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Markov decision processes (MDPs) offer a popular math-
ematical tool for planning and learning in the presence of
uncertainty (Boutilier, Dean, & Hanks 1999). MDPs are a
standard formalism for describing multi-stage decision mak-
ing in probabilistic environments. The objective of the deci-
sion making is to maximize a cumulative measure of long-
term performance, called the return. Dynamic programming
algorithms, e.g., value iteration or policy iteration (Puterman
1994), allow us to compute the optimal expected return for
any state, as well as the way of behaving (policy) that gen-
erates this return. However, in many practical applications
the state space of an MDP is simply too large, possibly even
continuous, for such standard algorithms to be applied. A
typical means of overcoming such circumstances is to parti-
tion the state space in the hope of obtaining an “essentially
equivalent” reduced system. One defines a new MDP over
the partition blocks, and if it is small enough, it can be solved
by classical methods. The hope is that optimal values and
policies for the reduced MDP can be extended to optimal
values and policies for the original MDP.

The notion of equivalence for stochastic processes is
problematic because it requires that the transition probabil-
ities agree exactly. This is not a robust concept, especially
considering that usually, the numbers used in probabilistic
models come from experimentation or are approximate es-
timates; what is needed is a quantitative notion of equiva-
lence. In our work we provide such a notion via semimetrics,
distance functions on the state space that assign distances
quantifying “how equivalent” states are. These semimetrics
could potentially be used as a new theoretical tool to analyze
current state compression algorithms for MDPs, or in prac-
tice to guide state aggregation directly. The ultimate goal of
this research is to efficiently compress and analyze continu-
ous state space MDPs. Here we focus on finite MDPs, but
note that most of our results should hold, with slight modifi-
cations, in the context of continuous state spaces.

Recent MDP research on defining equivalence relations
on MDPs (Givan, Dean, & Greig 2003) has built on the no-
tion of strong probabilistic bisimulation from concurrency
theory. Bisimulation was introduced by Larsen and Skou
(1991) based on ideas of Park (1981) and Milner (1980).
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Roughly speaking, two states of a process are deemed equiv-
alent if all the transitions of one state can be matched
by transitions of the other state, and the results are them-
selves bisimilar. The extension of bisimulation to tran-
sition systems with rewards was carried out in the con-
text of MDPs by Givan, Dean and Greig (2003). Suppose
M = (S, A, {ra

s |s ∈ S, a ∈ A}, {P a
ss′}) is a given finite

MDP consisting of a finite state space, a finite action space,
numerical rewards (for convenience assumed constrained to
the unit interval), and transition probabilities, respectively.
Stochastic bisimulation is the largest relation on S that sat-
isfies the following property: it is an equivalence relation
and states are equivalent precisely when for each action they
share the same expected immediate rewards and 1-step tran-
sition probabilities to equivalence classes, i.e. s ∼ s′ ⇐⇒
∀a ∈ A.(ra

s = ra
s′ and ∀C ∈ S/ ∼ .(P a

s (C) = P a
s′(C))).

Here ∼ denotes the bisimulation equivalence relation and
S/ ∼ denotes the resulting quotient space.

We quantify the notion of bisimulation in terms of bisimu-
lation semimetrics (henceforth ”metrics”), which assign dis-
tance zero to states precisely when those states are bisimi-
lar. Our goal is to construct a class of bisimulation metrics
useful for MDP state compression. Specifically, we require
such metrics to be easily computable and to provide infor-
mation concerning the optimal values of states. However, it
is not hard to show that the bisimulation metric that assigns
distance 1 to states that are not bisimilar satisfies both re-
quirements, while possessing no more distinguishing power
than that of bisimulation itself. So we additionally require
that metric distances should vary smoothly and proportion-
ally with differences in rewards and differences in probabil-
ities. Formally, we will construct bisimulation metrics via
a metric on rewards and a metric on probability functions
(called a probability metric). The choice of metric on re-
wards is an obvious one: we simply use the usual Euclidean
distance. However, there are many ways of defining useful
probability metrics (Gibbs & Su 2002). Two of the most im-
portant for our purposes are the Kantorovich metric and the
total variation metric. They lead to two classes of bisimula-
tion metrics.

Our original bisimulation metrics use the Kantorovich
metric, whose origins lie in the theory of mass transporta-
tion. Suppose d is a metric on S. Consider two copies of the
state space, one in which states are labeled as supply nodes,
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and the other in which states are labeled as demand nodes.
Each supply node has a supply whose value is equal to the
probability mass of the corresponding state under proba-
bility function P . Each demand has a value equal to the
probability mass of the corresponding state under probabil-
ity function Q. Furthermore, imagine there is a transporta-
tion arc from each supply node to each demand node, labeled
with a cost equal to the distance of the corresponding states
under d. This constitutes a transportation network. A flow
with respect to this network is an assignment of quantities to
be shipped along each arc subject to the conditions that the
total flow leaving a supply node is equal to its supply, and
the total flow entering a demand node is equal to its demand.
The cost of a flow along an arc is the value of the flow along
that arc multiplied by the cost assigned to that arc. The goal
of the Kantorovich optimal mass transportation problem is
to find the best total flow for the given network, i.e. the flow
of minimal cost. If we denote by TK(d) the Kantorovich
metric, then the distance assigned to P and Q, TK(d)(P, Q),
is the cost of the optimal flow. It is known to be computable
in strongly polynomial time.

The associated bisimulation metric, dfix, is given by
dfix(s, s′) = maxa∈A(cR|r

a
s−ra

s′ |+cT TK(dfix)(P a
s , P a

s′))
where cR and cT are fixed positive weights that sum to 1,
i.e. it is a (unique) fixed-point metric. It is based on simi-
lar fixed-point metrics developed in the context of labeled
Markov systems, roughly MDPs without rewards in (De-
sharnais et al. 1999) and (Desharnais et al. 2002). Like
those, these metrics can be iteratively computed in time
polynomial in the sizes of the state space and the action
space, and can be equivalently formulated in terms of a real-
valued modal logic characterizing bisimulation.

An alternative bisimulation metric, d∼, comes from re-
placing in the above equation the Kantorovich metric by one
based on the total variation distance. We take the bisimu-
lation probability metric TB to be defined as TB(P, Q) =
1

2

∑
C∈S/∼ |P (C) − Q(C)|. Its calculation involves com-

puting the stochastic bisimulation partition, which can be
done iteratively in polynomial time (Givan, Dean, & Greig
2003). We then define d∼(s, s′) = maxa∈A(cR|r

a
s − ra

s′ | +
cT TB(P a

s , P a
s′)).

Both bisimulation metrics assign distances between 0
(bisimilar) and 1 (not bisimilar), giving a measure of “how
bisimilar” two states are. They are related by dfix ≤ d∼
under a pointwise ordering and are in some sense the tight-
est and loosest smooth bisimulation metrics of the given
form, respectively. Moreover, we can show that the optimal
value function for M , V ∗, is Lipschitz continuous for each.
Specifically, cR|V

∗(s) − V ∗(s′)| ≤ dfix(s, s′) ≤ d∼(s, s′)
provided the discount factor γ ≤ cT (Ferns 2003). In par-
ticular, this shows that the more bisimilar two states are,
the closer are their optimal values. Such results are extend-
able to a particular aggregate MDP, allowing us to similarly
bound the difference between the optimal value of a state
in M and the optimal value of its equivalence class in the
aggregate in terms of the bisimulation distances.

Both metrics have advantages and disadvantages. Com-
putation of dfix does not require that the exact bisimulation

partition be computed. Moreover, extending these metrics
to continuous state space models in which rewards are uni-
formly bounded looks very promising. On the other hand,
iteratively computing the Kantorovich metric (as is required
for the overall computation) while requiring only polyno-
mially many operations is still very time consuming. By
contrast, d∼ is relatively fast to compute (as the bisimula-
tion partition itself can be quickly computed). On the other
hand since its computation relies on computing the exact
bisimulation partition, which is subject to numerical inac-
curacy, it may be numerically unstable. Nevertheless, for
these reasons and more we argue that while the Kantorovich
based bisimulation metrics are theoretically pleasing, the to-
tal variation based metrics are more pleasing in practice,
and provide empirical results. The bulk of this work can
be found in (Ferns 2003).
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