correlation framework is to reduce55

the false positive rate of the MLAPT detection system. The process in

3

this phase undergoes three main steps: alerts filter (AF), to identify re-

dundant or repeated alerts; clustering of alerts (AC), which most likely

belong to the same APT attack scenario; and correlation indexing (CI),

to evaluate the degree of correlation between alerts of each cluster.60

∙ Attack prediction: in the final phase, a machine-learning-based prediction

module (PM) is designed and implemented based on a historical record of

the monitored network. This module can be used by the network security

team to determine the probability of the early alerts to develop a complete

APT attack.65

∙ The proposed MLAPT system is able to process and analyse the network

traffic in real time without needing to store data, and make possible the

early prediction of APT attacks so that an appropriate and timely response

can take place before the attack completes its life cycle.

The remainder of this paper is organized as follows. Section 2 presents the70

related work to APT detection. The proposed APT detection system and its

architecture are described in Section 3. Section 4 explains the implementation of

the proposed approach. The evaluation results and the performance comparison

with the existing APT detection system are shown in Section 5 and Section 6

respectively. Section 7 concludes the paper.75

2. Related Work

The APT detection has been a challenge for the current Intrusion Detection

Systems (IDSs), and much research has been conducted to address this type

of multi-stage attack. Table 1 describes current APT detection systems and

mesmerises their limitations.80

TerminAPTor, an APT detector, is described in [26]. This detector uses

information flow tracking to find the links between the elementary attacks, which

are triggered within the APT life cycle. TerminAPTor depends on an agent,

which can be a standard intrusion detection system, to detect those elementary

4

Table 1: Current APT detection systems: description and limitations

APT Detector Description Limitations

TerminAPTor [26] Uses information flow tracking to find

the links between the elementary alerts

High false positives

C&C-based [27] Considers the access to the C&C do-

mains independent while the access to

the legal domain is correlated

Can be easily evaded when the infected

hosts connect to the c&C domains while

users are surfing the Internet

Spear-phishing-

based [28]

Uses "Tokens" and utilises mathemati-

cal and computational analysis to filter

spam emails

The spear phishing email may not con-

tain any of the Tokens - Detects only

one step of APT life cycle

Statistical APT de-

tector [29]

The generated events in each APT step

are correlated in a statistical manner

Requires significant expert knowledge

to set up and maintain

Active-learning-

based [30]

Detects malicious PDFs based on white

lists and their compatibility as viable

PDF files

Detects only one step of APT life cycle

Data Leakage Pre-

vention [31]

Utilises DLP algorithm to detect the

step of data exfiltration

Detects only one step of APT life cycle

- Cannot achieve real time detection

SPuNge [23] Gathers the data on the hosts’ side Detects only one step of APT life cycle

- Cannot achieve real time detection

Context-based [32] Models APT as a pyramid in which the

top of the pyramids represent the at-

tack goal, and the lateral planes indi-

cates the environments involved in the

APT life cycle

Requires significant expert knowledge

to set up and maintain

attacks. The authors evaluated TerminAPTor by simulating only two APT85

scenarios and demonstrated that the APT detector needs to be improved by

filtering the false positives.

An APT detection system based on C&C domains detection is introduced

in [27]. This work analyses the C&C communication and states a new feature

that the access to C&C domains is independent while the access to legal domains90

is correlated. Despite the fact that the detection system achieved significant

results when validated on a public dataset, the authors mentioned that the

detection can be easily evaded when the infected hosts connect to the C&C

domains while users are surfing the Internet. Moreover, missing the detection

of C&C domains leads to failure in APT detection since this system depends on95

5

detecting only one step of the APT life cycle.

An approach for APT detection based on spear phishing detection is explored

in [28]. This approach depends on mathematical and computational analysis

to filter spam emails. Tokens, which are considered as a group of words and

characters such as (click here, free, Viagra, replica), should be defined for the100

detection algorithm to separate legitimate and spam emails. However, the spear

phishing email might not include any of the tokens which are necessary for the

algorithm process. Additionally, depending on one step for APT detection leads

the system to fail when missing that step.

A statistical APT detector, similar to TerminAPTor detector, is developed105

in [29]. This system considers that APT undergoes five states which are delivery,

exploit, installation, C&C and actions; and several activities are taken in each

state. The generated events in each state are correlated in a statistical manner.

This system requires significant expert knowledge to set up and maintain.

An active-learning-based framework for malicious PDFs detection is sug-110

gested in [30]. These malicious PDFs can be used in the early steps of APT

to get the point of entry. The system collects all PDFs transferred over the

network, then all known benign and malicious files are filtered by the "known

files module" which depends on white lists, reputation systems and antivirus

signature repository. Following this, the remaining files "unknown files" are115

checked for their compatibility as viable PDF files. This approach detects only

one step of the APT life cycle.

An approach based on Data Leakage Prevention (DLP) is proposed in [31].

This approach focuses on detecting the last step of APT which is the data

exfiltration. A DLP algorithm is used to process the data traffic to detect120

data leaks and generate "fingerprints" according to the features of the leak.

The proposed system utilises external cyber counterintelligence (CCI) sensors

in order to track the location or path of the leaked data. This approach is limited

to detect only one step of APT which is the data exfiltration. In addition, it

cannot achieve the real time detection as the CCI analysis unit should wait125

for the information from the sensors. Moreover, it is not guaranteed that the

6

CCI sensors can provide the required information regarding the leaked data

fingerprints. This approach also introduces privacy issues, whereby actors in

the CCI have access to the data stored and transfered by all users of the sytems.

A working prototype, SPuNge, is presented in [23]. The proposed approach130

depends on the gathered data on the hosts’ side and aims to detect possible APT

attacks. SPuNge undergoes two main phases, in the first one, the detected

malicious URLs are analysed. Those URLs can be connected by the hosts’

computers over HTTP(S) with an Internet browser or by malware installed on

the infected machines. The computers which show a similar activity are then135

determined. This system depends on detecting one activity of the APT attack,

which is malicious URL connection, and does not consider the other activities

of APT. Meaning, if the detection system misses the malicious URL connection,

the whole APT scenario will not be detected. Additionally, the system cannot

achieve real time detection.140

A context-based framework for APT detection is explained in [32]. This

framework is based on modelling APT as an attack pyramid in which the top

of the pyramid represents the attack goal, and the lateral planes indicates the

environments involved in the APT life cycle. This detection framework requires

significant expert knowledge to set up and maintain.145

Finally, the existing APT detection systems face serious shortcomings in

achieving real time detection, balance between false positive and false negative

rates and correlating of events spanning over a long period of time. To address

those weaknesses, this paper presents a new approach for APT detection and

prediction.150

3. A Correlation-based System for Real-time APT Detection and

Prediction

3.1. Design Rationale

APTs are multi-step attacks, therefore effective detection should go through

the detection of the techniques used within each stage of the APT life cycle.155

7

Detection modules should be developed to detect the most common techniques

used in the APT attack steps.

However, detecting a single stage of an APT technique itself does not mean

detecting an APT attack. Even though an individual module alert indicates a

technique which can possibly be used in an APT attack, this technique can be160

used for other types of attacks or it can be even a benign one. For example,

domain flux, port scanning and malicious C&C communications, used in the

APT attack, can be also used for botnet attacks [33]. Moreover, Tor network

connection, used for data exfiltration in the APT attack, can also be used legally

to protect the confidentiality of a user traffic [34]. Thus, individually these165

detection modules are ineffective and their information should be fused to build

a complete picture regarding an APT attack. For this reason, a correlation

framework should be developed to link the outputs of the detection modules

and reduce the false positive rate of the detection system.

Predicting the APT attack in its early steps would minimise the damage and170

prevent the attacker from achieving the goal of data exfiltration. With a histori-

cal record of the correlation framework output, machine learning algorithms can

be used to train a prediction model. As the purpose of the prediction model is

to classify the early alerts of the correlation framework, classification algorithms

should be selected to train the model.175

3.2. MLAPT Architecture

Based on the design rationale, the architecture of the proposed system

(MLAPT) is shown in Figure 1. The MLAPT runs through three main phases:

threat detection, alert correlation and attack prediction.

Initially, the network traffic is scanned and processed to detect possible tech-180

niques used in the APT life cycle. To this end, eight detection modules have

been developed; each module implements a method to detect one technique

used in one of APT attack steps, and it is independent from the other modules.

MLAPT implemented eight modules, presented later in Section 3.3 on page 10,

to detect the most commonly used techniques in the APT life cycle. The output185

8

MFHD

Detection modules

Correlation framework

Correlation
indexing

Alerts
clustering

Alerts
filter

Network traffic

Alert on APT attack detection

Input

Events

Output

Prediction module

DeFD MIPDMDND

DNDMSSLD TorCDSD

Machine learning
dataset

Filter

Predictor features

Labels

Normalization

Supervised learning

Decision trees

SVM

KNN

Ensemble

Model

Network security team

Figure 1: The Architecture of MLAPT.

of this phase are alerts, also known as events, triggered by individual modules.

The alerts raised by individual detection modules are then fed to the corre-

lation framework. The aim of the correlation framework is to find alerts could

be related and belong to one APT attack scenario. The process in this phase

undergoes three main steps: alerts filter to identify redundant or repeated alerts;190

clustering of alerts which most likely belong to the same APT attack scenario;

and correlation indexing to evaluate the degree of correlation between alerts of

each cluster.

In the final phase, a machine-learning-based prediction module is used by

the network security team to determine the probability of the early alerts to195

develop a complete APT attack. This allows the network security team to

predict the APT attack in its early steps and apply the required procedure to

stop it before completion and minimize the damage. The detection of APT is

9

different from the prediction. The detection can be when two or more steps of

APT are correlated. However, the prediction can be achieved after the first two200

steps of APT are linked.

The detection modules have been presented in [35–42], this paper focuses on

the correlation framework and prediction module.

3.3. MLAPT Detection Modules

Taking into consideration the APT steps, Table 2 shows the MLAPT detec-205

tion modules for each APT step. These modules are:

Table 2: The MLAPT detection modules for each APT step.

APT step Detection modules

Step 1

Intelligence gathering

This initial step includes a passive

process which cannot be detected

through network traffic monitoring,

so there are no detection modules.

Step 2

Point of entry

Disguised exe file detection

Malicious file hash detection

Malicious domain name detection

Step 3

C&C communication

Malicious IP address detection

Malicious SSL certificate detection

Domain flux detection

Step 4

Lateral movement

This is internal traffic within the

target’s network. MLAPT monitors

the inbound and outbound traffic,

so there are no detection modules.

Step 5

Asset/Data discovery
Scanning detection

Step 6

Data exfiltration
Tor connection detection

10

Disguised exe File Detection (DeFD): This module detects disguised exe files

over the connections. In other words, it detects if the content of the file is exe

while the extension is not exe. The network traffic is processed, all connections

are analysed and all exe files identified when transferring over the connections210

are filtered. This filtering is based on the file content. Following this, the file

name extension should be checked to decide about raising an alert on disguised

exe file detection [35].

Malicious File Hash Detection (MFHD): This module detects any malicious

file downloaded by one of the network hosts. It is based on a blacklist of mali-215

cious file hashes. The network traffic is processed, all connections are analysed

and MD5, SHA1 and SHA256 hashes are calculated for each new file identified

when transferring over a connection. The calculated hashes are then matched

with the blacklist [36].

Malicious Domain Name Detection (MDND): This module is used to detect220

any connection to a malicious domain name. It is based on a blacklist of mali-

cious domain names. DNS traffic is filtered, all DNS requests are analysed and

the queries are matched with the blacklist [37].

Malicious IP Address Detection (MIPD): This module detects any connec-

tion between an infected host and a C&C server. The detection is based on a225

blacklist of malicious IPs of C&C servers. MIPD processes the network traf-

fic to search for a match in the source and destination IP addresses for each

connection with the IP blacklist [38].

Malicious SSL Certificate Detection (MSSLD): This module aims at detect-

ing C&C communications based on a blacklist of malicious SSL certificates. This230

blacklist consists of two forms of SSL certificates, the SHA1 fingerprints and

the serial & subject, which are associated with malware and malicious activities.

The network traffic is processed and all secure connections are filtered. The SSL

certificate of each secure connection is then matched with the SSL certificate

blacklist [39].235

Domain Flux Detection (DFD): This module detects algorithmically gener-

ated domain flux, where the infected host queries for the existence of a large

11

number of domains, whilst the owner has to register only one. This leads to

the failure of many of DNS queries. DFD utilizes DNS query failures to detect

domain flux attacks. The network traffic is processed, particularly DNS traffic.240

All DNS query failures are analysed and a threshold for DNS query failures

from the same IP address is imposed to detect domain flux attacks and identify

infected hosts [40].

Scan Detection (SD): The SD module detects port scanning attacks which

aims to identify the noteworthy servers and services for future data exploitation.245

SD is based on tracking all failed connection attempts, and a threshold for those

failed attempts is imposed over a specific time interval to detect scanning attacks

and identify infected hosts [41].

Tor Connection Detection (TorCD): This module detects any connection to

a Tor network. It is based on a list of Tor servers which is publicly published.250

The network traffic is processed and the source and destination IP addresses for

each connection are matched with Tor servers list [42].

3.4. FCI Correlation Framework

This phase of MLAPT takes the output of each of the detection modules (the

generated alerts) as an input, and aims to find alerts could be correlated and255

belong to a single APT attack scenario. FCI (Filter, Cluster, and Index) runs

through three main steps: (1) Alerts filter, which filters redundant or repeated

alerts; (2) Alerts clustering, which clusters alerts which potentially belong to

the same APT attack scenario; and (3) Correlation indexing, which evaluates

the correlations between alerts of each cluster.260

In Section 3.3, eight attack detection modules are presented, each module

detects one possible technique used in one of the APT steps. The output of each

module is an alert which is generated when an attack is detected. Each alert has

seven attributes (alert_type, timestamp, src_ip, src_port, dest_ip, dest_port,

infected_host). Table 3 summarizes the steps of the APT attack that can be265

detected by MLAPT and the alerts which can be generated for each step.

All alerts generated by the detection modules are fed to the correlation

12

Table 3: The APT attack detectable steps and alerts.

APT step Alerts

(A) Step 2

Point of entry

(a1) disguised_exe_alert

(a2) hash_alert

(a3) domain_alert

(B) Step 3

C&C communication

(b1) ip_alert

(b2) ssl_alert

(b3) domain_flux_alert

(C) Step 5

Asset/Data discovery
(c1) scan_alert

(D) Step 6

Data exfiltration
(d1) tor_alert

framework. However, those alerts are not the only ones detected by the the

modules. When an APT technique is detected, and before an alert is gener-

ated, the module checks whether the same alert has been generated during the270

previous day, if so, the alert is ignored. This alerts suppression reduces the com-

putational cost of the FCI correlation framework. The FCI process steps will

be explained in this section. As an output of the FCI correlation framework,

two main alerts can be generated:

∙ apt_full_scenario_alert: This alert is generated when FCI detects a full275

APT attack scenario during a specific time window, called the correlation

time. This is the period in which APT is expected to complete its life

cycle. A full attack scenario is one in which all possible detectable steps

of an APT are detected by FCI. In other words, FCI detects four correlated

steps of an APT, i.e. four different alerts each one is from a different step.280

Based on Table 3, and taking into consideration the APT life cycle, FCI

is able to detect nine possible full scenarios of APT (APT-full). These

13

possible full APT scenarios can be expressed as:

𝐴𝑃𝑇𝑓𝑢𝑙𝑙 = 𝐴 ∧𝐵 ∧ 𝐶 ∧𝐷 (1)

where 𝐴 = [𝑎1 ∨ 𝑎2 ∨ 𝑎3], 𝐵 = [𝑏1 ∨ 𝑏2 ∨ 𝑏3], 𝐶 = [𝑐1] and 𝐷 = [𝑑1].

∙ apt_sub_scenario_alert: This alert is generated when FCI detects two285

or three, rather than all, correlated steps of an APT attack during a

specific time window. In this partial attack detection scenario, alerts

from one or two steps were not generated. Thus, FCI can gener-

ate two types of this alert: apt_sub_scenario_two_steps_alert ; and

apt_sub_scenario_three_steps_alert. FCI is able to detect forty six pos-290

sible APT sub-scenarios which can be expressed as:

𝐴𝑃𝑇𝑠𝑢𝑏 = [𝐴 ∧ (𝐵 ∨ 𝐶 ∨𝐷)] ∨ [𝐵 ∧ (𝐶 ∨𝐷)] ∨ [𝐶 ∧𝐷]∨

[(𝐴 ∨𝐵) ∧ (𝐶 ∨𝐷)] ∨ [𝐴 ∧𝐵 ∧ 𝐶] ∨ [𝐴 ∧ 𝐶 ∧𝐷] ∨ [𝐵 ∧ 𝐶 ∧𝐷]
(2)

3.4.1. Alerts Filter (AF)

The first module of the FCI correlation framework filters redundant or re-

peated alerts. The AF module takes all alerts generated by the various detection

modules as an input. For each new generated alert, the alerts filter checks if the295

alert has been generated during the correlation time window. If the new alert

is the same type and has the same attributes of a recorded one, then the new

alert is ignored. This filtering module reduces computational cost of the FCI

correlation framework.

3.4.2. Alerts Clustering (AC)300

This module clusters alerts which most likely belong to the same APT attack

scenario. One cluster can represent a possible APT full or sub-scenario, i.e. it

can contain one, two, three or four different alerts; each alert for a different APT

step. The AC module takes the AF output, all alerts generated by the detection

modules after repeated ones are filtered, as an input. All incoming alerts are305

14

stored by AC for a correlation time. For each new alert, the AC module checks

all stored alerts for the clustering possibility. The clustering algorithm in this

module is scenario-based, which utilizes three main rules:

∙ Alert step: Alerts for the same APT attack step cannot be in one cluster.

∙ Alert type: Alerts of the same type cannot be in one cluster.310

∙ Alert time: Cluster’s alerts should be all triggered within the correlation

time, and alerts order should be corresponded with the APT life cycle.

Meaning, if t(d), t(c), t(b) and t(a) are the times when the alerts from the

APT steps six, five, three and two, respectively, have been triggered, the

clustering algorithm can classify those alerts into one cluster only if they315

meet the following two conditions:

t(d) > t(c) > t(b) > t(a)

t(d) - t(a) <= Correlation_time

The AC module has four processing engines, explained later in Section 4.2.2

on page 20, each engine processes all alerts which belong to one of the APT320

detectable steps. Based on the incoming alert step, a corresponded engine runs.

As a result of AC process, the new incoming alert can be classified into an

existing APT cluster, a new APT cluster can be created, or the new alert is

ignored as it does not meet the rules and cannot be clustered at all. The output

of AC is APT clusters. Each cluster contains a maximum of four alerts, which325

potentially belong to one APT full or sub-scenario. The produced cluster alerts

are evaluated using the correlation index algorithm, presented in the following

Section 3.4.3 on page 15, to decide if they are correlated or not.

3.4.3. Correlation Indexing (CI)

The third processing module evaluates the correlations between alerts in330

each cluster to determine if they belong to a full or sub APT attack scenario.

This module has two major functions. The first function is to evaluate the cor-

relations between alerts when building the cluster. The goal of this correlation

15

process is to filters clusters having uncorrelated alerts. The second function

calculates the correlation index of each cluster by the end of the correlation335

window. The latter function is essential to build a historical record of the mon-

itored network to be used in the next module of the FCI correlation framework,

namely the prediction module.

The correlation indexing (CI) algorithm makes use of the attributes of each

alert in the cluster to calculate the cluster’s correlation index 𝐶𝑜𝑟𝑟𝑖𝑑. To find340

the 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster, the CI algorithm calculates the correlation between

each two alerts (steps) in the cluster. Therefore, three values are calculated

within each cluster: 𝐶𝑜𝑟𝑟𝑎𝑏, the correlation between the second step (𝑎𝑙𝑒𝑟𝑡1)

and the third step (𝑎𝑙𝑒𝑟𝑡2) of APT; 𝐶𝑜𝑟𝑟𝑏𝑐, the correlation between the third

step (𝑎𝑙𝑒𝑟𝑡2) and the fifth step (𝑎𝑙𝑒𝑟𝑡3) of APT; and 𝐶𝑜𝑟𝑟𝑐𝑑, the correlation345

between the fifth step (𝑎𝑙𝑒𝑟𝑡3) and the sixth step (𝑎𝑙𝑒𝑟𝑡4) of APT.

The clustering algorithm is based on alert_type and timestamp attributes

of each alert. However, the correlation indexing algorithm is based on in-

fected_host and scanned_host attributes. To calculate 𝐶𝑜𝑟𝑟𝑎𝑏, 𝐶𝑜𝑟𝑟𝑏𝑐 and

𝐶𝑜𝑟𝑟𝑐𝑑, taking into consideration the APT attack life cycle and the attributes350

of each alert in the cluster, the CI algorithm utilizes the following rules:

𝐶𝑜𝑟𝑟𝑎𝑏 =

⎧⎪⎨⎪⎩1, if [𝑎𝑙𝑒𝑟𝑡2, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡2] = [𝑎𝑙𝑒𝑟𝑡1, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑜𝑟𝑟𝑏𝑐 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if [𝑎𝑙𝑒𝑟𝑡3, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡3] = [𝑎𝑙𝑒𝑟𝑡2, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡2]

or [𝑎𝑙𝑒𝑟𝑡3, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡3] = [𝑎𝑙𝑒𝑟𝑡1, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

16

𝐶𝑜𝑟𝑟𝑐𝑑 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡3, 𝑠𝑐𝑎𝑛𝑛𝑒𝑑_ℎ𝑜𝑠𝑡]

or [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡3, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡3]

or [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡2, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡2]

or [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡1, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

When 𝐶𝑜𝑟𝑟𝑎𝑏 equals to 1, this means there is a correlation between the

second step and the third step of APT and the corresponding alerts can be in

one cluster. When 𝐶𝑜𝑟𝑟𝑎𝑏 equals to 0, there is no correlation and the two alerts

cannot be in one cluster. And so on for 𝐶𝑜𝑟𝑟𝑏𝑐 and 𝐶𝑜𝑟𝑟𝑐𝑑.355

The CI algorithm calculates the cluster’s correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 using the

following equation:

𝐶𝑜𝑟𝑟𝑖𝑑 = 𝐶𝑜𝑟𝑟𝑎𝑏 + 𝐶𝑜𝑟𝑟𝑏𝑐 + 𝐶𝑜𝑟𝑟𝑐𝑑 (3)

Since 𝐶𝑜𝑟𝑟𝑎𝑏, 𝐶𝑜𝑟𝑟𝑏𝑐 and 𝐶𝑜𝑟𝑟𝑐𝑑 values can be only 1 or 0, the cluster’s

correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 is always positive and can take one of the following

values:360

∙ 0; there is no correlation between any of the cluster’s alerts, and the

cluster’s alerts cannot belong to one APT attack scenario.

∙ 1; there is a correlation between two different steps of an APT

attack, and the cluster’s alerts belong to one APT sub-scenario

"apt_sub_scenario_two_steps".365

∙ 2; there is a correlation between three different steps of an APT

attack, and the cluster’s alerts belong to one APT sub-scenario

"apt_sub_scenario_three_steps".

∙ 3; there is a correlation between four different steps (all detectable steps)

of an APT attack, and the cluster’s alerts belong to one APT full scenario370

"apt_full_scenario".

17

All the clusters and their correlation index values are recorded into a specific

dataset, the correlation_dataset, to be used in the Prediction module.

3.5. Prediction Module (PM)

This module is used by the network security team to estimate the probability375

of an apt_sub_scenario_two_steps_alert, generated by the FCI correlation

framework, to develop a complete APT attack. In practical terms, it predicts

if FCI will generate an apt_full_scenario_alert in the future based on the

attributes of the current apt_sub_scenario_alert. This prediction gives the

network security team a sign to perform more forensics on the corresponding380

two suspicious connections and deny the attacker to complete the APT life cycle.

The prediction module uses a historical record of the monitored network and

applies machine learning techniques to achieve its functionality.

PM takes the correlation dataset, built by FCI over six months or more, as

an input. The required period of time to build the correlation dataset depends385

on the number of correlated clusters generated by FCI. This number affects the

number of samples used to train the prediction model. The correlation dataset

contains the correlated clusters, both full and sub APT scenarios, and the cor-

relation index 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster. The process in this module undergoes

three main steps: (1) Preparing the dataset, to be available to be consumed by390

machine learning algorithms; (2) Training the prediction model, different ma-

chine learning algorithms are applied and the best model which has the highest

accuracy is chosen; and (3) Using the model for prediction, the security team

apply the model on FCI real time alerts. The output of this module is a predic-

tion model used by the network security team for live traffic monitor and APT395

prediction.

4. MLAPT Implementation

In this section, the implementation of MLAPT are introduced and the used

frameworks, tools and programming languages are mentioned. As MLAPT con-

18

sists of three main phases: threat detection, alert correlation and attack predic-400

tion; the implementation algorithms of each phase are presented separately.

4.1. Implementation of the Detection Modules

All detection modules are implemented on top of Bro [43]. The implemen-

tation and evaluation of the detection modules have been published in [35–42].

Therefore, this paper presents only the implementation and evaluation of the405

correlation framework and prediction module.

As an output of each detection module, in case of an APT technique is de-

tected, a corresponding event (alert) is generated. This event is to be used in

the FCI correlation framework as explained later in Section 4.2 on page 19. Ad-

ditionally, an alert email is sent to RT (Request tracker) [44] where the network410

security team can perform additional forensics and respond to the triggered

alert. Along with generating a new alert, information regarding the alert and

the malicious connection (alert_type, timestamp, src_ip, src_port, dest_ip,

dest_port, infected_host, malicious_item) is written into a specific log (indi-

vidual log for each APT technique detection) to keep a historical record of the415

monitored network.

In case of cryptographically embedded payloads for APTs paradigms, even

the connections are encrypted, the detection modules (except DeFD and MFHD)

are still effective as they depend on investigating the packets’ headers and not

the payload.420

4.2. Implementation of the FCI Correlation Framework

The FCI framework is implemented in two versions. The first one is im-

plemented on top of Bro to be used on live traffic for real time detection; it

can be also used offline on PCAP (Packet Capture) files. The second version

is implemented in Python to be used offline on saved alerts’ logs. Using FCI425

offline-version is useful when having a PCAP file for a network which is not

monitored by Bro.

19

4.2.1. Implementation of the Alerts Filter (AF) Module

When generating a new alert by one of the detection modules,

the AF algorithm checks t_detection_modules_alerts table to determine430

if the same alert has been generated within the last correlation_time.

t_detection_modules_alerts table contains all alerts which have been gener-

ated by the detection modules and sent to AC within the last correlation_time.

Thus, AF either (1) ignores the new alert, if it is a repeated one; or (1) sends

the new alert to AC, to be processed and clustered, and (2) writes the new alert435

into t_detection_modules_alerts table where it is saved for the next correla-

tion_time. The AF algorithm pseudo-code is provided in the supplementary

material of this paper.

4.2.2. Implementation of the Alerts Clustering (AC) Module

All produced APT clusters are recorded into a specific dataset, the clus-440

tered_dataset, to be consumed by the next module, namely the correlation

indexing module. The clustering algorithm dataset "clustered_dataset" con-

sists of clusters. Each cluster contains a maximum of four alerts and each alert

represents one of the APT detectable steps:

1. alert_1 ∈ {𝑑𝑖𝑠𝑔𝑢𝑖𝑠𝑒𝑑_𝑒𝑥𝑒_𝑎𝑙𝑒𝑟𝑡, ℎ𝑎𝑠ℎ_𝑎𝑙𝑒𝑟𝑡, 𝑑𝑜𝑚𝑎𝑖𝑛_𝑎𝑙𝑒𝑟𝑡}.445

2. alert_2 ∈ {𝑖𝑝_𝑎𝑙𝑒𝑟𝑡, 𝑠𝑠𝑙_𝑎𝑙𝑒𝑟𝑡, 𝑑𝑜𝑚𝑎𝑖𝑛_𝑓𝑙𝑢𝑥_𝑎𝑙𝑒𝑟𝑡}.

3. alert_3 ∈ {𝑠𝑐𝑎𝑛_𝑎𝑙𝑒𝑟𝑡}.

4. alert_4 ∈ {𝑡𝑜𝑟_𝑎𝑙𝑒𝑟𝑡}.

Alert clustering can affect the performance of the correlation indexing and

the prediction module as well. For this reason, the first function of CI, evaluat-450

ing the correlations between the cluster’s alerts, mentioned in Section 3.4.3 on

page 15, is also implemented within the AC algorithm. Implementing the first

function of CI within AC reduces the computational cost of the FCI correlation

framework, since AC does not classify any new alert into a cluster unless it is

correlated with the cluster alerts, as explained later in this section. The AC455

algorithm pseudo-code is provided in the supplementary material of this paper.

20

First, the AC module determines to which one of the APT steps the new

alert, coming from the AF module, belongs. MLAPT can detect four steps of

the APT life cycle, mentioned in Section 3.4, Table 3 on page 13. Based on the

new alert step, AC has four processing engines, each engine processes all alerts460

which belong to one APT step.

For alert_1 processing engine, the second step of APT is the first detectable

step, therefore, as soon as an alert of the second APT step is triggered, AC

starts a new cluster and writes the new alert into alert_1.

For alert_2 processing engine, when a new alert for the third step of APT is465

triggered, the AC module checks all the clusters in the clustered_dataset. The

cluster of interest is the one that has alert_1 and the other alerts (alert_2,

alert_3, alert_4) are still missed. For that cluster of interest, the algorithm

checks time attributes: time, the time when the current processed alert is trig-

gered; and time_1, the time when the alert_1 is triggered. For the new alert to470

be considered, those time attributes should meet two conditions: time > time_1

and time - time_1 <= TW ; whereas TW stands for the time window "corre-

lation time". Following this, the first function of the CI module checks the in-

fected_host attributes: infected, the infected host of the current processed alert;

and infected_1, the infected host of alert_1. If both infected host attributes475

are matched, the current processed alert is added into the current cluster of in-

terest as alert_2. In addition, an event apt_sub_scenario_two_steps_alert is

generated and an alert email is sent to RT informing the network security team

regarding this APT sub scenario detection. When one of the previous checks

fails, AC checks if the current cluster is the last one in the clustered_dataset :480

if true, a new cluster is started and the current processed alerts is added as

alert_2 ; if false, the process is to be repeated again for the next cluster.

For alert_3 processing engine, when a new alert for the fifth step of APT is

triggered, AC checks all the clusters in the clustered_dataset. There are three

cases for the cluster of interest: (1) when the cluster has alert_1 and alert_2485

and the other alerts "alert_3 and alert_4" are missed; (2) when the cluster has

alert_1 and the other alerts "alert_2, alert_3, alert_4" are missed; (3) and

21

when the cluster has alert_2 and the other alerts "alert_1, alert_3, alert_4"

are missed.

For the first case of cluster of interest, AC checks all time attributes which490

should meet two conditions: time > time_2 and time - time_1 <= TW. Fol-

lowing this, CI checks all infected host attributes that should meet the condition

infected == infected_2, as alert_1 and alert_2 are already in the cluster so it is

guaranteed that infected_1 == infected_2 and there is no need for the first func-

tion of CI to check it. The current processed alert is then added into the current495

cluster of interest as alert_3, an event apt_sub_scenario_three_steps_alert is

generated, and an alert email is sent to RT informing the network security team

regarding this APT sub-scenario detection. If one of the previous checks is

failed, it is checked if the current cluster is the last one in clustered_dataset :

if true, a new cluster is started and the current processed alerts is added as500

alert_3 ; if false, the process is to be repeated again for the next cluster.

For the second and third case of cluster of interest, the process is similar to

the first case, taking into consideration the corresponded time and infected host

attributes.

For alert_4 processing engine, the first step is to find the cluster of interest in505

the clustered_dataset. When a new alert for the sixth step of APT is triggered,

AC checks all the clusters in the clustered_dataset. There are seven cases for

the cluster of interest: (1) when the cluster has alert_1, alert_2, and alert_3,

and the last alert "alert_4" is missed; (2) when the cluster has alert_1 and

alert_2 and the other alerts "alert_3 and alert_4" are missed; (3) when the510

cluster has alert_1 and alert_3 and the other alerts "alert_2 and alert_4"

are missed; (4) when the cluster has alert_2 and alert_3 and the other alerts

"alert_1 and alert_4" are missed; (5) when the cluster has alert_1 and the

other alerts "alert_2, alert_3, and alert_4" are missed; (6) when the cluster

has alert_2 and the other alerts "alert_1, alert_3, and alert_4" are missed;515

(7) and when the cluster has alert_3 and the other alerts "alert_1, alert_2,

and alert_4" are missed.

The process of all cases of cluster of interest in alert_4 processing engine

22

is similar to the process in alert_3 processing engine explained above. The

AC algorithm checks all time attributes of the cluster; after that, the CI algo-520

rithm checks all infected host and scanned host attributes; to decide whether

the current processed alert is to be added into the current cluster of inter-

est as alert_4. Based on the cluster of interest, three events can be gen-

erated as an output of alert_4 processing engine: apt_full_scenario_alert

for case 1; apt_sub_scenario_three_steps_alert for cases 2, 3, and 4; and525

apt_sub_scenario_two_steps_alert for cases 5, 6, and 7. In addition, an alert

email is sent to RT informing the network security team regarding this APT

full or sub-scenario detection. If one of the algorithms’ conditions fails, the pro-

cess moves to the next cluster in clustered_dataset or it is ended if the current

cluster is the last one.530

4.2.3. Implementation of the Correlation Indexing (CI) Module

The first function of CI, evaluation the correlations between the cluster’s

alerts, is implemented within AC algorithm, as explained in the previous Sec-

tion 4.2.2 on page 20. For the second function of CI, to calculate 𝐶𝑜𝑟𝑟𝑖𝑑 for

each cluster, the CI algorithm makes use of the attributes of each alert in the535

cluster, applies the correlation rules mentioned in Section 3.4.3 on page 15, and

calculates the correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 based on the equation 3 mentioned also

in Section 3.4.3 on page 17. The CI algorithm pseudo-code is provided in the

supplementary material of this paper.

4.3. Implementation of the Prediction Module (PM)540

The PM module uses machine learning techniques to achieve its function-

ality. The process in this module undergoes three main steps: (1) Preparing

the dataset, implemented in Python; (2) Training the prediction model, im-

plemented in Matlab ; and (3) Using the model for prediction, in Python and

Matlab.545

23

4.3.1. Preparing the Machine Learning Dataset

Building the machine_learning_dataset is based on the correlation_dataset,

which is the output of the FCI correlation framework over a period of six months

or more. The correlation_dataset contains the correlated clusters, both full and

sub APT scenarios, and the correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster. To prepare550

the machine_learning_dataset, PM makes the following modifications on the

correlation_dataset :

∙ The prediction of apt_sub_scenario_two_steps_alert to complete the

APT life cycle is based on the first two detectable steps of APT, there-

fore, only the clusters containing at least alerts for the first two detectable555

steps, i.e. alert_1 and alert_2, are kept; the other clusters are filtered

out of the correlation_dataset.

∙ Based on the 𝐶𝑜𝑟𝑟𝑖𝑑 value, the correlation_dataset clusters can be clas-

sified into four classes: class 3, for APT full scenario and the cluster has

four correlated alerts; class 2, for APT sub-scenario and the cluster has560

three correlated alerts; class 1, for APT sub-scenario and the cluster has

two correlated alerts; and class 0, the cluster has only one alert. The

machine_learning_dataset contains only two classes: class 1 for APT full

scenario; and class 0, for uncompleted APT scenario. Thus, the PM mod-

ule considers: (1) class 3, in the correlation_dataset, as class 1, for the565

machine_learning_dataset ; and (2) classes 2, 1, and 0, in the correla-

tion_dataset, as class 0, for the machine_learning_dataset.

∙ The class prediction is based on the first two detectable steps of APT,

therefore, all the columns related to the third and fourth detectable

alerts, i.e. alert_3 and alert_4 attributes, are filtered out of the cor-570

relation_dataset.

∙ Since the chosen machine learning classifiers work with numeric values,

columns which are not numeric in the correlation_dataset are represented

in a numerical format for the machine_learning_dataset. The alert_type

24

values are mapped to numbers from 1 to 6, and the columns which575

contain IPs values (src_ip_1, dest_ip_1, infected_host_1, src_ip_2,

dest_ip_2, infected_host_2) are mapped to numeric values using

socket [45] and struct.unpack [46] functions built in Python.

4.3.2. Training the Prediction Model

As the task is to predict classes, classification methods are chosen and differ-580

ent machine learning algorithms are applied on machine_learning_dataset to

train the model. The model is trained using four machine learning approaches,

commonly used for classification problems, which are: decision tree learning,

support vector machine, k-nearest neighbours and ensemble learning. The pre-

diction accuracy of each trained model is calculated and the best model, which585

has the higher prediction accuracy, is chosen. The best model is saved to be

used by the network security team.

4.3.3. Using the Model for Prediction

When a new apt_sub_scenario_two_steps_alert is generated by the cor-

relation framework, the new data, i.e. the cluster attributes, is prepared as590

explained above in Section 4.3.1 on page 24, then the prediction model, which

has been trained and chosen in the previous step, is applied.

As a result, the network security team can determine the probability of the

current alert to complete the APT life cycle, and apply the required proce-

dure to stop the attack before completion and achieving the final aim of data595

exfiltraition.

5. Experimental Evaluation of MLAPT

In this section, the evaluation of MLAPT is introduced and the achieved re-

sults are presented. As MLAPT consists of three main phases: threat detection,

alert correlation and attack prediction; the evaluation of MLAPT undergoes the600

evaluation of the three phases respectively. Additionally, a comparison between

the developed system MLAPT and other existing systems is provided.

25

5.1. Evaluation of the Detection Modules

Two main methods were used to evaluate the detection modules. In the first

one, the detection modules were applied on pcap files which contain malicious605

traffic. Each pcap file was provided by a different third party, pcap file size and

data source are mentioned in the evaluation section of each detection module.

In the second evaluation method, Bro was installed on an experimental server

(2x 4-core Intel Xeon CPU E5530 @ 2.40 GHz, 12 GB RAM) with passive access

to part of the university campus live traffic (200 Mbps, 200 users, 550 nodes)610

via an optical TAP (Test Access Port). The detection modules were run on the

experimental server and the network was monitored for one month.

5.2. Evaluation of the FCI Correlation Framework

In the absence of any publicly available data which contains APT attack

traffic, which can be used in the evaluation of the FCI framework. We had615

to build a new dataset which contains APT attack traffic. Using the campus

network to gather attack data does not guarantee capturing any APT attack

traffic against the monitored network.

The aim of the correlation framework is to identify different alerts raised

by the various detection modules, which could be correlated and belong to one620

APT attack scenario. To effectively evaluate the FCI correlation framework, a

dataset containing many of the detection modules alerts, in which some of those

alerts belong to APT attack scenarios, has been built. The data is generated

to appear as APT attack scenarios were simulated on the campus network, the

techniques used in the APT life cycle were identified by the detection modules,625

and all generated alerts were written into the simulation dataset. That dataset

also contains many of the generated alerts which do not belong to APT attack

scenarios. All the detection modules have been evaluated on pcap files and on

the real live traffic as well. The aim of this experiment is to test if the FCI

correlation framework is able to detect those APT scenarios in the simulation630

dataset.

26

5.2.1. Data Generation

A script is written, using Python. This script generates two types of alerts:

(1) Random alerts which do not relate or belong to one APT attack scenario; and

(2) Related alerts which belong to a full or sub-APT attack. Each alert has seven635

attributes: alert_type, timestamp, src_ip, src_port, dest_ip, dest_port and the

infected_host ; only the scan_alert has the extra scanned_host attribute.

To generate a random alert, the alert_type is selected randomly from the set

of all 8 detectable alerts, i.e. disguised_exe_alert, hash_alert, domain_alert,

ip_alert, ssl_alert, domain_flux_alert, scan_alert and tor_alert. The times-640

tamp is assigned a random value between Fri, 01 Jan 2016 00:00:01 GMT and

Thu, 30 Jun 2016 23:59:59 GMT. The src_ip is randomly assigned an IP ad-

dress on the campus network. The src_port is selected randomly from the

49152, 65535 range of ports, which are usually assigned dynamically to client

applications when initiating a connection. The dest_ip value is assigned based645

on the selected alert_type: If the alert_type is disguised_exe_alert, hash_alert

or ssl_alert, then the dest_ip can be any valid IP address which is not on

the campus network; if the alert_type is domain_alert or domain_flux_alert,

then the dest_ip can use an IP address which is on the campus network; if the

alert_type is assigned ip_alert, then the dest_ip can select a random IP ad-650

dress from the ip_blacklist ; if alert_type is scan_alert, the dest_ip is selected

randomly from campus network IP addresses; and if the alert_type is tor_alert,

the dest_ip is selected randomly from tor_server_list. The dest_port is se-

lected based on the selected alert_type: if the alert_type is disguise_exe_alert

or hash_alert, the dest_port should be 80; if the alert_type is domain_alert or655

domain_flux_alert, the dest_port should be 53; if the alert_type is ip_alert,

ssl_alert or tor_alert, the dest_port should be 443; and if the alert_type is

scan_alert, the dest_port is selected randomly from the 1, 1024 range of ports.

The infected_host should be the same src_ip of the connection. Finally, the

scanned_host (only if alert_type is scan_alert) should be the same dest_ip of660

the connection.

27

To generate an APT full-scenario (consisting of 4 correlated alerts) or sub-

scenario (consisting of 2 or 3 correlated alerts), the APT life cycle should be

taken into consideration. Meaning, the generated alerts’ attributes of each sce-

nario are selected to appear as an APT attack which is simulated through the665

campus network.

5.2.2. Experimental Setup

To determine the number of random alerts to be generated for the simula-

tion_dataset, the experimental server, previously mentioned in Section 5.1 on

page 26, was used to monitor part of the university campus network. All detec-670

tion modules were run on the experimental server to analyse the network traffic;

the monitoring period and the number of detected alerts were determined. Ac-

cording to the actual university network size and the actual simulation_dataset

monitoring period, the number of the generated random alerts was calculated.

The number of the generated APT full- and sub-scenarios should be suitable to675

get enough samples for each class in the machine_learning_dataset previously

explained in Section 4.3.1 on page 24.

The network monitoring was conducted via the experimental server for 2

weeks and 9 different alerts were detected by the detection modules. The size

of the monitored network was 550 nodes, while the whole campus network is680

23500 nodes. Meaning, if the whole campus network is monitored for 6 months,

4900 alerts are expected to be detected by the detection modules. Therefore,

4900 alerts were generated for the simulation_dataset, of which 100 APT full

attack (each scenario is 4 correlated alerts) and 50 APT sub-attack 3 steps (each

scenario is 3 correlated alerts); 50 APT sub-scenarios 2 steps (each scenario is685

2 correlated alerts); and 4250 random alerts (which do not relate or belong to

APT attack scenarios). The APT life cycle period was configured to be for a

maximum of one week.

28

5.2.3. Results and Discussion

The FCI correlation framework was applied on the simulation_dataset. Ta-690

ble 4 shows the FCI correlation framework detection results. This table indicates

the True Positive Rate (TPR) and the False Positive Rate (FPR) [47] for each

studied APT attack, both full and partial attacks. Among all studied APT

attacks, the best TPR results were for the APT sub-attack two steps scenario,

followed by the APT sub-attack three steps scenario and APT full attack, re-695

spectively. The results show that the higher the number of related alerts, the

lower the TPR and the higher FPR. This is due to the higher possibility of the

random alerts to be incorrectly clustered when more alerts are to be correlated

for APT. By manual analysis for the results, the incorrect alerts clustering was

the main reason of the false alarms. Some APT attacks were not detected due700

to some of the random alerts which were incorrectly clustered and correlated.

This can happen if those random alerts, by chance, meet the clustered and cor-

relation rules, so one random alert can interfere with a running APT scenario (if

the random alert is triggered for the missed scenario step, for the same infected

host, and within the correlation time) and cause the false positive detection of705

APT and false negative detection of the random alert. Besides, a very rare case

can cause the wrong detection is when two, three or four random alerts can

meet the correlation rules, by chance, and are correlated incorrectly.

Table 4: Correlation framework detection results.

APT attack

scenario

Detection

result

TP FP FN TN P N TPR FPR

APT full scenario

(4 steps)

90*4 78*4 12*4 88 4452 400 4500 78% 1%

APT sub-scenario

(3 steps)

65*3 42*3 23*3 24 4681 150 4750 84% 1.4%

APT sub-scenario

(2 steps)

85*2 47*2 38*2 6 4724 100 4800 94% 1.6%

APT full and

sub-scenario

725 532 193 118 4132 650 4250 81.8% 4.5%

29

5.3. Evaluation of the APT Prediction Module (PM)

To evaluate the PM module, three main steps were followed: (1) Preparing710

the machine_learning_dataset ; (2) Training the prediction model; and (3) Sav-

ing the model for prediction.

Using the correlation_dataset, which is the output of the FCI correlation

framework over a period of six months, the machine_learning_dataset is pre-

pared as explained in Section 4.3.1 on page 24.715

As there is no machine learning algorithm which can be regarded as the

best or the optimal one, various experiments should be performed on the ma-

chine_learning_dataset using several machine learning algorithms, and then a

comparison between the trained models is made.

The Matlab’s Classification Learner application is used to train models to720

classify the machine_learning_dataset. Automated training is performed to

search for the best classification model type, including decision trees, support

vector machines, nearest neighbours, and ensemble classification; the character-

istics of each classifier type can be found in [48]. Cross-validation is used as a

validation scheme to examine the prediction accuracy of each trained model.725

Cross-validation is a model assessment technique used to evaluate a machine

learning algorithm’s performance in making predictions on new datasets which

has not been trained on . This is done by partitioning a dataset and using a

subset to train the algorithm and the remaining data for testing. Each round of

cross-validation involves randomly partitioning the original dataset into a train-730

ing set and a testing set. The training set is then used to train a supervised

learning algorithm and the testing set is used to evaluate its performance. This

process is repeated several times and the average accuracy is used as a per-

formance indicator. Table 5 shows the prediction accuracy for all investigated

classification algorithms used to train the classification models.735

Experimental results show that the best classification algorithm is the Linear

SVM, with a prediction accuracy of 84.8%. This trained model can be saved

by the network security team to be applied on real time traffic when a new real

30

Table 5: Classification algorithms and the prediction accuracy of the trained models.

Classification algorithms
Prediction

accuracy

Decision trees

Complex tree 83.0%

Medium tree 83.0%

Simple tree 84.4%

Support vector

machines

Linear SVM 84.8%

Quadratic SVM 81.6%

Cubic SVM 76.9%

Fine Gaussian SVM 69.4%

Medium Gaussian SVM 80.3%

Coarse Gaussian SVM 81.0%

Nearest neighbour

classifiers

Fine KNN 76.2%

Medium KNN 80.3%

Coarse KNN 68.0%

Cosine KNN 82.3%

Cubic KNN 78.9%

Weighted KNN 78.2%

Ensemble classifiers

Boosted trees 83.7%

Bagged trees 82.3%

Subspace discriminant 81.6%

Subspace KNN 72.8%

RUSBoosted trees 81.0%

time apt_sub_scenario_two_steps_alert is triggered, as previously explained

in Section 4.3.3 on page 25.740

6. A Performance Comparison Between the Proposed Approach and

Existing APT Detection Systems

This section presents a performance analysis of four existing APT detection

systems, and provides a comparison between the developed system MLAPT and

these current systems, as shown in Table 6.745

31

Table 6: A comparison between MLAPT and other existing systems.

APT detection

system

Auton-

omy

APT

steps

speed TPR FPR Prediction

accuracy

MLAPT Au-

tonomous

4 Real

time

81.8% 4.5% 84.8%

TerminAPTor Agent-

based

4 Real

time

100% high No

C&C-based Au-

tonomous

1 Off-

line

83.3% 0% No

Spear phishing

based

Au-

tonomous

1 Real

time

97.2% 14.2% No

Context-based Agent-

based

4 Real

time

? 27.88% No

The most effective system in terms of true positive rate is TerminAPTor [26]

with a TPR of 100%, previously mentioned in Section 2 on page 4. However,

the developers mentioned that TerminAPTor has a high rate of false positives

(although they did not mention the figure of FPR) and needs to be improved

by filtering the false positives. Moreover, this detector requires the alerts to be750

provided by other systems (agent-based) and cannot work autonomously. De-

spite having the lowest false positive rate of 0%, the C&C-based system [27],

presented previously in Section 2 on page 5, does not achieve the real time de-

tection. Furthermore, the authors stated that the detection can be easily evaded

when the infected hosts connect to the C&C domains while users are surfing the755

Internet. Additionally, missing the detection of C&C domains leads to failure

in APT detection since this system depends on detecting only one step of the

APT life cycle. Whilst the spear phishing based system [28], explored earlier

in Section 2 on page 6, has a TPR of 97.2%, the FPR of 14.2% is considerably

high. In addition, depending on one step for APT detection leads the system to760

fail when missing the spear phishing email detection. This missing can happen

when the spear phishing email does not include any of the tokens which are nec-

essary for the algorithm process. The context-based system [32], already stated

in Section 2 on page 7, has a significantly high FPR of 27.88% while the TPR

32

was not provided by the authors. Besides, this framework requires significant765

expert knowledge to set up and maintain; and similar to TerminAPTor, it is an

agent-based system and cannot work autonomously.

Having a high rate of true positives is significant. Nevertheless, increasing the

amount of true positives means that the false positive rate also increases. Thus,

the balance between TPR and FPR is an essential requirement for any detection770

system. The developed system MLAPT has a suitable balance between the two

values of TPR and FPR with 81.8% and 4.5% respectively. MLAPT can also

work autonomously and generate the required events based on its own detection

modules. The generated events covers four detectable steps of the APT life cycle

which reduces the false positives and gives more possibility of APT detection775

in case one of the steps is missed. Furthermore, this system can achieve the

real time detection, so it can be much easier to trace back to the attacker,

minimise the damage and prevent further break-ins. Moreover, to the author’s

knowledge, MLAPT is the only system which can predict APT in its early steps

with a prediction accuracy of 84.8%, which prevents the attacker from achieving780

the goal of data exfiltration.

7. Conclusion and Future Work

The volume, sophistication, and variety of cyber attacks including APT

attacks are increasing exponentially on a global scale. There is an urgent need

to develop an efficient system for fast and accurate detection of attacks for quick785

response and defense. This paper has developed a novel machine learning based

system (MLAPT) to detect and predict APT attacks in a holistic approach.

The MLAPT consists of three main phases: threat detection, alert correlation

and attack prediction. The contributions of the MLPT are

∙ In the alert correlation, we have developed correlation framework which790

can link the alerts produced in the first phase with the APT attacks to

ensure the reduction of false positive rate.

33

∙ In the final phase, a machine-learning-based prediction module (PM) is

designed and implemented based on a historical record of the monitored

network.795

∙ The proposed system is capable of accurately capture attacks in a timely

fashion.

MLAPT is experimentally evaluated and its performance is compared

against four of its most prominently cited rivals according to recent literature.

Evaluation results show that MLAPT balances the true positive rate and the800

false positive rate with 81.8% and 4.5% respectively.

Some of the developed detection modules (i.e. the blacklist-based modules)

require a continuous update and may not work consistently. For future work, a

number of improvements within the system could be made. First, it is suggested

that more detection modules are added to detect other techniques used in the805

APT attack life cycle. Furthermore, if MLAPT were able to monitor the internal

network traffic, other detection modules could be added to detect brute force

and pass the hash attacks, increasing the detectable steps of the the system.

Second, it is also recommended that more than one detection module for the

same technique are developed. Third, it is advised that alerts from external810

IDSs deployed on the network are received and fed to MLAP, which can reduce

the false positive rate of the system. Fourth, MLAP detection modules were

evaluated on real traffic and pcap files contain real attacks. However, the FCI

framework was validated on simulated data. Therefore, it would be beneficial

to test MLAP on real APTs. Nevertheless, obtaining such data is not easy, and815

the lack of relevant publicly available data sources was the main reason for using

the synthetic data when evaluating the correlation framework.

References

[1] M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of things se-

curity and forensics: Challenges and opportunities (2018).820

34

[2] A. MacDermott, T. Baker, Q. Shi, Iot forensics: Challenges for the ioa

era, in: New Technologies, Mobility and Security (NTMS), 2018 9th IFIP

International Conference on, IEEE, 2018, pp. 1–5.

[3] H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K. R. Choo, A deep

recurrent neural network based approach for internet of things malware825

threat hunting, Future Generation Computer Systems.

[4] S. Morgan, Hackerpocalypse: A cybercrime revelation, 2016 Cybercrime

Report, Cybersecurity Ventures.

[5] G. Epiphaniou, P. Karadimas, D. K. B. Ismail, H. Al-Khateeb, A. De-

hghantanha, K.-K. R. Choo, Non-reciprocity compensation combined with830

turbo codes for secret key generation in vehicular ad hoc social iot networks,

IEEE Internet of Things Journal.

[6] S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic re-

view of the availability and efficacy of countermeasures to internal threats

in healthcare critical infrastructure, IEEE Access.835

[7] F. J. Aparicio-Navarro, K. G. Kyriakopoulos, Y. Gong, D. J. Parish, J. A.

Chambers, Using pattern-of-life as contextual information for anomaly-

based intrusion detection systems, IEEE Access 5 (2017) 22177–22193.

[8] H. M. Al-Khateeb, G. Epiphaniou, Z. A. Alhaboby, J. Barnes, E. Short,

Cyberstalking: Investigating formal intervention and the role of corporate840

social responsibility, Telematics and Informatics 34 (4) (2017) 339–349.

[9] A. Salem, K. A. Hamdi, K. M. Rabie, Physical layer security with rf energy

harvesting in af multi-antenna relaying networks, IEEE Transactions on

Communications 64 (7) (2016) 3025–3038.

[10] O. S. Badarneh, P. C. Sofotasios, S. Muhaidat, S. L. Cotton, K. Rabie,845

N. Al-Dhahir, On the secrecy capacity of fisher-snedecor f fading channels,

arXiv preprint arXiv:1805.09260.

35

[11] T. M. technical report, Targeted attacks and how to de-

fend against them, http://www.trendmicro.co.uk/media/misc/

targeted-attacks-and-how-to-defend-against-them-en.pdf, ac-850

cessed: 05-12-2017.

[12] I. Ghafir, V. Prenosil, Advanced persistent threat attack detection: An

overview, International Journal of Advances in Computer Networks and

Its Security (IJCNS) vol. 4 (Issue 4) (2014) 50–54.

[13] T. R. Rakes, J. K. Deane, L. Paul Rees, It security planning under uncer-855

tainty for high-impact events, Omega 40 (1) (2012) 79–88.

[14] P. Wood, M. Nisbet, G. Egan, N. Johnston, K. Haley, B. Krishnappa, T.-K.

Tran, I. Asrar, O. Cox, S. Hittel, et al., Symantec internet security threat

report trends for 2011, Volume XVII.

[15] M. I. Center, Apt1: Exposing one of china’s cyber espionage units, Tech.860

rep., Mandiant, Tech. Rep (2013).

[16] K. L. ZAO, Red october diplomatic cyber attacks investigation,

http://www.securelist.com/en/analysis/204792262/Red_October_

Diplomatic_Cyber_Attacks_Investigation, accessed: 10-11-2017.

[17] C. Tankard, Advanced persistent threats and how to monitor and deter865

them, Network security 2011 (8) (2011) 16–19.

[18] R. Deibert, R. Rohozinski, Tracking ghostnet: Investigating a cyber espi-

onage network, Information Warfare Monitor (2009) 6.

[19] S.-T. Liu, Y.-M. Chen, S.-J. Lin, A novel search engine to uncover poten-

tial victims for apt investigations, in: Network and Parallel Computing,870

Springer, 2013, pp. 405–416.

[20] O. Thonnard, L. Bilge, G. O’Gorman, S. Kiernan, M. Lee, Industrial espi-

onage and targeted attacks: Understanding the characteristics of an esca-

lating threat, in: Research in Attacks, Intrusions, and Defenses, Springer,

2012, pp. 64–85.875

36

http://www.trendmicro.co.uk/media/misc/targeted-attacks-and-how-to-defend-against-them-en.pdf
http://www.trendmicro.co.uk/media/misc/targeted-attacks-and-how-to-defend-against-them-en.pdf
http://www.trendmicro.co.uk/media/misc/targeted-attacks-and-how-to-defend-against-them-en.pdf
http://www.securelist.com/en/analysis/204792262/Red_October_Diplomatic_Cyber_Attacks_Investigation
http://www.securelist.com/en/analysis/204792262/Red_October_Diplomatic_Cyber_Attacks_Investigation
http://www.securelist.com/en/analysis/204792262/Red_October_Diplomatic_Cyber_Attacks_Investigation

[21] M. Lee, D. Lewis, Clustering disparate attacks: Mapping the activities of

the advanced persistent threat., in: Proceedings of the 21st Virus Bulletin

International Conference.(October 2011) pp, pp. 122–127.

[22] B. Bencsáth, G. Pék, L. Buttyán, M. Félegyházi, Duqu: Analysis, detec-

tion, and lessons learned, in: ACM European Workshop on System Security880

(EuroSec), Vol. 2012, 2012.

[23] M. Balduzzi, V. Ciangaglini, R. McArdle, Targeted attacks detection with

spunge.

[24] C. Moxey, M. Edwards, O. Etzion, M. Ibrahim, S. Iyer, H. Lalanne,

M. Monze, M. Peters, Y. Rabinovich, G. Sharon, et al., A conceptual model885

for event processing systems, IBM Redguide publication.

[25] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riede-

wald, M. Thatte, W. White, Cayuga: a high-performance event processing

engine, in: Proceedings of the 2007 ACM SIGMOD international confer-

ence on Management of data, ACM, 2007, pp. 1100–1102.890

[26] G. Brogi, V. V. T. Tong, Terminaptor: Highlighting advanced persistent

threats through information flow tracking, in: New Technologies, Mobility

and Security (NTMS), 2016 8th IFIP International Conference on, IEEE,

2016, pp. 1–5.

[27] X. Wang, K. Zheng, X. Niu, B. Wu, C. Wu, Detection of command and895

control in advanced persistent threat based on independent access, in: Com-

munications (ICC), 2016 IEEE International Conference on, IEEE, 2016,

pp. 1–6.

[28] J. V. Chandra, N. Challa, S. K. Pasupuleti, A practical approach to e-mail

spam filters to protect data from advanced persistent threat, in: Circuit,900

Power and Computing Technologies (ICCPCT), 2016 International Confer-

ence on, IEEE, 2016, pp. 1–5.

37

[29] J. Sexton, C. Storlie, J. Neil, Attack chain detection, Statistical Analysis

and Data Mining: The ASA Data Science Journal 8 (5-6) (2015) 353–363.

[30] N. Nissim, A. Cohen, C. Glezer, Y. Elovici, Detection of malicious pdf files905

and directions for enhancements: a state-of-the art survey, Computers &

Security 48 (2015) 246–266.

[31] J. Sigholm, M. Bang, Towards offensive cyber counterintelligence: Adopt-

ing a target-centric view on advanced persistent threats, in: Intelligence

and Security Informatics Conference (EISIC), 2013 European, IEEE, 2013,910

pp. 166–171.

[32] P. Giura, W. Wang, A context-based detection framework for advanced

persistent threats, in: Cyber Security (CyberSecurity), 2012 International

Conference on, IEEE, 2012, pp. 69–74.

[33] E. Alomari, S. Manickam, B. Gupta, M. Anbar, R. M. Saad, S. Alsaleem, A915

survey of botnet-based ddos flooding attacks of application layer: Detection

and mitigation approaches, in: Handbook of Research on Modern Crypto-

graphic Solutions for Computer and Cyber Security, IGI Global, 2016, pp.

52–79.

[34] S. M. Milajerdi, M. Kharrazi, A composite-metric based path selection920

technique for the tor anonymity network, Journal of Systems and Software

103 (2015) 53–61.

[35] I. Ghafir, V. Prenosil, M. Hammoudeh, F. J. Aparicio-Navarro, K. Rabie,

A. Jabban, Disguised executable files in spear-phishing emails: Detecting

the point of entry in advanced persistent threat, in: Proceedings of Inter-925

national Conference on Future Networks and Distributed Systems, ACM

Digital Library, 2018.

[36] I. Ghafir, V. Prenosil, Malicious file hash detection and drive-by down-

load attacks, in: Proceedings of the Second International Conference on

Computer and Communication Technologies, Springer, 2016, pp. 661–669.930

38

[37] I. Ghafir, V. Prenosil, Dns traffic analysis for malicious domains detec-

tion, in: 2nd International Conference on Signal Processing and Integrated

Networks (SPIN), IEEE Xplore Digital Library, 2015, pp. 613–918.

[38] I. Ghafir, V. Prenosil, Blacklist-based malicious ip traffic detection, in:

Global Conference on Communication Technologies (GCCT), IEEE Xplore935

Digital Library, 2015, pp. 229–233.

[39] I. Ghafir, V. Prenosil, M. Hammoudeh, L. Han, U. Raza, Malicious ssl

certificate detection: A step towards advanced persistent threat defence,

in: Proceedings of International Conference on Future Networks and Dis-

tributed Systems, ACM Digital Library, Cambridge, UK, 2017.940

[40] I. Ghafir, V. Prenosil, Dns query failure and algorithmically generated

domain-flux detection, in: International Conference on Frontiers of Com-

munications, Networks and Applications (ICFCNA), IEEE Xplore Digital

Library, 2014, pp. 1–5.

[41] Bro-Project, TCP scan detection, https://www.bro.org/sphinx/945

scripts/policy/misc/scan.bro.html, accessed: 12-01-2018.

[42] I. Ghafir, J. Svoboda, V. Prenosil, Tor-based malware and tor connection

detection, in: International Conference on Frontiers of Communications,

Networks and Applications (ICFCNA), IEEE Xplore Digital Library, 2014,

pp. 1–6.950

[43] V. Paxson, Bro: a system for detecting network intruders in real-time,

Computer networks 31 (23) (1999) 2435–2463.

[44] Best-Practical-Solutions, Rt: Request tracker, https://www.

bestpractical.com/rt/, accessed: 15-02-2017.

[45] Python-Software-Foundation, socket, low-level networking interface,955

https://docs.python.org/3/library/socket.html, accessed: 15-03-

2018.

39

https://www.bro.org/sphinx/scripts/policy/misc/scan.bro.html
https://www.bro.org/sphinx/scripts/policy/misc/scan.bro.html
https://www.bro.org/sphinx/scripts/policy/misc/scan.bro.html
https://www.bestpractical.com/rt/
https://www.bestpractical.com/rt/
https://www.bestpractical.com/rt/
https://docs.python.org/3/library/socket.html

[46] Python-Software-Foundation, struct, interpret strings as packed binary

data, https://docs.python.org/2/library/struct.html, accessed: 15-

03-2018.960

[47] M. Elhamahmy, H. N. Elmahdy, I. A. Saroit, A new approach for evalu-

ating intrusion detection system, CiiT International Journal of Artificial

Intelligent Systems and Machine Learning 2 (11).

[48] The-MathWorks, Characteristics of classifier types, https://uk.

mathworks.com/help/stats/choose-a-classifier.html#bunt0ky,965

accessed: 15-03-2018.

40

https://docs.python.org/2/library/struct.html
https://uk.mathworks.com/help/stats/choose-a-classifier.html#bunt0ky
https://uk.mathworks.com/help/stats/choose-a-classifier.html#bunt0ky
https://uk.mathworks.com/help/stats/choose-a-classifier.html#bunt0ky

	repository_cover_sheet
	Ghafir_FGCS
	Introduction
	Related Work
	A Correlation-based System for Real-time APT Detection and Prediction
	Design Rationale
	MLAPT Architecture
	MLAPT Detection Modules
	FCI Correlation Framework
	Alerts Filter (AF)
	Alerts Clustering (AC)
	Correlation Indexing (CI)

	Prediction Module (PM)

	MLAPT Implementation
	Implementation of the Detection Modules
	Implementation of the FCI Correlation Framework
	Implementation of the Alerts Filter (AF) Module
	Implementation of the Alerts Clustering (AC) Module
	Implementation of the Correlation Indexing (CI) Module

	Implementation of the Prediction Module (PM)
	Preparing the Machine Learning Dataset
	Training the Prediction Model
	Using the Model for Prediction

	Experimental Evaluation of MLAPT
	Evaluation of the Detection Modules
	Evaluation of the FCI Correlation Framework
	Data Generation
	Experimental Setup
	Results and Discussion

	Evaluation of the APT Prediction Module (PM)

	A Performance Comparison Between the Proposed Approach and Existing APT Detection Systems
	Conclusion and Future Work

