Knowledge-based Recommendation for Polyglot Persistence

Philipp Eisenhuth
Institute for Computer Science, University of Bayreuth
Bayreuth, Germany
philipp.eisenhuth@uni-bayreuth.de

ABSTRACT

Oftentimes modern applications have converging functionalities,
which cannot all be handled with one type of data management
system efficiently. This leads to applications requiring a variety
of different data management systems for their individual com-
ponents. Besides the traditional relational database management
systems, new systems have been developed in the last few decades
that are subsumed under the term NoSQL. The selection of suitable
data management systems for each of the application components
has potentially great impact on different aspects like performance.
Therefore, this selection process needs sophisticated analysis and
requires expert knowledge. To reduce the time required for this pro-
cess and to enable an adequate selection even for developer teams
without experts covering all kinds of data management systems,
we suggest an approach based on a knowledge-based recommender
system. We define its required input and describe how it processes
it. As a proof of concept, we show the application of our approach
for an exemplary use case. The database recommendation process
is embedded in the overall design phases of applications with a
polyglot data management landscape.

1 INTRODUCTION

Back then when database management systems (DBMS) came up,
the area of data management was mainly concerned with relatively
small, structured, and homogeneous data. Relational DBMS were
typically a proper solution for all kinds of use cases. Through the
rapid development of technology and the resulting growth in com-
puting power and storage capacity together with the rise of the
internet, there was a profound paradigm change in data manage-
ment over the last decades. This gave the developers of applications
completely new possibilities, which, in turn, also caused fundamen-
tally new challenges for data management. A popular buzzword
referring to this situation is the term Big Data. In this context, typi-
cally the following 5 V’s are taken to characterize data management:
velocity, volume, value, variety, veracity.

As a consequence, relational DBMS have not been the only so-
lution for all kinds of data management problems anymore. They
are not designed to handle these new requirements efficiently in
a broadly manner. For example, they struggle with unstructured
data, large volumes of data coming in at a very high frequency, or
enormous simultaneous access. This has led to the emerge of new
types of data management systems to compensate the weaknesses
of the former, broadly subsumed under the term NoSQL. These
systems were further classified into four main categories based on

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License and appears in CDMS 2022, 1st International Workshop on Composable Data
Management Systems, September 9, 2022, Sydney, Australia.

Stefan Jablonski
Institute for Computer Science, University of Bayreuth
Bayreuth, Germany
stefan.jablonski@uni-bayreuth.de

their data model, namely Key Value Stores, Document Stores, Column
Family Stores and Graph Databases [7] [14]. Usually, the systems
from each of these categories are designed to excel at very special-
ized use cases. In contrast though, they are also not suitable as a
one-solution-fits-all approach in a broader application scenario. For
example, Key Value Stores do not put great value on sophisticated
data structuring. However, through their simple architecture they
show excellent access performance. Similarly, the other NoSQL
types foster certain features by neglecting others.

In modern applications it is very common that the requirements
towards data management range from a traditional setting — solv-
able with relational DBMS - to very specialized demands — solvable
by specialized NoSQL systems. Parts of an application with diverg-
ing but in itself homogeneous requirements can be regarded as
application components, which, in turn, encapsulate distinct func-
tionalities. Each application component therefore has its specific
requirements towards data management. To meet these require-
ments, (at least one) suitable data management component (DMC)
should be assigned to each application component. In the rest of this
paper, we use the terms application component and data manage-
ment component to characterize separated parts of an application
with their individual required data management solution.

The co-existence of different types of data management systems
within one comprehensive application is often the case and the
resulting management and design processes become a challenge.
This special approach for data management is mostly discussed
under the term polyglot persistence [12]. Challenges in dealing with
such a polyglot database architecture mainly arise in two different
phases of an application’s life-cycle:

Design and setup phase: Here, the selection and usage of ade-
quate data management components for different application com-
ponents plays a central role. This requires profound knowledge (e.g.,
based on experience of developers), otherwise the requirements of
certain application components may not be met adequately. Addi-
tionally, data modeling for each of the selected data management
component has to be done with respect to the corresponding data
model of such a data management component.

Administration and maintenance phase: The operation of
multiple data management systems within an application can be-
come very complex. There could be queries spanning multiple
heterogeneous data management components, different forms of
distribution transparencies that have to be guaranteed, and updates
of de-normalized data. These and various other challenges have to
be coped with by the overall application.

Our approach to tackle these challenges is based on the applica-
tion of a holistic, semi-automated design framework for applications
requiring polyglot database architectures. Its focus lies mainly on
the following issues:

1) Providing a ranking of suitable data management components
for each application component, whereby corresponding explana-
tions must be provided.

2) Based on 1), a preferably optimal composition of data man-
agement components, covering all requirements of the different
application components as good as possible in a polyglot setting.

In this paper we focus on the selection and allocation process of
suitable data management components for application components.
We cope with this issue by the deployment of a knowledge-based
recommender system. To enact this we provide a formalization of
relevant data management requirements and properties of the con-
sidered data management components, together with an algorithm
for their evaluation.

The rest of this paper is structured as follows: Section 2 focuses
on related work of our proposed framework. Section 3 provides
background information about recommender systems. In Section 4,
the overall context of our framework is described, whereas Section
5 details our approach with a dedicated recommender system. A
use case of our recommendation process is presented in Section 6.
Section 7 concludes the paper with a lookout on future work.

2 RELATED WORK

A recent survey, mainly concerned with different design methods in
the new database era [11], compared and categorized data modeling
approaches. Amongst other things, they identified the following
major issues in the investigated approaches: 1) The modeling meth-
ods do not consider application specific requirements sufficiently
and 2) they mostly do not provide guidelines for choosing the best-
fitting type of DBMS or modeling strategy for a given application
component. This indicates that there is a clear need for supporting
the decision process of choosing an appropriate data management
component, based on various requirements and subsequent use the
same information for decisions in the actual data modeling. The
same authors tackled this problem with their own approach [8-10],
where they developed a method for selecting the most suitable
database type for fragments of a data model, based on application
requirements. As a basis, they use a conceptual data model from
which they create multiple fragments by clustering elements with
respect to the structure of the data model itself, the expected queries
and multiple non-functional requirements. The most suitable data-
base type for each fragment is selected by comparing the properties
of the fragment with properties of the different database types.

The concept of our framework extends their basic ideas, whereby
we enhance the approach in various directions. We consider ad-
ditional requirements for the application components, especially
non-functional ones. The description of the data management com-
ponents at choice is done with concrete properties of the respective
systems, which results in the need of mapping the requirements
from the application components to constraints on these properties.
Our approach also considers the properties of concrete systems,
instead of just describing properties on an abstract and therefore
in-concrete level of types of data management systems. In our
framework, structuring the properties of data management com-
ponents is predefined but adaptable. Furthermore, our approach
emphasizes the addition of descriptions of new data management
components.

The influence of requirements on the selection of a suitable
database system is also discussed in [4]. There, a toolbox for the
manually selection of an appropriate data management system
using a decision tree is provided. Our recommendation process
would (semi-)automate this process.

Other approaches concerned with modeling for various novel
data management systems (e.g., [2], [5], [3]) are relevant for the
context of our overall process (Section 4). They mainly focus on
data modeling languages (starting at the conceptual or logical level)
and on how to generate concrete schemata (i.e., data model on the
physical level) finally. In their transformation process, they neglect
important considerations for choosing concrete systems and also
modeling alternatives (e.g., based on various requirements).

The application of a recommender system for selecting an ad-
equate cloud database is discussed in [13]. We follow a similar
approach with our recommendation process, however, in a differ-
ent application domain.

To the best of our knowledge, there is no (semi-)automatic data-
base recommendation approach proposed so far, which also pro-
vides the possibility of easy extension and adaptation.

3 BACKGROUND: RECOMMENDER SYSTEMS

This work is concerned with multiple aspects of database design
and selection, especially in a polyglot context, and connects this to
the field of recommender systems. We provide some background
to the general concepts of recommender systems, focusing mainly
on their required input and functionality. The transfer of these
concepts to our application domain is described in more detail in
Section 4.

Recommender systems are typically known for product recom-
mendations in an E-Commerce setting or for movie and music
suggestions on streaming platforms. Their goal is to narrow the
amount of presented items for each user, especially by highlighting
the most relevant ones. However, their scope is not limited to these
settings and they can potentially also be deployed in completely
different domains.

There are multiple types of recommender systems, which all
require different kinds of input. Most of them use historical data
connected with their users, like the previous products users have
bought or the movies they have watched, as a basis for the recom-
mendation method. Often, also a rating — either explicit or implicit —
is considered. Comparisons to similar users, either based on compa-
rable histories or on similar preferences, typically also play a central
role. In contrast to these systems, so called Knowledge-based Recom-
mender Systems let the users describe the items to be recommended
through a set of properties or requirements. These systems can fur-
ther be distinguished into case-based and constraint-based systems.
Our framework is built on the concept of the latter category. These
types of systems have the core advantage that they can be used
without historical data and can therefore start from scratch. They
rely on a knowledge base for their recommendations, which has
to be built up and filled prior to their deployment. Domain experts
have to define various mappings for the requirements to generate
constraints on the properties of the items to be recommended [1].

4 DESIGN PROCESS FOR POLYGLOT
PERSISTENCE APPLICATIONS

Our overall method for polyglot database architectures will provide
support throughout the whole development life cycle of an applica-
tion. Thereby we focus on applications with multiple, at least partly,
distinct functionalities and their corresponding data related require-
ments, encapsulated in distinct application components. Since these
often have diverging requirements, the associated data also has to
be handled differently.

For example, in a typical E-Commerce application, the data of
a shopping cart is accessed by multiple users simultaneously. Re-
quirements towards these data are completely different to those of
data which is related to the buying process for a product. For the
shopping cart data, performance and availability are most essential,
whereas for the final purchase data, consistent and transactional
execution is essential.

Our framework especially addresses inexperienced developers
through a semi-automated, well-founded recommendation process,
suggesting the usage of different data management systems for
specific requirements. Following these suggestions and the conse-
quent selection of adequate systems, logical data models can be
constructed which in turn can then be used to automatically gen-
erate components for data processing [5]. Other important issues
during the final development steps of an application are, amongst
other things, concerned with providing uniform data access and
dealing with synchronisation between multiple, partly replicated
data collections in the polyglot landscape [15]. This also includes
the efficient handling of cross-references between different system
types, the adherence of data transparencies, and the handling of
cross-database transactions.

To provide the broader context for the contribution of this paper,
we briefly give an overview of the overall design process in the rest
of this section. The process can be separated roughly into three
logical parts as depicted in Figure 1. The first phase is concerned
with the collection and formalization of multiple requirements for
the application to be developed (Requirements Engineering Phase).
This also includes a complete conceptual data model covering all
parts of the applications data (Step: Requirement Analysis). Aiming
at assigning different data management components to parts of this
holistic data model (and therefore the application components), we
need to partition it with respect to comparable requirements. There-
fore we allocate these requirements to elements of the model (i.e.,
the concrete entities and relationships) and afterwards group them
based on their similarities into partitions [9]. Again, this reflects
the different application components (Step: Model Partitioning). The
results from this partitioning together with the formalized require-
ments are brought to our knowledge base, which defines the input
for our recommendation process (Step: Database Selection). The
focus of this work lies on this step and, hence, is discussed further
in Section 5. As a result, a list of data management components
is generated, which should be applied for the various partitions
of the data model. The next steps are concerned with the actual
usage of this information (Step: Polyglot Database Design). Logical
data models for each application component are created in the cor-
responding data model type of the selected system. Out of these,

usable building blocks for the interaction with concrete systems
within the application are created (Step: Implementation).

5 KNOWLEDGE-BASED DATABASE
RECOMMENDATION

The focus of our work lies on the architecture of a general frame-
work that enables a profound recommendation for adequate data
management components for respective application components.
Applied in this application domain, the input for a constraint-based
recommendation algorithm can be categorized as follows (based
on the definitions from [1]):

User specifications: In our case, these are the requirements
gained in the requirements engineering process. These are repre-
sented as follows:

Requirement = (ReqCategory, RelatedPartition, ReqV alues)

ReqCategory defines the category and name of a particular require-
ment. RelatedPartition determines the relation to the partition of the
data model and therefore the covered entities and relationships of
the concerned application component. Lastly, ReqValues expresses
the potentially multiple values corresponding to a concrete require-
ment. The possible values belonging to one ReqCategory also can be
ordered (e.g., for Frequency there is an ascending order from Very
frequent to Rarely). We depict a list of most relevant requirements
together with their associated value ranges for the selection pro-
cess in Table 1 and Table 2. As a foundation for this, we evaluated
several research approaches and actual industry projects, which
are concerned with the influential factors for the database selec-
tion process ([6], [4], [9]). The Requirement column contains all
possible values for the ReqCategory, whereas in the Values column,
all associated ReqValues are defined. Each instantiation of such
a formalized requirement refers to a concrete partition from the
overall conceptual data model and can only be instantiated once
for each application component. Each element from the data model
is assigned to (at least) one partition, through which the relation to
the requirement instances is defined.

The requirements are roughly categorized in data-related, func-
tional and non-functional requirements. Data-related requirements
refer to structural properties of the entities and their relationships,
whereas functional requirements characterize the expected queries.
Non-functional requirements further define qualitative properties
of the former two. An example of a requirement represented in our
formalization would be the following:

Reql = ("Accessprofile”, partitionl, "Reading(select)”)

This requirement (Req1) states, that the "Access profile” for all data
elements grouped in partition1 has the value "Reading (select)".

Item and Item Attributes: Items to be recommended are de-
scribed by a set of properties. In our case, the items are the consid-
ered data management components with a set of relevant attributes.
We use the term profile for describing a data management compo-
nent with certain properties from now on. These are formalized in
the following way:

Profile = (ProfileType, ProfileAttributes)

ProfileAttribute = (AttributeName, AttributeValues)

@

Requirement |

Analysis Ve

DMC Recommender .

| |
. N . Polyglo
: [e]—{ Daese]7,{ e H
1|z 7'y 1
- |- H .
ke AR H . 1
i Ex || : .
Conceptual Partitioned | 1|2 |
Data hﬁodel DattatModel *|= Profiles . .'_h
] Bk | Logical
| | Data Model(s)
| Rul;s |
1 1
Requirements Engineering Phase | Recommendation Phase | Implementation Phase
Figure 1: Environment of our DMC Recommender Framework
Requirement Values Requirement Values
Data-related Non-functional
Data connectivity High, Middle, Low Consistency Strong, Eventual
Unstructured, Semi-structured, Integrity High, Middle, Low
Data structuredness — - - -
Structured, Graph, Complex data types Access flexibility Flexible, Static, Restricted
Flexible (no schema), Data volume per entity High, Middle, Low

Modeling flexibility | Semi-flexible (implicit schema),
Strict (explicit schema)

Single representation,

Multiple representations

Variability

Functional

Reading (select), Writing (insert),
Changing (update)

Random access, Range query, Join,
Restriction, Sorting, Full-text search

Access profile

Access operations

Very slow, Slow, Medium,
Fast, Very fast

Response time (access) High, Medium, Low
Required throughput High, Medium, Low

Clean data, Noisy data,
Sparse / incomplete data
High risk (business critical),
Data-related risk Medium risk,

Low risk (uncritical)

Velocity of data income

Expected data veracity

Frequency Very frequent, Occasionally, Rarely
Analysis, Regular operation,
Administrative operation

Purpose

Attribute range, Referential
integrity, No constraints
Required deletion concept Logical, Physical

Querying constraints

Table 1: Data-related and functional requirements

Here, a ProfileType is described by a set of ProfileAttributes. These,
in turn, are composed of an AttributeName, together with poten-
tially multiple AttributeValues. The list of different AttributeNames
is fixed, whereas the concrete AttributeValues are free to be cho-
sen depending on a specific data management component. The
ProfileAttributes can be classified into one of these three types ac-
cording to their potential values: Scale, Boolean and Categorical.
Values for elements from the Boolean type can be either true or
false, whereas for Scale, they are numerical values ranging from 0
to 10. Categorical attributes have specific values, depending on the
concrete attribute. We assign the following attributes to each type:

Scale: Simple data types, Complex data types, Depiction of hetero-
geneous datasets, Aggregations, Scope of operations, Query language,
Secondary access path, Performance read operations, Scalability read

Standard (authentication),

Connected security mechanisms .
Encryption, None

Table 2: Non-functional requirements

operations, Read latency, Read availability, Performance write opera-
tions, Scalability write operations, Write latency, Write availability,
Tool support, Existing Expert knowledge

Boolean: Attribute names, join operations, Sorting operations,
Scan queries, Filter queries

Categorical: Multi-model support (Values: <list of covered data
models>), Execution guarantee (Values: Partition tolerance (CAP),
Availability (CAP), Consistency (CAP), Atomicity (ACID), Consistency
(ACID), Isolation (ACID), Durability (ACID))

Profiles can be adjusted or new ones can be added, although the
used terms are predetermined through the just mentioned attributes.
The possibility to also alter the list of available profile attributes
will be considered in future work. The values of these attributes
are used in the constraints later on to determine the compatibility

with a specific set of requirements. Examplary profiles are shown
in Table 4 in Section 6.

Constraint: A constraint imposes restrictions on a set of at-
tributes from the recommended items (i.e., the profile attributes).
Constraints have the following structure:

Constraint = (AttributeName, Operator, AttributeValues)

AttributeName defines the category of a particular property from
the profiles. Through Operator their desired values are restricted.
Possible Operators are =, <, <, >, >, €. Depending on the type of the
attributes, only a subset of these operators are applicable, i.e., for
Scale all but the € operator are eligible, for Boolean only the =, and
for Categorical only the = and € operator can be applied.

Domain knowledge: In a Knowledge base, transformation rules
for mapping user specifications (here: requirements and their val-
ues) to item attributes (here: profile attributes) are organized. These
rules constitute domain knowledge by producing constraints in
terms of item attributes, whereas they take conditions in terms of
user specifications as input. For example, if requirements analysis
results in an Access profile that is mainly Reading and the corre-
sponding Frequency is greater than Rarely, one resulting constraint
(by application of the respective mapping rule) could be that the Per-
formance of read operations or the Scalability of read operations has
to be greater than a certain threshold (e.g., 3). Both latter attributes
are attributes from the profile, whereas the former are requirements
for an application component.

The structure of a mapping rule is as follows:

if (Requirements)then(Constraints)

Examples of such rules are shown in Figure 2 (Section 6). For further
refinement of the recommendation process of our framework, addi-
tional input information for recommendations will be considered
in future work. This includes, amongst other things, the feedback
or ratings of completed runs of the algorithm. These results are
then stored in this Knowledge base.

Algorithm: Algorithm 1 shows the pseudocode of the actual
recommendation algorithm. The procedure is the following: The
compatibility of all requirements from an application component
(AC) with the premises of the mapping rules is tested (lines 1-3).
If there is a compatible rule within the knowledge base, the con-
sequence of this rule is added to the constraints of the knowledge
base (line 4). Afterwards, for each data management component it
is tested, whether the (recently added) constraints from the knowl-
edge base can be satisfied (lines 5-6). If so, the data management
component is added to the ranking with a previously computed
score and the degree of satisfaction is recorded (line 7-8). If not, the
conflicting constraints are computed and added to a correspond-
ing data structure (line 9). If no data management component can
satisfy all the constraints, a compromise has to be computed (line
10-12). Finally the ranking and either the satisfiable or unsatisfiable
constraints are returned in both cases (line 13-14). The returned
degree of satisfaction for the constraints can be used for explain-
ing the provided rankings. Afterwards, the user will then be given
the choice to select a concrete data management component from
the provided ranking. This has not necessarily to be the highest
ranked system. Such divergent choices are stored within the knowl-
edge base, to improve further recommendations by adjusting the
mapping rules.

Data: Application Component (AC) with its Requirements (Req),
List of DMCs, Knowledge Base (KB)
Result: Ranking of suitable DMCs for Application Component,
Fulfillment of constraints

1 foreach Req from AC.Reqs do
2 foreach MappingRule from KB.mappingRules do
3 if compatible(Req, MappingRule.premise) then
4 ‘ KB.constraints.add(MappingRule.consequence)
end
end
end
5 foreach dmc from KB.DMCs do
6 if satisfiable (KB.constraints, dmc) then
7 KB.ranking.add(evaluateWithWeights (dmc))
8 KB.satisfiableConstraints[dmc].add(
computeSatisfactionConstraints (KB.constraints, dmc))
else
9 ‘ KB.unsatisfiableConstraints[dmc].add(
computeConflictingConstraints(KB.constraints, dmc)
end
end
no if isEmpty(KB.ranking) then
11 foreach dmc from KB.DMCs do
12 KB.altRanking.add(evaluateCompromise(KB.constraints,
dmc))
end
else
13 ‘ return KB.ranking, KB.satisfiableConstraints
end

4 return KB.altRanking, KB.unsatisfiableConstraints
Algorithm 1: DMC Recommendation Algorithm

In this section, we provided the necessary information for a pro-
found recommendation process. This includes the structure for the
previously mentioned profiles (i.e., the list of their attribute names
and corresponding domains). Instances following this structure
can be added by an elaborated pre-analysis of these systems. Since
a predefined list could by no means be complete - as it doesn’t
and possibly can’t include all available systems —, extensibility is a
fundamental demand.

The list of considered requirements or the structure of the profiles
also can be extended or altered. However this has a greater impact
on the overall framework, and therefore should be done with care.
The necessary steps for this are: 1) An additional entry to the list
of requirements of profile attributes has to be added, including its
corresponding values, 2) additional mapping rules have to be added,
which translates the requirements into constraints on the profile
attributes, whereby possibly conflicting rules have to be revised.

6 USE CASE

For an exemplary application of our recommendation process, we
consider the application component of a product catalogue from an
E-commerce application. This component could have the require-
ments as shown in Table 3.

Especially functional requirements may be dependent on each
other, which is denoted with a number within brackets. Here, one

Requirement Value

Data structuredness | Semi-structured
Reading (select) (1),
Writing (insert) (2)
Restriction (1)
Frequently (1), Rarely (2)
Flexible

Access profile

Access operations
Frequency
Access flexibility

Table 3: Req.: Application Component Product Catalogue

. AttributeValue
AttributeName MongoDB | MySQL
Attribute names true true
Scope of operations | 7 10
Perf. read ops. 1 5
Scalability read ops. | 10 2
Perf. write ops. 2 1
Scalability write ops. | 2 2
Aggregations true false
Complex datatypes 10 0
Join operations true true

Table 4: Profiles: MongoDB and MySQL

of these is the Access profile and Frequency, where for example the
values Reading (select) and Frequently are related.

Exemplary descriptions of specific data management compo-
nents for a document database (MongoDB) and a relational data-
base (MySQL) are shown in Table 4. Due to space limitations we
restrict ourselves to present more characterizations. Figure 2 shows
exemplary mapping rules for our use case.

if (Data structuredness = Semi-structured)
then ((Aggregations = true) | (Complex datatypes >4))

if ((Access profile = Reading (select)) & (Frequency > Rarely))
then ((Perf. read ops. > 1) | (Scalability read ops.>3))

if ((Access profile = Writing (insert)) & (Frequency > Rarely))
then ((Perf. write ops. > 1) | (Scalability write ops.>3))

if (Access operation = Restriction)
then ((Attribute names = true) & (Scope of operations > 3))

if (Access flexibility = Flexible)
then ((Join operations = true) | (Scope of operations >5))

Figure 2: Relevant Mapping Rules

After the concrete requirements of the application component
are defined, the compatible mapping rules are applied. Through
the fulfillment of the resulting constraints, a ranking of the most
suitable data management components is computed. In this small
example, the only data management component which satisfies the
resulting constraints would be MongoDB.

7 CONCLUSION AND FUTURE WORK

In this paper we show the utilization of a knowledge-based rec-
ommender system for the ranking of suitable data management
component for a set of requirements. For its input, we define a set
of relevant requirement categories and provide the structure for
describing data management components. The utilization of a rec-
ommender system within this context is a very promising approach
to tackle the selection process of suitable data management compo-
nents based on various requirements. Descriptions of further data
management systems can easily be added, making the framework
flexible enough to cope with future developments.

As already mentioned in Section 4, we will include our recom-
mendation process in a framework to support the whole develop-
ment life cycle of an application in our future work. Therefore we
plan to extend our work on several parts. For the preceding steps
of our recommendation process, we will provide a flexible data
modeling tool to define the conceptual data model of the whole
application and then interactively choose between different com-
positions of fragments for the data model (which are then used as
input for the recommendation process). Afterwards we will use the
results as input for generating logical data models for the chosen
systems. Here the choice of adequate modeling techniques, also
based on the previously defined requirements and constraints, has
to be made. These will then be used to generate communication
modules for the concrete systems in a later step, also including
refined components for supporting the management of complex
tasks in such a polyglot setting.

REFERENCES

[1] Charu C Aggarwal et al. 2016. Recommender systems. Vol. 1. Springer.

[2] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Alfonso Pierantonio, and
Ludovico Iovino. 2020. TyphonML: a modeling environment to develop hybrid
polystores. In Proceedings of the 23rd ACM/IEEE Int. Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings. 1-5.

[3] Alberto Hernandez Chillén, Diego Sevilla Ruiz, and Jesus Garcia Molina. 2021.
Athena: A Database-Independent Schema Definition Language. In Int. Conference
on Conceptual Modeling. Springer, 33-42.

[4] Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter. 2017.
NoSQL database systems: a survey and decision guidance. Computer Science-
Research and Development 32, 3 (2017), 353-365.

[5] Maxime Gobert, Loup Meurice, and Anthony Cleve. 2021. Conceptual Modeling
of Hybrid Polystores. In Int. Conference on Conceptual Modeling. Springer, 113—
122.

[6] Robin Hecht. 2015. Konzeptuelle und Methodische Aufarbeitung von NoSQL-
Datenbanksystemen. Ph.D. Dissertation. University of Bayreuth.

[7] Robin Hecht and Stefan Jablonski. 2011. NoSQL evaluation: A use case oriented
survey. In 2011 Int. Conference on Cloud and Service Computing. IEEE, 336-341.

[8] Noa Roy-Hubara. 2019. The Quest for a Database Selection and Design Method.
In CAIiSE (Doctoral Consortium). 69-77.

[9] Noa Roy-Hubara, Peretz Shoval, and Arnon Sturm. 2019. A Method for Database
Model Selection. In Enterprise, Business-Process and Information Systems Modeling.
Springer, 261-275.

[10] Noa Roy-Hubara, Peretz Shoval, and Arnon Sturm. 2022. Selecting databases
for Polyglot Persistence applications. Data & Knowledge Engineering 137 (2022),
101950. https://doi.org/10.1016/j.datak.2021.101950

[11] Noa Roy-Hubara and Arnon Sturm. 2019. Design methods for the new database
era: a systematic literature review. Software and Systems Modeling 19 (2019),
297-312.

[12] Pramod J. Sadalage and Martin Fowler. 2012. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence (1st ed.). Addison-Wesley Professional.

[13] Soror Sahri, Rim Moussa, Darrell DE Long, and Salima Benbernou. 2014. DBaaS-
expert: A recommender for the selection of the right cloud database. In Interna-
tional Symposium on Methodologies for Intelligent Systems. Springer, 315-324.

[14] Lena Wiese. 2015. Advanced Data Management. In Advanced Data Management.
De Gruyter.

[15] L. Wiese. 2015. Polyglot Database Architectures = Polyglot Challenges. In LWA.

https://doi.org/10.1016/j.datak.2021.101950

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Recommender Systems
	4 Design process for polyglot persistence applications
	5 Knowledge-based database recommendation
	6 Use Case
	7 Conclusion and Future Work
	References

