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Abstract

The traditional motivation behind feature selection al-
gorithms is to find the best subset of features for a task
using one particular learning algorithm. Given the
recent success of ensembles, however, we investigate
the notion of ensemble feature selection in this paper.
This task is harder than traditional feature selection
in that one not only needs to find features germane to
the learning task and learning algorithm, but one also
needs to find a set of feature subsets that will promote
disagreement among the ensemble’s classifiers. In this
paper, we present an ensemble feature selection ap-
proach that is based on genetic algorithms. Our algo-
rithm shows improved performance over the popular
and powerful ensemble approaches of AdaBoost and
Bagging and demonstrates the utility of ensemble fea-
ture selection.

Introduction

Feature selection algorithms attempt to find and re-
move the features which are unhelpful or destructive
to learning (Almuallim & Dietterich 1994; Cherkauer &
Shavlik 1996; Kohavi & John 1997). Previous work on
feature selection has focused on finding the appropriate
subset of relevant features to be used in constructing
one inference model; however, recent “ensemble” work
has shown that combining the output of a set of mod-
els that are generated from separately trained induc-
tive learning algorithms can greatly improve general-
ization accuracy (Breiman 1996; Maclin & Opitz 1997;
Shapire et al. 1997). This paper argues for the im-
portance of and presents an approach to the task of
feature selection for ensembles.

Research has shown that an effective ensemble
should consist of a set of models that are not only
highly correct, but ones that make their errors on dif-
ferent parts of the input space as well (Hansen & Sala-
mon 1990; Krogh & Vedelsby 1995; Opitz & Shavlik
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1996). Varying the feature subsets used by each mem-
ber of the ensemble should help promote this necessary
diversity. Thus, while traditional feature-selection al-
gorithms have the goal of finding the best feature sub-
set that is germane to both the learning task and the
selected inductive-learning algorithm, the task of en-
semble feature selection has the additional goal of find-
ing a set of features subsets that will promote disagree-
ment among the component members of the ensemble.
This search space is enormous for any non-trivial prob-
lem.

In this paper, we present a genetic algorithm (GA)
approach for searching for an appropriate set of fea-
ture subsets for ensembles. GAs are a logical choice
since they have been shown to be effective global op-
timization techniques (Holland 1975; Mitchell 1996).
Our approach works by first creating an initial pop-
ulation of classifiers where each classifier is generated
by randomly selecting a different subset of features.
We then continually produce new candidate classifiers
by using the genetic operators of crossover and muta-
tion on the feature subsets. Our algorithm defines the
overall fitness of an individual to be a combination of
accuracy and diversity. The most fit individuals make
up the population which in turn comprise the ensem-
ble. Using neural networks as our classifier, results on
21 datasets show that our simple and straight-forward
algorithm for creating the initial population produces
better ensembles on average than the popular and pow-
erful ensemble approaches of Bagging and Boosting.
Results also show that further running the algorithm
with the genetic operators improves performance.

Review of Ensembles

Figure 1 illustrates the basic framework of a predictor
ensemble. Each predictor in the ensemble (predictor 1
through predictor N in this case) is first trained using
the training instances. Then, for each example, the
predicted output of each of these predictors (oi in Fig-
ure 1) is combined to produce the output of the ensem-
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Figure 1: A predictor ensemble.

ble (ô in Figure 1). Many researchers (Breiman 1996;
Hansen & Salamon 1990; Opitz & Shavlik 1997) have
demonstrated the effectiveness of combining schemes
that are simply the weighted average of the predictors
(i.e., ô =

∑
i∈N wi · oi and

∑
i∈N wi = 1); this is the

type of ensemble on which we focus in this paper.

Combining the output of several predictors is useful
only if there is disagreement on some inputs. Obvi-
ously, combining several identical predictors produces
no gain. Hansen and Salamon 1990 proved that for an
ensemble, if the average error rate for an example is less
than 50% and the predictors in the ensemble are inde-
pendent in the production of their errors, the expected
error for that example can be reduced to zero as the
number of predictors combined goes to infinity; how-
ever, such assumptions rarely hold in practice. Krogh
and Vedelsby 1995 later proved that the ensemble er-
ror can be divided into a term measuring the average
generalization error of each individual classifier and a
term measuring the disagreement among the classifiers.
What they formally showed was that an ideal ensem-
ble consists of highly correct classifiers that disagree as
much as possible. Numerous authors have empirically
verified that such ensembles generalize well (e.g., Opitz
& Shavlik 1996; Breiman 1996a; Freund 1996).

As a result, methods for creating ensembles cen-
ter around producing predictors that disagree on their
predictions. Generally, these methods focus on al-
tering the training process in the hope that the re-
sulting predictors will produce different predictions.
For example, neural network techniques that have
been employed include methods for training with dif-
ferent topologies, different initial weights, different
parameters, and training only on a portion of the
training set (Breiman 1996; Freund & Schapire 1996;
Hansen & Salamon 1990). Varying the feature subsets
to create a diverse set of accurate predictors is the focus
of this article.

Numerous techniques try to generate disagreement

among the classifiers by altering the training set each
classifier sees. The two most popular techniques are
Bagging (Breiman 1996) and Boosting (particularly
AdaBoost; Freund & Schapire 1996). Bagging is
a bootstrap ensemble method that trains each pre-
dictor in the ensemble with a different partition of
the training set. It generates each partition by ran-
domly drawing, with replacement, N examples from
the training set, where N is the size of the train-
ing set. Breiman 1996 showed that Bagging is effec-
tive on “unstable” learning algorithms (such as neural
network) where small changes in the training set re-
sult in large changes in predictions. As with Bagging,
AdaBoost also chooses a training set of size N and
initially sets the probability of picking each example
to be 1/N . After the first predictor, however, these
probabilities change as follows. Let εk be the sum of
the misclassified instance probabilities of the currently
trained classifier Ck. AdaBoost generates probabili-
ties for the next trial by multiplying the probabilities
of Ck’s incorrectly classified instances by the factor
βk = (1 − εk)/εk and then re-normalizing these prob-
abilities so that their sum equals 1. AdaBoost then
combines the classifiers C1, . . . , Ck using weighted vot-
ing where Ck has weight log(βk). Numerous empiri-
cal studies have shown that Bagging and Boosting are
highly successful methods that usually generalize bet-
ter than their base predictors (Bauer & Kohavi 1998;
Maclin & Opitz 1997; Quinlan 1996); thus, we include
these two methods as baselines for our study.

Ensemble Feature Selection

Kohavi & John 1997 showed that the efficacy of a set
of features to learning depends on the learning algo-
rithm itself; that is, the appropriate feature subset for
one learning algorithm may not be the appropriate
feature subset for another learner. Kohavi & John’s
1997 wrapper approach works by conducting a search
through the space of possible feature subsets, explic-
itly testing the accuracy of the learning algorithm on
each search node’s feature subset. The search space of
feature subsets is enormous and quickly becomes im-
practical to do hill-climbing searches (the traditional
wrapper search technique) with slow-training learners
such as neural networks; this search space is even larger
when considering an appropriate set of feature subsets
for ensembles. This is why we consider a global search
technique (GAs) in this paper.

The notion of feature selection for ensembles is new.
Other researchers have investigated using GAs for fea-
ture selection (e.g., Cherkauer & Shavlik 1996; Guo
& Uhrig 1992); however, they have only looked at it
from the aspect of traditional feature selection – find-



ing one appropriate set for learning – rather than from
the ensemble perspective.

The GEFS Algorithm
Table 1 summarizes our algorithm (called Gefs for
Genetic Ensemble Feature Selection) that uses GAs
to generate a set of classifiers that are accurate and
diverse in their predictions. (We focus on neural net-
works in this paper; however, Gefs can be easily ex-
tended to other learning algorithms as well.) Gefs

starts by creating and training its initial population of
networks. The representation of each individual of our
population is simply a dynamic length string of inte-
gers, where each integer indexes a particular feature.
We create networks from these strings by first having
the input nodes match the string of integers, then cre-
ating a standard single-hidden-layer, fully connected
neural network. Our algorithm then creates new net-
works by using the genetic operators of crossover and
mutation.

Gefs trains these new individuals using backpro-
pogation. It adds new networks to the population and
then scores each population member with respect to
its prediction accuracy and diversity. Gefs normalizes
these scores, then defines the fitness of each population
member (i) to be:

Fitnessi = Accuracyi + λ Diversityi (1)

where λ defines the tradeoff between accuracy and di-
versity. Finally, Gefs prunes the population to the N
most-fit members, then repeats this process. At every
point in time, the current ensemble consists of sim-
ply averaging (with equal weight) the predictions of
the output of each member of the current population.
Thus as the population evolves, so does the ensemble.

We define accuracy to be network i’s training-set
accuracy. (One may use a validation-set if there are
enough training instances). We define diversity to be
the average difference between the prediction of our
component classifier and the ensemble. We then sep-
arately normalize both terms so that the values range
from 0 to 1. Normalizing both terms allows λ to have
the same meaning across domains.

It is not always clear at what value one should set λ;
therefore, we automatically adjust λ based on the dis-
crete derivatives of the ensemble error Ê, the average
population error Ē, and the average diversity D̄ within
the ensemble. First, we never change λ if Ê is decreas-
ing; otherwise we (a) increase λ if Ē is not increasing
and the population diversity D̄ is decreasing; or (b)
decrease λ if Ē is increasing and D̄ is not decreasing.
We started λ at 1.0 for the experiments in this article.
The amount λ changes is 10% of its current value.

Table 1: The Gefs algorithm.

GOAL: Find a set of input subsets to create an accu-
rate and diverse classifier ensemble.

1. Using varying inputs, create and train the initial
population of classifiers.

2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks.

(b) Measure the diversity of each network with respect
to the current population.

(c) Normalize the accuracy scores and the diversity
scores of the individual networks.

(d) Calculate the fitness of each population member.

(e) Prune the population to the N fittest networks.

(f) Adjust λ.

(g) The current population composes the ensemble.

We create the initial population by first randomly
choosing the number of features to include in each fea-
ture subset. For classifier i, the size of each feature
subset (Ni) is independently chosen from a uniform
distribution between 1 and twice the number of orig-
inal features in the dataset. We then randomly pick,
with replacement, Ni features to include in classifier i’s
training set. Note that some features may be picked
multiple times while other may not be picked at all;
replicating inputs for a neural network may give the
network a better chance to utilize that feature during
training. Also, replicating a feature in a genome en-
coding allows that feature to better survive to future
generations.

Our crossover operator uses dynamic-length, uni-
form crossover. In this case, we chose the feature sub-
sets of two individuals in the current population pro-
portional to fitness. Each feature in both parent’s sub-
set is independently considered and randomly placed
in the feature set of one of the two children. Thus it is
possible to have a feature set that is larger (or smaller)
than the largest (or smallest) of either parent’s feature
subset. Our mutation operator works much like tradi-
tional genetic algorithms; we randomly replace a small
percentage of a parent’s feature subset with new fea-
tures. With both operators, the network is trained
from scratch using the new feature subset; thus no in-
ternal structure of the parents are saved during the
crossover.

Since Gefs continually considers new networks to
include in its ensemble, it can be viewed as an “any-
time” learning algorithm. Such a learning algorithm



Table 2: Summary of the data sets used in this paper. Shown are the number of examples in the data set; the
number of output classes; the number of continuous and discrete input features; the number of input, output, and
hidden units used in the neural networks tested; and how many epochs each neural network was trained.

Features Neural Network
Dataset Cases Classes Continuous Discrete Inputs Outputs Hiddens Epochs
credit-a 690 2 6 9 47 1 10 35
credit-g 1000 2 7 13 63 1 10 30
diabetes 768 2 9 - 8 1 5 30
glass 214 6 9 - 9 6 10 80
heart-cleveland 303 2 8 5 13 1 5 40
hepatitis 155 2 6 13 32 1 10 60
house-votes-84 435 2 - 16 16 1 5 40
hypo 3772 5 7 22 55 5 15 40
ionosphere 351 2 34 - 34 1 10 40
iris 159 3 4 - 4 3 5 80
kr-vs-kp 3196 2 - 36 74 1 15 20
labor 57 2 8 8 29 1 10 80
letter 20000 26 16 - 16 26 40 30
promoters-936 936 2 - 57 228 1 20 30
ribosome-bind 1877 2 - 49 196 1 20 35
satellite 6435 6 36 - 36 6 15 30
segmentation 2310 7 19 - 19 7 15 20
sick 3772 2 7 22 55 1 10 40
sonar 208 2 60 - 60 1 10 60
soybean 683 19 - 35 134 19 25 40
vehicle 846 4 18 - 18 4 10 40

should produce a good concept quickly, then continue
to search concept space, reporting the new “best” con-
cept whenever one is found (Opitz & Shavlik 1997).
This is important since, for most domains, an expert
is willing to wait for weeks, or even months, if a learn-
ing system can produce an improved concept.

Gefs is inspired by our previous approach of apply-
ing GAs to ensembles called Addemup (Opitz & Shav-
lik 1996); however, the algorithms are quite different.
Addemup is far more complex, does not vary its in-
puts, and its genetic operators were designed explicitly
for hidden nodes in knowledge-based neural networks;
in fact Addemup does not work well with problems
lacking prior knowledge.

Results

To evaluate the performance of Gefs, we obtained a
number of data sets from the University of Wiscon-
sin Machine Learning repository as well as the UCI
data set repository (Murphy & Aha 1994). These data
sets were hand selected such that they (a) came from
real-world problems, (b) varied in characteristics, and
(c) were deemed useful by previous researchers. Ta-
ble 2 gives the characteristics of our data sets. The
data sets chosen vary across a number of dimensions

including: the type of the features in the data set (i.e.,
continuous, discrete, or a mix of the two); the num-
ber of output classes; and the number of examples in
the data set. Table 2 also shows the architecture and
training parameters used with our neural networks.

All results are averaged over five standard 10-fold
cross validation experiments. For each 10-fold cross
validation the data set is first partitioned into 10 equal-
sized sets, then each set is in turn used as the test set
while the classifier trains on the other nine sets. For
each fold an ensemble of 20 networks is created (for
a total of 200 networks for each 10-fold cross valida-
tion). We trained the neural networks using standard
backpropagation learning. Parameter settings for the
neural networks include a learning rate of 0.15, a mo-
mentum term of 0.9, and weights are initialized ran-
domly to be between 0.5 and -0.5. Table 2 also shows
the architecture and training parameters used in our
neural networks experiments. We chose the number of
hidden units based on the number of input and output
units. This choice was based on the criteria of having
at least one hidden unit per output, at least one hidden
unit for every ten inputs, and five hidden units being
a minimum. Parameter settings for the GA portion of
Gefs includes a mutation rate of 50%, a population



Table 3: Test set error rates for the data sets using (1) a single neural network classifier; (2) the Bagging ensemble
method, (3) the AdaBoost ensemble method; (4) the ensemble of Gefs’s initial population, and (5) Gefs run to
consider 250 networks. The bottom of the table contains a win-loss-tie comparison between the learning algorithms
on the datasets.

Traditional Gefs

Dataset Single Net Bagging AdaBoost Initial Pop 100 networks
credit-a 14.8 13.8 15.7 13.6 13.1
credit-g 27.9 24.2 25.3 23.9 24.8
diabetes 23.9 22.8 23.3 24.5 23.0
glass 38.6 33.1 31.1 30.8 30.4
heart-cleveland 18.6 17.0 21.1 16.8 16.1
hepatitis 20.1 17.8 19.7 15.5 16.7
house-votes-84 4.9 4.1 5.3 3.9 4.4
hypo 6.4 6.2 6.2 7.5 5.9
ionosphere 9.7 9.2 8.3 6.3 5.4
iris 4.3 4.0 3.9 4.0 3.3
kr-vs-kp 2.3 0.8 0.3 3.0 0.7
labor 6.1 4.2 3.2 3.5 3.5
letter 18.0 10.5 4.6 10.3 9.5
promoters-936 5.3 4.0 4.6 4.9 4.3
ribosome-bind 9.3 8.4 8.2 7.9 7.8
satellite 13.0 10.6 10.0 14.2 11.2
segmentation 6.6 5.4 3.3 5.2 3.6
sick 5.9 5.7 4.5 6.1 3.5
sonar 16.6 16.8 13.0 17.3 17.8
soybean 9.2 6.9 6.3 6.0 5.9
vehicle 24.9 20.7 19.7 22.2 19.0

Single Net 20-1-0 18-3-0 15-6-0 20-1-0
Bagging 13-7-1 13-7-1 15-6-0
AdaBoost 9-12-0 14-7-0
Initial Pop 16-4-1

size of 20, a λ = 1.0, and a search length of 250 net-
works (note this is not 250 generations). While the
mutation rate may seem high as compared with tradi-
tional GAs, certain aspects of our approach call for a
higher mutation rate (such as the goal of generating a
population that cooperates as well as our emphasis on
diversity); other mutation values were tried during our
pilot studies.

Table 3 shows the error rates for the algorithms on
all the datasets. As points of comparison, we include
the results of running the Bagging and AdaBoost algo-
rithms. (We described these algorithms in the second
section.) Two results are presented for the Gefs al-
gorithm: (1) accuracy after the initial population was
created (the population size was 20), and (2) accu-
racy after 250 trained networks are considered dur-
ing the search (20 for the initial population plus 230
with our genetic operators). For the convenience of the
reader, the bottom of the Table 3 contains a win-loss-
tie comparison between the learning algorithms on the

datasets. A comparison in bold means the difference
in performance between the algorithms is statistically
significant at the 95% confidence level when using the
one-tailed sign test.

Discussion and Future Work

First, our results confirm earlier findings (Maclin &
Opitz 1997; Quinlan 1996) that Bagging almost al-
ways produces a better classifier than a single neural
network and that the AdaBoost method is a powerful
technique that can usually produce better ensembles
than Bagging; however, it is more susceptible to noise
and can quickly overfit a data set.

We draw two main conclusions with our new algo-
rithm’s performance. First, Gefs can produce a good
initial population and the algorithm for producing this
population is both simple and fast. The fact that the
initial population is competitive with both Bagging
and AdaBoost is somewhat surprising. This shows that
in many cases more diversity is created among the pre-



dictors by varying our feature set in this manner than
is lost in individual predictor accuracy by not using
the whole feature set.

The second conclusion we draw is that running Gefs

longer usually increases performance. This is desirable
since it allows the user to fully utilize available com-
puter cycles to generate an improved model. Running
AdaBoost and Bagging longer does not appreciably in-
crease performance since previous results have shown
their performance nearly fully asymptotes at around 20
networks; thus they do not appear to have the same
ability to get better over time.

While Gefs’s results are already impressive, we view
this as just the first step toward ensemble feature selec-
tion. An important contribution of this paper is simply
the demonstration of the utility for creating ensemble
feature selection algorithms. Many improvements are
possible and need to be explored. One area of future
research is combining Gefs with AdaBoost’s approach
of emphasizing examples not correctly classified by the
current ensemble. We also plan a further investiga-
tion of tuning parameters, such as the maximum size
of the feature subsets in the initial population (results
of such experiments are not presented in this paper
due to limited space). Finally, we plan to investigate
applying Gefs to other inductive learning algorithms
such as decision trees and Bayesian Learning.

Conclusions
In this paper we have argued for the importance of
feature detection for ensembles and presented such an
algorithm, Gefs, that is based on genetic algorithms.
Our ensemble feature selection approach is straightfor-
ward, simple, generates good results quickly, and has
the ability to further increase its performance if allowed
to run longer. Our results show that Gefs compared
favorably with the two powerful ensemble techniques
of AdaBoost and Bagging. Thus, this paper shows the
utility of feature selection for ensembles and provides
an important and effective first step in this direction.
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