
Hardware and control design of a ball balancing robot
Ioana Lal, Marius Nicoară, Alexandru Codrean, Lucian Buşoniu

Abstract— This paper presents the construction of a new
ball balancing robot (ballbot), together with the design of a
controller to balance it vertically around a given position in
the plane. Requirements on physical size and agility lead to
the choice of ball, motors, gears, omnidirectional wheels, and
body frame. The electronic hardware architecture is presented
in detail, together with timing results showing that real-time
control can be achieved. Finally, we design a linear quadratic
regulator for balancing, starting from a 2D model of the robot.
Experimental balancing results are satisfactory, maintaining the
robot in a disc 0.3 m in diameter.

I. INTRODUCTION

A ball balancing robot (ballbot, for short) is a vertical
robotic platform mounted on top of a sphere that rolls on
the ground, thereby moving the robot. Actuation is usually
realized by a set of omnidirectional wheels that sit on the ball
and are connected to the rest of the robot body. Compared
to the usual, wheeled ground robots, which are inherently
stable, a ballbot is inherently unstable and it must always be
actively controlled to stabilize it and prevent it from falling.
On the other hand, the same instability confers it much more
agility (e.g., it can move fast by tilting, and it can achieve
any trajectory on the horizontal surface) [5].

Quite a number of ballbot designs have already been
proposed in the literature. For instance, the ballbot designed
in [5] is a very agile one, reaching a maximum speed of
3.5m/s and is also able to tilt up to a maximum angle of
17◦. Additionally, in the balancing phase, it deviates from the
initial point with a maximum of 1mm. Another example is
the ballbot developed in [10]. This robot is unique for being
very large, and it is able to transport a person. It reaches
a body weight of 68 kg, which is unusually large compared
to previously developed ballbots. Ballbots with four rollers
instead of three omniwheels have be designed in [8] and [6].
Other ballbots have been developed in e.g. [7], [4].

Our design is inspired by these versions, indeed mostly
by [5]. However, our objectives are different. In particular,
the main goal is to use the robot to demonstrate certain
technologies such as smart office assistance, autonomous
guidance and negotiating right-of-way with humans, etc.
Additionally, we plan to use the robot as a benchmark for
advanced nonlinear control methodologies developed in our
research. Finally, the robot may be used as a teaching tool
in robotics, system-theory, and control engineering courses.

I. Lal and M. Nicoară are with the Engineering Center Cluj, Robert Bosch,
Romania. A. Codrean and L. Buşoniu are with the Automation Department,
Technical University of Cluj-Napoca, Romania. Email addresses:
ioanalal04@gmail.com, marius.nicoara@ro.bosch.com,
{lucian.busoniu, alexandru.codrean}@aut.utcluj.ro.
This work was supported by a grant of the Romanian Ministry of Research
and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-
2016-0670, within PNCDI III.

These objectives lead to some specific challenges and
unique features of the robot. First of all, we will need to
add different functionalities in the future, so it is important
to be able to easily make changes in the robot’s structure.
Therefore, we design it to be modular. Secondly, since one
of its subsequent purposes is to be an office assistant, we
need a robot which has an appropriate height for interacting
with humans in an office environment. Thus, we chose to
build a medium-sized system, as tall as an office desk.
Furthermore, in the future, we may need to increase the
weight and height of the ballbot, as well as to modify some
of its parameters. Control must therefore be robust to small
parameter variations, and should be easy to adjust when
larger variations require redesigning the control law.

Next, Section II presents the design of the ballbot system.
Section III explains our control design and provides real-
time results for balancing the robot. Section IV concludes
the paper and provides some pointers for future work.

II. SYSTEM DESIGN

As is typical in robotics, the physical ballbot represents
a fusion between mechanical and electrical subsystems.
Moreover, the software that is implemented on top of these
two base layers, along with the control algorithms of the
robot, are in a close inter-dependency with the entire system.
In the next sections, the mechanical, electrical and software
subsystems will be detailed in turn.

A. Mechanical design

The first step of the mechanical design was to establish
the dimensions of the main assemblies that are integrated in
the robot. Figure 1 presents the structure of the ballbot with
its main units: body, base, and ball.

The most important characteristics of the mechanical
structure of the robot are to achieve a sufficient stiffness and
precision, and to be modular. In order to satisfy stiffness and
precision, we used aluminum alloy as base structure material
(AlMg4,5Mn0,7). In order to satisfy the modularity of the
system, the structure of the robot (Figure 1) was designed
from adjustable parts (adjustable positioning supports for
the electrical components, modular aluminum base structure,
pressure adjustable gripper, etc.) that make it easy to recon-
figure the structure of the robot: changing the ball diameter,
the angle or dimension of the omniwheels, the center of
gravity of the robot, etc. Our target was to ensure that the
minimum requirements of the system are reached even if the
functionality of the robot may vary in the future.

One of the most critical requirements was to ensure a high
enough torque at the end of the shaft of each actuator. The
first estimation regarding the needed torque was around the



Fig. 1. Structure of the ballbot

value of 6 Nm, a spike value and not a continuous one in the
running mode of the robot. Therefore, the electrical motor
that we have chosen is a brushless DC motor that is capable
to generate a continuous torque of 0.11 Nm (Maxon EC-
i 30). A gearbox is required to increase the output shaft
torque, reducing the speed. The solution we chose was a
planetary gearbox with a 21:1 reduction (Maxon Gearhead
GP 32 C). Thus, the gear-motor combination will deliver a
constant torque around 2.3 Nm at 5 A and a maximum torque
of 6.7 Nm at 15 A.

The omnidirectional wheels (omniwheels, for short) that
are attached to the motor shaft need to have a proper diameter
so that the gear-motor-encoder assemble can be mounted
in a correct position and at a correct angle. Initially, we
tried a double-sided plastic omniwheel with rubber rollers
as shown in Figure 2. This solution was not suitable for
our application: due to the double-point contact between
the omniwheels and the surface of the ball, considerable
vibrations occurred throughout the structure, omniwheels
often lost contact with the ball. Also, because of the smooth
surface of the rubber rollers, slipping appeared. A better
solution was to use single-sided stainless steel omniwheels,
100 mm in diameter and with a load capacity around 10 kg.
Their rollers are also manufactured from stainless steel, with
a striated surface that ensures a nearly continuous single-
point contact with more grip.

Fig. 2. Double-sided omniwheel vs. single-sided omniwheel

Fig. 3. Contact angle and the distribution of the omniwheels

In order to achieve a good controllability of the robot,
a compromise is needed between sufficient support and the
robot’s agility. This is determined by the Zenith angle, which
is the angle between the contact point of the omniwheels
and the ball, and the vertical axis of the ball. A higher angle
(close to 90◦) makes the movement on the floor very difficult,
as the robot cannot easily rotate around the X and Y axes.
A smaller angle (close to 0◦) makes the support triangle of
the robot very narrow, so it becomes more complicated to
balance the robot and to rotate around the Z axis [4]. The
Zenith angle is thus chosen to be 45◦, as shown in Figure
3. Figure 3 also highlights the circular distribution of the
omniwheels around the ball.

In some situations, due to high acceleration of the wheels
or large tilt of the robot, even the new omniwheels lose
contact with the ball surface if they are left to freely sit on
it. Therefore, an adjustable ABS plastic 3D printed gripper
with 3 plastic ball casters was designed and mounted on the
bottom of the ball in order to ensure a permanent contact
between the ball and omniwheel. The gripper pressure can
be adjusted using three screws.

The sphere consists of a 3 kg rubber covered medicine
ball with a diameter of 220 mm, which should guarantee
a sufficient inertia moment considering the entire weight of
the system (6 kg). We chose a medicine ball due to its rough
texture, which helps in avoiding slippage between the ball on
the one hand, and the omniwheels or the floor on the other.

However, because of this rough texture and of the irregular
horizontal surface on which the robot moves, significant vi-
brations can occur. Vibration rubber dampers were mounted
between the base and the body of the robot (not visible in
the Figure 1), to reduce the vibration propagation throughout
the structure, in order not to disturb the orientation sensor
and other fragile electronic components.



B. Electronics

Figure 4 presents the hardware architecture of the ballbot.

Fig. 4. Hardware architecture

As previously explained, the electrical actuators were
chosen as a result of the required torque at the end of the
shaft. For the type of brushless motors we selected (Maxon
EC-i 30, 75 W, 0.11 Nm continuous torque [3]), there is a
near-linear dependence between the output torque and the
input current, described by the motor torque constant, with
a value of 0.0214 Nm/A. The stabilizing controller for the
robot gives a torque command. This command is equivalent
to a computed current. The output currents which emerge
after the execution of the control algorithm are applied
individually to each of the three motors, via the motor servo
controllers (ESCON 50/5). Thus, we have an internal control
loop that ensures that the required current is the actual current
in the motors.

The main processing unit (master board) is a MSP432
Texas Instruments microcontroller [2] capable of running at
a frequency up to 48 MHz. It is responsible with absolute
orientation data acquisition from the BOSCH BNO055 [1]
inertial measurement unit (Euler’s angles and their veloci-
ties). These two components communicate on a 400 kHz I2C
bus. Also, this microcontroller is connected with the three
servo controllers, sending via PWM signals the requested
current/torque of each motor and receiving via analog signals
the angular velocity measurements from the motors.

While this main processing unit is powerful enough for the
needed computations, it is insufficient to acquire the large
amount of data required, due to its low number of input-
output pins and limited ability to handle a large number of
interrupts. Therefore, a second data acquisition microcon-
troller (slave board) was added to the system in order to
deal with multiple interrupts given by the input signals: three

quadrature encoder signals (128 counts/turn) and six analog
signals from the IR distance sensors.

The information acquired by this second microcontroller
has to be transferred to the main one (master-slave data
transfer). In order to do that, we have created a high-speed
custom designed parallel protocol between the master and
slave microcontrollers that can transfer large amounts of data
in a short period of time (300 kB/sec). A suitable solution for
our application was to use an entire 8 bits I/O port on both
boards as data bus and other two pins as request bit from
master and acknowledgment bit from slave. This solution
was chosen based on our previous positive experience with
it. In the future, an additional board will be added for
higher level tasks, such as image processing, trajectory
planning or human interaction. An alternate architecture is
proposed in [10], built around a mini PC that deals with
the data acquisition and computing the control signals. It
also communicates using an RS232 protocol with a second
board, which commands the auxiliary 4 motors that act on
control moment gyroscopes.

Our main power supply is an 18.5 V, 5 Ah Li-Po battery,
directly connected to the servo controllers, maintaining the
demanding power required by the motors. This battery grants
more than 8 h autonomy (a full working day) in balancing
mode. A smaller, single cell Li-Po battery was also intro-
duced to supply the logic system and some sensors. At the
moment, we do not handle the situation when the robot’s
battery dies. However, in the future, a “skirt” system will be
added that prevents the robot from falling for any reason,
including low battery.

C. Software and timing

The software implemented on the MSP432 microcontroller
has a sequential design in which the software functions are
called one after the other, in a prescribed order. We have used
a register-level C programming language, software being di-
vided in multiple .c and .h files. We have created initialisation
functions at system startup that test the functionality of the
sensors and wait for the user to press the start button in
order to confirm that the system is ready to be engaged in
movement. The main loop represents a series of function
calls, in which the sensors are read, the high-level controller
algorithm is processed and its output signals are sent to the
servo controllers of the motors.

Figure 5 highlights the timing of the main loop in the
context of the required sampling period by the controller. In
our case, we adopted a 10 ms sampling period, since the
timing of the main loop allowed it, and a smaller sampling
time usually leads to better control performances.

We recorded both main buses with a logic analyzer: SDA
and SCL are the data and clock lines of the I2C bus and the
REQ and ACK represent the request and acknowledgement
lines of the parallel bus. The 10 ms sampling time can be
divided in three main time intervals: signal acquisition time
(ta), control algorithm processing time (tp) and sampling
time delay (td). During the sampling time delay, the loop
waits for the 10 ms to pass, in order to start a new sampling



Fig. 5. Software cycle timing: without (A) and with (B) clock stretching

period. Figure 5 also shows the execution time te, needed
to send the control signals from the microcontroller to the
servo controller, but this time interval is very short, on the
order of nanoseconds. The time needed for the currents to
stabilize is under 0.5 ms and is included in td. Defining the
sampling time as ts, we can state: ts = ta + tp + te + td.

There are two different cases captured in Figure 5. In
the first case (top plot, A) the 10 ms sampling time is
shown with a typical short time data acquisition (ta = 0.64
ms). The second case (bottom plot, B) highlights a much
greater data acquisition time (ta = 3.89 ms), six times
longer than the normal case. This phenomenon is known
as I2C clock stretching. The BNO055 IMU delivers fused
absolute orientation data that are internally calculated from
accelerometer, gyroscope and the magnetometer, and, if the
calculations are not ready when the master controller requests
them, clock stretching appears. Fortunately, for our 10 ms
sampling time, we are sure that a minimum 5 ms time
interval is available for processing time (tp = 1.22 ms, nearly
constant value for all cases) and for execution (te = 0.0038
ms, nearly constant value for all cases). The remaining time
(td) varies therefore from 5 ms (plot B) up to 8 ms (plot A)
allowing us to increase the processing time by implementing
other more complex controllers.

III. MODEL-BASED CONTROL DESIGN

A ballbot is inherently unstable, thus a proper controller
is important in stabilizing it, prior to any other task such
as moving the robot in the horizontal plane. We will apply
a model based controller design; as such, a model of the
system is needed. The following subsections introduce, in
turn, the mathematical model of the ballbot, the controller
design, and some experimental results.

A. Dynamic model

1) Nonlinear model: In this section, the model of the
ball-balancing robot is presented, as derived in [10]. The
model is developed using the Euler-Lagrange equations [11],
an approach for modeling a robotic system based on the
energy balance. First, some assumptions are made: there
is no slip between the ball and the floor or the ball and
the omniwheels, the ball is a perfect sphere, the floor is
flat and the dynamics of the motors are fast enough to be
disregarded. Moreover, we neglect the friction, because it
would add more complexity to the model and its parameters
are difficult to estimate. Here, the 3D model is considered
to be a combination of three 2D models, by separating the

y

z

θx Ix

yk

Ik rk

y

x

θz

Side view Top view

Fig. 6. The coordinates for planes YZ and XY

planes YZ, XZ and XY. These planes can be seen in Figure
6. It should be noted that the X axis is aligned with motor
1. The minimal coordinates for the planes are:

qx =

[
yk
θx

]
, qy =

[
xk
θy

]
, qz = [θz] (1)

where θx, θy and θz are the Tait-Bryan angles of the body,
and xk and yk give the ball’s position on the floor. The robot
dynamics in the YZ plane are:

M(qx)q̈x + C(qx, q̇x)q̇x +G(qx) = Qx (2)

where:

M(qx) =[
mk +

Ik
r2k

+ma +
3Iw cos2 α

2r2w

3Iw cos2 α
2r2w

rk −mal cos θx
3Iw cos2 α

2r2w
rk −mal cos θx mal

2 +
3Iwr

2
k cos2 α
2r2w

+ Ix

]
G(qx) =

[
0 −magl sin θx

]T
Qx =

[
1
rw
τx

rk
rw
τx
]T

C(qx, q̇x) =

[
0 malθ̇x sin θx
0 0

]
(3)

with the parameters described and given in Table I. The
equations for the XZ plane are analogous to the ones for
the YZ plane. There is only one equation for the XY plane:

θ̈z =
Ik

IkIz + 3(Ik + Iz)Iw
r2k
r2w

sin2 α

rk
rw
τz (4)

The inputs for the models τx, τy, τz are the equivalent torques
on each plane, but a conversion is needed, since we need
to express the model in terms of the motor torques. This
conversion is represented by the transformation:τ1τ2

τ3

 =


2

3 cosα 0 1
3 sinα

− 1
3 cosα

√
3

3 cosα
1

3 sinα

− 1
3 cosα −

√
3

3 cosα
1

3 sinα


τxτy
τz

 (5)

where τ1, τ2, τ3 are the torques of each motor, respectively.
2) Linear model: As it can be seen, the YZ and XZ mod-

els are nonlinear, so a linearization around an equilibrium
point is needed, to apply linear control design. We consider
points when the body is upright (balancing). There is an
infinite number of such points, for every ball position on the
floor. However, for simplicity, we choose to linearize around
the point represented by the origin of the coordinate system,
which we take to be the initial position of the robot, around
which the balancing should be performed. We linearize the



Parameter Symbol Value
Mass of the ball mk 3 kg
Radius of the ball rk 0.11 m
Inertia moment of the ball Ik 0.0242 kgm2

Mass of the body ma 6.0874 kg
Body moment of inertia around the x-axis Ix 1.6839 kgm2

Body moment of inertia around the y-axis Iy 1.6839 kgm2

Body moment of inertia around the z-axis Iz 0.0228 kgm2

Radius of an omniwheel rw 0.05 m
Omniwheel moment of inertia Iw 0.0015 kgm2

Height of the body’s center of mass l 0.3251 m
Gravitational acceleration g 9.81 m/s2
Zenith angle α 45◦

TABLE I
BALLBOT PARAMETERS

models for the two planes separately, therefore we have state
vectors and inputs corresponding to each of the planes. The
state vector is represented by the minimal coordinates and
their velocities, and the input is the equivalent torque for that
plane, xx = [qTx q̇Tx ]

T , ux = τx,xy = [qTy q̇Ty ]
T , uy = τy .1

We can now write the model of the system, considering that
ẋx = [q̇Tx q̈

T
x ]
T , ẋy = [q̇Ty q̈

T
y ]
T and that q̈x can be computed

from equation (2), by multiplying to the left with M−1(qx)
and q̈y can be found in a similar way. Therefore, the model
will be:

ẋx = fx(xx, ux)
ẋy = fy(xy, uy)

(6)

with fx and fy being non-linear vector functions. Their ex-
pressions are complex, so they will not be provided here. The
equilibrium point is represented by xx0 = [0 0 0 0]T , ux0 = 0
and xy0 = [0 0 0 0]T , uy0 = 0.

After linearizing, we obtain a state space form of the
model, as follows:

ẋx = Axxx +Bxux
ẋy = Ayxy +Byuy

(7)

By replacing the parameters with their actual values, we get
the following matrices:

Ax =


0 0 1 0
0 0 0 1
0 3.4586 0 0
0 20.6773 0 0

 ,Bx =


0
0

2.1950
2.7587


Ay =


0 0 1 0
0 0 0 1
0 −3.4586 0 0
0 20.6773 0 0

 ,By =


0
0

−2.1950
2.7587


(8)

For the XY plane, Equation (4) (which was already linear)
becomes after parameter substitution:

q̈z = 50.0343τz (9)

Considering the system state as xz = [qz q̇z]
T and the input

as τz , we can write the system in state-space form:

ẋz = Azxz +Bzuz (10)

1We use subscript x to denote the YZ plane, and bold x to denote state
vectors. Similarly, subscript y denotes the XZ plane.

where the matrices Az and Bz are:

Az =

[
0 1
0 0

]
,Bz =

[
0

50.0343

]
(11)

B. Control design

Having the linearized model of the system, we can now
design a controller for balancing the robot. We used the
linear quadratic regulator (LQR) framework [9] to design
three separate controllers, one for each of the robot planes.
In this section, we present the model used, the design of the
three controllers, and the adjustments we had to make for
the real-time experiments.

1) Linear Quadratic Regulator: Consider a state space
model of the form:

ẋ = Ax+Bu (12)

with x representing the state vector, u the control vector,
matrices A ∈ Rn×n and B ∈ Rn×m. We shall consider a
cost function of the form:

J =
1

2

∫ ∞
0

(xTQx+ uTRu)dt (13)

with the matrix Q ∈ Rn×n being positive-definite or
positive-semidefinite, and R ∈ Rm×m a positive-definite
hermitian or real symmetric matrix. The objective is to find
a control that minimizes the cost function. For that, it will
be sufficient if we apply a control law of the following form:

u = −Kx, (14)

where the gain K is:

K = R−1BTP, (15)

P being the stabilizing solution to the Ricatti equation [9]:

Q+ATP + PA− PBR−1BTP = 0 (16)

The cost function that needs to be minimized depends on
the Q and R matrices. There is no exact algorithm to
choose them; in most cases, the tuning of the matrices is
done experimentally. Q determines the importance of the
states, while R penalizes the inputs. It is therefore necessary
to find a balance between the speed of recovery from an
unstable position and the magnitude of the input signals. The
two matrices are usually diagonal matrices, often identity
matrices or scaled versions thereof. In our case, we found
that the best results are given by the following expressions
of Q and R: Q = diag([50 50 5 5]), R = 5. The resulting
Kx and Ky matrices are:

Kx = [−3.1623 32.9537 − 3.6595 7.7799]
Ky = [ 3.1623 32.9537 3.6595 7.7799]

(17)

For the XY plane, an LQR controller is also designed, using
the following weight matrices: Q = diag([30 5]), R = 10,
which leads to:

Kz = [1.7322 0.7636] (18)



2) Adjusting the gains: Although the simulations give
satisfying results with the above gains, for the real-time
experiments some adjustments need to be made. We noticed
that, with these gains, the robot is moving too violently, so
we decrease the gains accordingly. A solution that works for
station-keeping is dividing the gains corresponding to the
rotations (namely the angles and the angular velocities) by
3, and the gains corresponding to the movement in the plane
(namely the x and y positions and their velocities) by 1.5.
Therefore, the new gains are:

Kx = [−2.1082 10.9846 − 2.4397 2.5933]
Ky = [ 2.1082 10.9846 2.4397 2.5933]

(19)

We can understand this in terms of LQR design as increasing
the components of the matrix R accordingly.

C. Experimental results

This section provides illustrative real-time results, in ex-
periments where the ballbot must be balanced in an upright
position. In the real-time implementation, we filtered some
of the signals with a low pass filter. We used first order filters
for the motor speeds, angular velocities and for the command
signals, with the time constants 30 ms, 10 ms and 10 ms,
respectively. Figure 7 presents the evolution of the angles
of the robot in time. The controller succeeds in keeping the
robot almost upright, as it inclines at most 5◦ around the y
axis and at most 7◦ around the x axis.

Figure 8 illustrates, in blue continuous line, the trajectory
of the robot in the XY plane (on the floor). As it can be
seen, the ballbot remains around its initial position, which is
the (0, 0) position. We notice oscillations around the initial
position. They occur because the robot always tilts in some
direction, so the controller has to compensate and move the
robot, in order for it to recover. Moreover, there exists of
course unmodeled behavior, including friction, mechanical
backlash, and other nonlinear dynamics. In addition to that,
the 2D model represents a simplification of the 3D one,
which would consider also the coupling between the planes
[5]. All these factors lead to the oscillations that we observe.

0 5 10 15 20 25
-10

-5

0

5

y
 [

d
e

g
re

e
s
]

0 5 10 15 20 25

t [s]

-10

-5

0

5

10

x
 [

d
e

g
re

e
s
]

Fig. 7. Robot inclination

In addition, for the purpose of comparison, we present the
best obtained result with the first omniwheels we attempted,
the ones with 2 rows, see again Figure 2. The position of
the robot in the plane can be seen in Figure 8, in black
dashed line. As we can see, the oscillations around the
origin are much greater in this case. This is because the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x [m]

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
 [
m

]

trajectory with old omniwheels

trajectory with new omniwheels

Fig. 8. Ball position in the plane with the old and new omniwheels

the old omniwheels introduced vibrations, due to the passing
from one row to another. With the new omniwheels, reduced
vibration enabled the use of larger control signals, leading
to more accurate control. One objective in future work is to
limit the radius of oscillation even more, so as to make it
comparable to that of the robots from [10] (10-12 cm), [7]
(2-3 cm) or [5] (2-3 mm).

IV. CONCLUSIONS

This paper presented the construction of a ball-balancing
robot, together with the design of a stabilizing controller
to balance the robot around the vertical position. The me-
chanical and electronic hardware was presented in detail,
and the selection of the omnidirectional wheels actuating
the ball proved particularly important. Real-time control
results showed satisfactory performance, where the robot was
maintained in a disc of about 0.3 m in diameter.

An important direction for future work is to consider
the coupling between the motions on the three planes in
the control design, together with the nonlinear behavior of
the robot when significantly tilted from vertical. Tracking
control should be developed next, together with higher-level
sensing and trajectory generation. To this end, an additional
computing board will be added to the platform, together with
additional ranging and camera sensors.

REFERENCES

[1] “BNO055 Datasheet,” BST - BNO055 - DS000 - 1, 2014.
[2] “Texas Instruments Technical Reference Manual,” SLAU356H, 2017.
[3] “Maxon Motor Datasheet,” http://maxon.blaetterkatalog.ch/b9990/catalog,

2018.
[4] J. Blonk, “Modeling and control of a ball-balancing robot,” Master’s

thesis, University of Twente, 2014.
[5] P. Fankhauser and C. Gwerder, “Modeling and control of a ballbot,”

B.S.C. thesis, Eidgenössische Technische Hochschule Zürich, 2010.
[6] J. Fong, S. Uppill, and B. Cazzolato, “Design and build a ballbot,”

Report, The University of Adelaide, Australia, 2009.
[7] M. Kumagai and T. Ochiai, “Development of a robot balancing on

a ball,” in International Conference on Control, Automation and
Systems. IEEE, 2008, pp. 433–438.

[8] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically
stable single-wheeled mobile robot with inverse mouse-ball drive,”
in Proceedings 2006 IEEE International Conference on Robotics and
Automation. IEEE, 2006, pp. 2884–2889.

[9] K. Ogata and Y. Yang, Modern control engineering. Prentice Hall,
2002.

[10] D. B. Pham, H. Kim, J. Kim, and S.-G. Lee, “Balancing and
transferring control of a ball segway using a double-loop approach
[applications of control],” IEEE Control Systems, vol. 38, no. 2, pp.
15–37, 2018.

[11] M. W. Spong, S. Hutchinson, M. Vidyasagar et al., Robot modeling
and control. Wiley New York, 2006.


