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Abstract— In this paper, we derive a globally asymptoti-
cally stabilizing feedback control policy for a collection of
differential-drive robots under the constraint that every robot
receives exactly the same control inputs. We begin by assuming
that each robot has a slightly different wheel size, which scales
its forward speed and turning rate by a constant that can be
found by offline or online calibration. The resulting feedback
policy is easy to implement, is robust to standard models of
noise, and scales to an arbitrary number (even a continuous
ensemble) of robots. We validate this policy with hardware
experiments, which additionally reveal that our feedback policy
still works when the wheel sizes are unknown and even when the
wheel sizes are all approximately identical. These results have
possible future application to control of micro- and nano-scale
robotic systems, which are often subject to similar constraints.

I. INTRODUCTION

Next-generation micro-scale and nano-scale robotic sys-
tems have little-to-no onboard computation, and most are
controlled by global signals, where all robots in the system
receive uniform control inputs. Examples include the mag-
netic micro/nano robots of Nelson et al. [1], [2] and Sitti et
al. [3], [4], the electric-field controlled paramecium studied
by Hasegawa et al. [5], the electrokinetic and optically
controlled bacteria demonstrated by Pappas et al. [6], and the
magnetic-field controlled bacteria demonstrated by Martel et
al. [7] and Julius et al. [8].

This paper focuses on robotic systems that can be modeled
as nonholonomic unicycles. Two such systems are shown in
Fig. 1: light-driven nanocars and scratch-drive micro-robots.

The light-driven nanocar [9], [10] is a synthesized
molecule 1.7×1.38nm in size containing a uni-directional
molecular motor, actuated by a certain wavelength of light.
Future work by Tour et al. aims to add controllable steering
to this molecule.

The scratch-drive micro-robot, from Donald and Paprotny
et al. [11], [12] is a device 60×250µm in size actuated
by varying the electric potential across a substrate; multiple
scratch-drive robots on the same substrate are controlled by
this single uniform control input. To independently control
each micro-robot, the system is designed with unique robots
such that individual robots can be actuated while the others
are immobilized or spin in place.

The motion of both systems can be roughly approxi-
mated by a nonholonomic unicycle. A common question
is therefore—how do we steer a collection of unicycles
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Fig. 1. Three robotic systems with uniform inputs. On the left, three
light-driven nanocars [10]. In the middle, three scratch-drive micro-robots
[12]. On the right, six differential-drive robots.

under the constraint that every one receives exactly the same
control inputs? This question is the one we address here.

As a case study, we will look at a collection of differential-
drive robots under this same constraint—that every robot
receives exactly the same control inputs. Nominally, this
system is not controllable. The path followed by each robot
will be a rigid-body transformation of the path followed
by every other robot. In practice, however, each robot is
slightly different, and this inhomogeneity can be exploited
in a systematic way in order to recover controllability. In
particular, we will show that if each robot has a different
wheel size, then we can derive a globally asymptotically
stabilizing feedback control policy that steers the position
of all robots (independently) between given start and goal
configurations, despite the fact that they all receive the same
control inputs. Similar inhomogeneities can be found in the
systems of Fig. 1 (and in other micro/nano-scale robotic
systems). For example, small imperfections in their scratch-
drive actuators lead to speed variations between different
scratch-drive micro-robots.

Our approach is based on the application of ensemble
control, which we used in previous work to derive an approx-
imate (open-loop) steering algorithm for a nonholonomic
unicycle despite model perturbation (e.g., unknown wheel
size) that scales both the forward speed and turning rate by
an unknown but bounded constant [13]. Rather than steer
one unicycle with an unknown parameter, we chose to steer
an infinite collection of unicycles, each with a particular
value of this parameter in some bounded set. Following the
terminology introduced by [14]–[17], we called this fictitious
collection of unicycles an ensemble and called our approach
to steering ensemble control. The idea was that if the same
control inputs steered the entire ensemble from start to goal,
then surely they would steer the particular unicycle of interest
from start to goal, regardless of its wheel size.

Here, we take advantage of this idea in a slightly different
way. Rather than trying to mitigate the effects of bounded
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model perturbation (i.e., of inhomogeneity), we are trying to
exaggerate these effects. Basic controllability results carry
over from our previous work. Our main contribution in
this paper is to derive a closed-loop feedback policy that
guarantees exact asymptotic convergence of the ensemble
to any given position. We note that, for single robots, it is
possible to build a robust feedback controller that regulates
position and orientation [18]. It is not obvious that the same
can be done for an infinite collection of robots.

Our paper proceeds as follows. In Section II, we provide a
globally asymptotically stabilizing feedback control policy to
control an ensemble of differential-drive robots. We discuss
implementation details in Section III. We demonstrate the
convergence of our policy under a standard noise model
in simulation (Section IV) and in hardware experiments
(Section V). These experiments revealed surprising results:
1) our policy still works when the parameter values are
incorrectly specified and 2) our policy still works when
all robots are approximately identical with certain levels of
process noise. We conclude in Section VI.

II. GLOBALLY ASYMPTOTIC STABILIZATION OF AN
ENSEMBLE OF UNICYCLES

In this section, we provide a control policy that globally
asymptotically stabilizes an infinite ensemble of unicycles.
This control policy sets the linear velocity u1(t) to decrease
the position error. There exist configurations at which no
u1(t) can decrease the position error; however, we prove that
at any such configuration, except the origin, the ensemble can
always be rotated in place until there exists some u1(t) that
will decrease the position error.

Consider a single unicycle that rolls without slipping.
We describe its configuration by q = [x, y, θ]> and its
configuration space by Q = R2 × S1. The control inputs
are the forward speed u1 ∈ R and turning rate u2 ∈ R. The
kinematics of the unicycle are given by

q̇(t) = u1(t)

cos θsin θ
0

+ u2(t)

00
1

 . (1)

Given q(0), qgoal ∈ Q, the control problem for regulating
position is to find inputs u1(t) and u2(t) such that for any
q(0) and qgoal,

lim
t→∞

∥∥∥∥[q1(t)q2(t)

]
−
[
qgoal,1(t)
qgoal,2(t)

]∥∥∥∥
2

= 0.

If such inputs always exist, then we say that the system
is globally asymptotically stabilizable.

We will solve this control problem under model pertur-
bations which scale u1 and u2 by some unknown, bounded
constant ε ∈ [1− δ, 1+ δ] for some 0 ≤ δ < 1 so that ε > 0.
On a differential-drive robot, ε can be mapped to wheel size.

As in [13], our approach is to steer an uncountably infinite
collection of unicycles parametrized by ε, each one governed
by

q̇(t, ε) = ε

u1(t)
cos θsin θ

0

+ u2(t)

00
1

 . (2)

We choose u2(t) = 1 so that

ẋ(t, ε) = εu1(t) cos(εt)

ẏ(t, ε) = εu1(t) sin(εt). (3)

Theorem 1: The ensemble (3) for ε ∈ [1 − δ, 1 + δ] with
0 ≤ δ < 1 is globally asymptotically stabilizable.

Proof: We will prove the origin is globally asymptoti-
cally stabilizable by using a control-Lyapunov function [19].
A suitable Lyapunov function is the mean squared distance
of the ensemble from the origin:

V (t, x, y) =

∫ 1+δ

1−δ

1

2ε

(
x2(t, ε) + y2(t, ε)

)
dε (4)

V̇ (t, x, y) =

∫ 1+δ

1−δ

1

ε
(x(t, ε)ẋ(t, ε) + y(t, ε)ẏ(t, ε)) dε

= u1(t)

∫ 1+δ

1−δ
(x(t, ε) cos(εt) + y(t, ε) sin(εt)) dε

= u1(t)F (t, x, y)

Here, F (t, x, y) is the integral term which is finite as long
as x(t, ε) and y(t, ε) are square integrable over ε. To ensure
F (t, x, y) is square integrable we will require that the initial
configurations x(0, ε) and y(0, ε) be piecewise continuous.
We note here that V (t, x, y) is positive definite and radially
unbounded, and V (t, x, y) ≡ 0 only at (x(t, ε), y(t, ε)) =
(0, 0).

A. Designing a Control Policy

To make V̇ (t, x, y) negative semi-definite, we choose

u1(t) = −F (t, x, y)

For such a u1(t),

V̇ (t, x, y) = − (F (t, x, y))
2
.

Note here that V̇ (t, x, y) ≤ 0, but there exists a sub-
space of (x(t, ε), y(t, ε)) such that V̇ (t, x, y) = 0. Because
V̇ (t, x, y) is negative semi-definite, we can only claim sta-
bility, not asymptotic stability. To gain a proof of asymptotic
stability, we will use an approach similar to that of Beauchard
et al. [20] to extend LaSalle’s invariance principle [21] to this
infinite-dimensional ensemble. We will proceed by showing
the invariant set contains only the origin.

B. Finding the Invariant Set

Define the set S as all configurations where no u1(t) exists
that can decrease the Lyapunov function:

S =
{
x(t, ε), y(t, ε)

∣∣∣V̇ (t, x(t, ε), y(t, ε)) = 0
}

=
{
x(t, ε), y(t, ε)

∣∣∣− (F (t, x, y))
2
= 0
}

= {x(t, ε), y(t, ε)|F (t, x, y) = 0} .

Define the time the ensemble enters S as t0, the orientation
of each robot at t0 as θ0(ε), and t′ = t−t0. We then define all
configurations that remain identically in S as the invariant
set Sinv . Any configuration that enters this set will never
modify its position because u1(t) = −F (t, x, y) = 0 for
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any configuration in Sinv . Therefore we can drop the time-
dependence of x(t, ε) and y(t, ε):

Sinv =

{
x(ε), y(ε)

∣∣∣∣∣
∫ 1+δ

1−δ

(
x(ε) cos(εt′ + θ0(ε))

+y(ε) sin(εt′ + θ0(ε))

)
dε ≡ 0, ∀t′ ≥ 0

}
.

We can remove θ0(ε) with the following change of coordi-
nates [

x∗(ε)
y∗(ε)

]
=

[
cos
(
θ0(ε)

)
sin
(
θ0(ε)

)
− sin

(
θ0(ε)

)
cos
(
θ0(ε)

)] [x(ε)
y(ε)

]
,

giving the invariant set

Sinv =

{
x(ε), y(ε)

∣∣∣∣∣
∫ 1+δ

1−δ

(
x∗(ε) cos(εt′)

+y∗(ε) sin(εt′)

)
dε ≡ 0, ∀t′

}
.

We must show that no configuration except (x(ε), y(ε)) ≡
(0, 0) is in Sinv . We do this by applying the Fourier
transform in t′.∫ 1+δ

1−δ
(x∗(ε) cos(εt′) + y∗(ε) sin(εt′)) dε ≡ 0, ∀t′

F

[∫ 1+δ

1−δ
(x∗(ε) cos(εt′) + y∗(ε) sin(εt′)) dε

]
{ω} ≡ 0, ∀ω

By linearity of the Fourier transformation this is∫ 1+δ

1−δ

(
F [x∗(ε) cos(εt′)] {ω}+

F [y∗(ε) sin(εt′)] {ω}
)
dε ≡ 0, ∀ω

We then apply the Fourier transform of sin(·) and cos(·) as
follows.∫ 1+δ

1−δ

√
π

2

(
x∗(ε) (δ(−ε+ ω) + δ(ε+ ω))

+iy∗(ε) (δ(−ε+ ω)− δ(ε+ ω))

)
dε ≡ 0, ∀ω, (5)

where δ(·) is the Dirac-delta operator. The Dirac-delta oper-
ator is non-zero only when ε = ±ω. Because ε ∈ [1−δ, 1+δ]
and 0 ≤ δ < 1, we can integrate (5) for all ω ∈ [1− δ, 1+ δ]
to show that in the invariant set

x∗(ω) + iy∗(ω) ≡ 0, ∀ω ∈ [1− δ, 1 + δ]. (6)

Because x∗ and y∗ are both real-valued, (6) reduces to

x(ε) ≡ 0, y(ε) ≡ 0, ∀ε ∈ [1− δ, 1 + δ].

We have shown that V is positive-definite and radially un-
bounded, V̇ is negative semi-definite, and the only invariant
point where V̇ = 0 is the origin. Therefore, we conclude
that under the control policy

u1(t) = −
∫ 1+δ

1−δ
(x(ε) cos(εt) + y(ε) sin(εt)) dε

u2(t) = 1. (7)

the origin of the ensemble (3) is globally asymptotically
stable.

III. IMPLEMENTATION

In this section, we explain extensions of our control policy
to unidirectional and discrete-time, finite ensembles, and
we apply a standard noise model to our ensemble. These
extensions are useful for implementation of our policy.

A. Extension to Unidirectional Vehicles

Some systems, including the nanocar and scratch-drive
micro-robot, have unidirectional constraints on their inputs.
Our control law already uses unidirectional input for u2. This
can be extended to robots with minimum turning radius (e.g.
[11], [12]) by redefining the robot center as the center of
rotation. To handle linear velocity constraints, we modify
(7) to be non-negative by setting u1(t) = max(0,−F (t)).
In simulation and hardware experiments, the resulting uni-
directional control policy converges about half as fast as
the original control policy. Extending the global asymptotic
stability result to unidirectional inputs is a promising avenue
for future work.

B. Extension to a Discrete-Time, Finite Ensemble of Robots

Thus far we have worked in continuous time for an
ensemble of robots. Many real-life applications, including
the micro- and nano-robots we discussed above, involve a
finite number of robots which are controlled and measured
in discrete time. We call an ensemble with a finite number
of robots a finite ensemble.

To model a finite ensemble of n robots, we redefine the
kinematic model from (3) as

ẋi = εiu1(t) cos(θi(t))

ẏi = εiu1(t) sin(θi(t))

θ̇i = εiu2(t), (8)

and in the control policy (7), we replace the integration over
ε with a finite sum from 1 to n:

u1(t) = −
1

n

n∑
i=1

(xi cos(θi(t)) + yi sin(θi(t)))

u2(t) = 1, (9)

where for the ith robot, εi is the variable parameter, (xi, yi)
is the position at time t, and εit is the orientation at time t.

Reworking the proof in Section II with summations instead
of integrals proves that the only point in the invariant set is

(xt,ε, yt,ε) = (0, 0) ∀ε ∈ [1− δ, 1 + δ],

and that the finite ensemble is globally asymptotically stabi-
lizable for particular values of ε, with control policy (9).

To simplify implementation, we split the control policy (9)
into two stages. During even stages we command the robots
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to turn in place, and during odd stages we apply a linear
velocity.

F (k) =
1

n

n∑
i=1

(xi,k cos(θi,k) + yi,k sin(θi,k))[
u1(k), u2(k)

]
=

{[
0, π2

]
k mod 2 = 0

[−F (k), 0] k mod 2 = 1
(10)

To model a finite ensemble in discrete time, we convert
the continuous kinematics in (8) to the following discrete
kinematics under control policy (10):xk+1,i

yk+1,i

θk+1,i

 =

xk,iyk,i
θk,i

+

εi cos(θk,i) 0
εi sin(θk,i) 0

0 εi

[u1(k)
u2(k)

]
, (11)

for i = 1, 2, . . . , n and k ∈ Z. Methods in [22] can be used
to show the controllability of (11).

The control policy (10) is easy to implement, never
increases the summed distance of the ensemble from the
goal, and is robust to standard models of noise.

C. Applying a Standard Noise Model
To model process noise, we apply the noise model in [23,

Chap. 5.4.2] by Thrun et al. This model defines each discrete-
time motion as a rotation, a translation, and a second rotation.
It uses the four parameters α1, α2, α3, and α4 to weight the
correlation of noise between rotation and translation actions.
If the desired rotation, translation, and second rotation are
given by [δrot1, δtrans, δrot2], then the actual actions, after noise
is applied, are given by

δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans), (12)

where sample(σ2) generates a random sample from the zero-
centered normal distribution with variance σ2. We use this
noise model for all discrete-time simulations.

IV. SIMULATION RESULTS

Here, we present our simulation methodology and results
for both continuous- and discrete-time simulations.

A. Continuous Time
We implemented the finite ensemble (8) with control

policy (9) in MATLAB to simulate n = {50, 100, 500, 1000,
2000} robots in continuous time for two different test cases.
For these tests δ = 1/2, and εi = 1− δ + 2δ

n i.
1) Point to Point: Robots are initialized to [xi, yi, θi] =

[1, 1, 0] and steered to the origin. Results are shown in Fig. 2.
2) Path to Point: Robots are initialized to θi = 2πi/n,

[xi, yi] = [cos(θi, sin(θi)], a circle of radius 1, and steered
to the origin. Results are shown in Fig. 3.

From these simulations, we see that under our control pol-
icy, the error converges asymptotically to zero. Additionally,
the Lyapunov function evolution and state trajectories for
n = 1000 and 2000 are identical, suggesting that this level
of discretization accurately represents the ensemble (n =∞)
kinematics.
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Fig. 2. Continuous time simulation of n robots, with ε ∈ [0.5, 1.5],
all initialized to (1, 1) and steered to (0, 0) using control policy (9) and
u2(t) = cos(

√
t). The simulation was run with increasing numbers of

robots. SImulations with n ≥ 500 achieved the same error, as shown in the
top plot. State trajectories of the ensemble are shown in the bottom plot.
Lines show the path followed for five particular values of ε. Thick black
lines show the entire ensemble at instants of time (see video).
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Fig. 3. Continuous time simulation of n robots, with ε ∈ [0.5, 1.5],
initially evenly distributed about the unit circle and steered to (0, 0) using
control policy (9) and u2(t) = cos(

√
t). The simulation was run with

increasing numbers of robots. Simulations with n ≥ 500 achieved the same
error, as shown in the top plot. State trajectories of the ensemble are shown
in the bottom plot. Lines show the path followed for five particular values
of ε.
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Fig. 4. Lyapunov function of a discrete-time, finite collection of 120 robots simulated under a standard noise model (12). 4a shows the convergence of
the position error, where ε ∈ [0.5, 1.5], with different levels of noise parametrized by α; all α are equal. In 4b and 4c, all ε are set to 1. 4c shows that
focusing the noise in the rotation (α1) improves convergence with identical robots.120 unicycles

ϵ=0.5 ϵ=1.5

Fig. 5. Simulation results from applying the control policy from (10) for
120 robots with unicycle kinematics. Wheel size (ε) was evenly distributed
from 0.5 to 1.5. The plot shows the the starting ‘+’ and ending ‘◦’ positions
along with 8 selected state trajectories (see video).

B. Discrete Time

We simulated a discrete-time collection of 120 robots
under various levels of process noise parameters with both
differing and identical values of ε. Sample trajectories are
shown in Fig. 5. We explored three different cases:

1) Different ε Values: Simulating with differing ε, we
found that with no process noise, the position error of our
robot collection converged to zero error. When the noise
model (12) was applied, the error converged to a non-zero
value for small values of process noise, and diverged for
large values, as shown in Fig. 4a.

2) Identical Robots: When all 120 robots are identical,
the smallest position error is achieved within a specific
intermediate range of process noise values. Large α values
caused the error to diverge, while small α values led to very
slow convergence. This result is shown in Fig. 4b.

3) Effect of Rotational Noise: Again with identical robots,
we held the translational and cross-term noise at 0.01, a value
which converged quickly in the previous simulation, and
varied the rotational noise, α1. Convergence rate increased
with α1, up to a limit of approximately α1 = 1. This result
is shown in Fig. 4c.

These results show that process noise is necessary for a
finite collection of identical robots to be controllable. We
believe this is a subset of a larger class of problems for
which noise is beneficial, or even necessary, for stability and
control. In particular, these results suggest that robots with

uniform inputs should be designed with large rotational, but
small translational and cross-term noise.

V. HARDWARE EXPERIMENTS

Here, we describe our hardware system and explain our
experimental procedures and results.

A. Differential-drive robots

Our differential robots have two large direct-drive wheels
in the back, and a free-wheeling ball caster in the
front, as shown in Fig. 1. In the experiments shown
in this paper, we use wheels with diameters in the set
{102, 108, 127, 152}mm. Trials with identical-size wheels all
used 102mm wheels.

B. System Overview

Our robots are commanded to either move linearly or
turn in place in units of encoder ticks. These commands
are broadcast over 900MHz radio using an AeroComm 4490
card.

Four to five tracking dots are fixed to the top of each robot.
Position and orientation data for each vehicle are uniquely
measured by an 18-camera NaturalPoint OptiTrack system
with reported sub-millimeter accuracy. A MATLAB program
computes the control policy (10) and sends the global control
signal.

C. Online Calibration

Calibration is not necessary for successful implementation
of the controller—note that the control policies (7) and (10)
do not require ε. In practice, the policy

u1(t) = −
1

n

n∑
i=1

1

εi
(xi cos(θi(t)) + yi sin(θi(t)))

with the correct ε values results in faster convergence. In our
hardware experiments, for every translation command u(k),
we record beginning and ending positions to calculate di, the
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distance traveled, and update each εi value according to the
following rule

εi(k + 1) = εi(k) +K
|u(k)|
M

(
di
|u(k)|

− εi(k)
)
.

K is the weighting we give new measurements of ε, and
M is the maximum possible distance we may command the
robot to move. For the experiments shown here K = 0.1 and
M = 0.7.

D. Experiments

We conducted a series of experiments to show that our
control policy converges in a real system. We show results for
unique wheel sizes with online calibration, for unique wheel
sizes without online calibration, and for identical wheels.

1) Unique Wheel Sizes with Online Calibration: Initially,
each robot was assumed to have ε = 1, and the actual values
of ε were learned through online calibration. The robots
were successfully commanded from a horizontal line, to a
box formation, to a vertical line, and finally to a tight box
formation. The results in Fig. 6 show convergence both in
position and in ε values. Online calibration requires persistent
excitation, so convergence slows as the robots approach their
targets.

2) Unique Wheel Sizes without Calibration: Surprisingly,
it is not necessary to know or to learn the ε values. For
this entire experiment ε was set to 1. Four robots were
successfully commanded from a horizontal line to a box
formation, and then to a vertical line. For each formation,
error converged to less than half a meter, as shown in Fig. 7.

3) Identical Wheel Sizes: Even with identical ε values,
a collection of robots is still controllable due to process
noise. Fig. 8 shows successful convergence results of four
robots with identical wheel sizes commanded to the same
formations as the previous experiment.

E. Applications Enabled by Position Control

The ability to control position enables many tasks. In
a multimedia attachment, we demonstrate robot gathering
using six robots with identical-sized wheels. Robot gathering
robustly collects all the robots to one position; this primitive
operation could be useful for alignment of micro- and nano-
robots. To achieve robot gathering, the goal position of each
robot is set to the mean position of the ensemble.

Other tasks include forming subgroups, path- and
trajectory-following, dispersion, pursuit/avoidance, manipu-
lation, and assembly. Each can be implemented by a suitable
selection of time-varying target locations in (9). Simulated
results for trajectory following are shown in Fig. 9.

Future work could incorporate collision and obstacle
avoidance by adding a potential field to the control policy
(7) as in [24, Chap. 4].

VI. CONCLUSION

In this paper we investigated ensembles of unicycles that
share a uniform control input. Through Lyapunov analy-
sis, we derived a globally asymptotic stabilizing controller
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Fig. 6. Hardware experiment with unique wheel sizes and online
calibration. The top plot shows ε values estimated by online calibration.
The bottom plot shows the summed distance error as the robots were steered
through the sequence of formations shown.
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Fig. 9. Simulation of trajectory-following. Six differential-drive robots
with wheel sizes ranging from 0.5 to 1.5 of nominal are steered with a
common control signal to follow trajectories that spell out ‘RMSLAB’. The
top left robot (blue) has the smallest wheels while the lower right robot
(black) has the largest wheels. The bottom plot shows that the Lyapunov
function stabilizes around 0.37.

for a continuous-time, infinite ensemble. We extended this
controller to finite collections of unicycles in continuous
and discrete time. In simulation, we showed that a discrete-
time, finite ensemble of unicycles converges asymptotically
and rejects disturbances from a standard noise model. In
hardware experiments, we demonstrated online calibration
which learned the unknown parameter for each robot. These
experiments led to surprising results that 1) our controller
still works when all wheel sizes are incorrectly specified and
2) for certain levels of process noise our controller works
even when all wheel sizes are the same.

This work shows that a collection of unicycles with
uniform inputs to all robots can be regulated to arbitrary po-
sitions and reject disturbances from a standard noise model.
If the robots have unique wheel sizes, they can converge to
goals with global asymptotic stability. The analysis suggests
that micro- and nano-robots with uniform inputs should be
designed with large rotational, but small translational process
noise.
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