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Abstract.  We report on our experience in developing a 
query-answering system that integrates multiple 
knowledge sources.  The system is based on a novel 
architecture for combining knowledge sources in which 
the sources can produce new subgoals as well as ground 
facts in the search for answers to existing subgoals.  The 
system uses a query planner that takes into account 
different query-processing capabilities of individual 
sources and augments them gracefully.  A reusable 
ontology provides a mediated schema that serves as the 
basis for integration.  We have evaluated the system on a 
suite of test queries in a realistic application to verify the 
practicality of our approach. 

1. Introduction   
The problem of integrating and querying information 
residing in heterogeneous knowledge sources has been a 
focus of intensive research during the past several years, 
[1], [2], [3]. In this paper, we report on our effort to build 
a real system for integrating heterogeneous knowledge 
sources with different query-answering capabilities.  This 
system is an application of a hybrid reasoning architecture 
that is distinct from existing systems in two ways:  (1) 
Knowledge sources integrated into our system may return 
logical formulas representing new subgoals as well as 
ground facts in response to queries. (2) The limited 
reasoning capabilities of individual knowledge sources 
are augmented by using a powerful query planner.  

We are conducting this work in the context of CALO 
(Cognitive Assistant that Learns and Organizes), a 
multidisciplinary project funded by DARPA to create 
cognitive software systems that can reason, learn from 
experience, be told what to do, explain what they are 
doing, reflect on their experience, and respond robustly to 
surprises. (See http://www.ai.sri.com/project/CALO). The 
current project is targeted at developing personalized 
cognitive assistants (which we will refer to as CALOs) in 
an office environment where knowledge about email, 
schedules, people, contact information, and so on is 
distributed among multiple knowledge sources.  
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 A CALO must be able to access and reason with this 

distributed knowledge.  We have encapsulated this 
functionality in a CALO module called Query Manager 
that serves as the unified access point within a CALO for 
answering queries.   In an office, multiple CALOs will 
each support a single user.  Each copy of CALO has its 
own copy of the Query Manager.  The following three 
example queries typically arise in an office environment: 

1. Which meetings will have a conflict if the current 
meeting runs overtime by an hour?  Answering this query 
requires knowing the ending time of the current meeting, 
computing the new ending time, and determining which 
other meetings have been scheduled to pass over the new 
ending time.  In a CALO, a user’s schedules are stored in 
a personal information knowledge source called IRIS.  
The functionality of computing the new ending time is 
implemented in a reasoner, called Time Reasoner, that 
can evaluate simple functions and predicates on time 
points and intervals. 

2. Who was present in the meeting in conference room 
EJ228 at 10 a.m. this morning?  A person is considered 
by a CALO to be present in a meeting if it can recognize 
that person at the time of the meeting from images 
provided by the meeting room camera.  This knowledge is 
stated as a rule in a knowledge source called Knowledge 
Machine (KM) [4].  Given this query, KM uses that rule 
to produce subgoals for retrieving meeting participants’ 
information from the image analysis results provided by 
another independent knowledge source called Meeting 
Ontology Knowledge Base (MOKB).  Therefore, in this 
example, one knowledge source produces new subgoals 
that are then evaluated by another knowledge source. 

3. List all the people who are mentioned in an article 
in which Joe is also mentioned?  This query requires first 
retrieving all the articles that mention Joe, and then for 
each of those articles, retrieving all the people mentioned 
in them.  This requires selecting instances of a class based 
on a condition (articles that mention Joe), and then 
retrieving values of a property (people mentioned in an 
article) of each of those instances.  This information is 
stored in IRIS.  However, IRIS cannot process queries 
like this one that require successive retrievals from the 
same class based on different criteria.  Therefore, Query 
Manager must take that limitation into account when 
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developing query plans, and in this case form a plan that 
involves multiple calls to IRIS. 

The examples above illustrate the challenges facing 
Query Manager in integrating knowledge sources and 
answering queries of different sorts.  However, the 
intricacy of the internal workings of the system is 
completely transparent to its users — be they humans 
interacting with a CALO, or intelligent agents running on 
behalf of a CALO.  Neither do users of Query Manager 
have to worry about how knowledge is expressed (e.g., as 
ground facts or axioms) or distributed in the system.  
Queries only need to be formulated using CALO 
Ontology, and Query Manager will determine which 
knowledge sources are required to produce the answers. 

2. Query Manager Architecture 

The Query Manager architecture is shown in Figure 1.  It 
is based on an object-oriented modular architecture for 
hybrid reasoning, called the JTP architecture [5], which 
supports rapid development of reasoners and reasoning 
systems.  The architecture considers each knowledge 
source to be a reasoner. 

A CALO component (called a client) can obtain 
answers to a query and explanations for those answers by 
conducting a query answering dialogue with the Query 
Manager.  A query includes a query pattern that is a 
conjunctive sentence expressed in KIF (Knowledge 
Interchange Format) [6] whose free variables 1  are 
considered to be query variables.  A query answer 
provides bindings of constants to some of these query 
variables such that the query pattern instance produced by 
applying the bindings to the query pattern and considering 
the remaining query variables in the query pattern to be 
existentially quantified is entailed by the knowledge 
sources in the Query Manager.  Query Manager can 
produce multiple answers to a query and be recalled to 
provide additional answers when needed.  

When queries arrive at the Query Manager, they first 
undergo syntactic validation and then are sent to the 
Asking Control Reasoner, which embodies two reasoning 
methods: iterative deepening and model elimination.  The 
Asking Control Reasoner sends queries to the Asking 
Control Dispatcher, which calls two reasoners and a 
dispatcher in sequence: Rule Expansion Reasoner, Query 
Planner, and Assigned Goal Dispatcher.  Each reasoner 
and dispatcher accepts as input a goal in the form of a 
query pattern and produces a reasoning step iterator as 
output.  A reasoning step is a partial or complete proof of 
a goal, and a reasoning step iterator is a construct that 
when pulsed provides a reasoning step as output.  The 
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Rule Expansion Reasoner applies rules to its input goal, 
and provides reasoning steps that contain new subgoals 
that can be used to produce answers for the input goal.  
The Assigned Goal Dispatcher dispatches (groups of) 
subgoals to different reasoners per the query plan 
produced by Query Planner.  Note that each knowledge 
source is integrated into the Query Manager by 
implementing an asking reasoner per the JTP reasoner 
interface specification (see Section 3 for more details) that 
encapsulates the knowledge source and the specific 
details of how it answers queries.  We refer to such 
reasoners as reasoning system adapters.2 

Ideally, there would not be a separate rule expansion 
reasoner in Query Manager.  Any reasoner should be 
allowed to infer new subgoals that are not in the original 
query plan, and the query plan would then be revised to 
include the new subgoals.  But such a control structure 
would require dynamic query planning, which is outside 
the scope of the current phase of the project.  We worked 
around this problem by storing rules (i.e., Horn Clauses) 
in a separate reasoner (i.e., the Rule Expansion Reasoner) 
that is invoked before a query plan is generated.  This 
solution is not completely general because it is not always 
possible to anticipate all such rules.  Extending the 
architecture to support dynamic query planning is the 
subject of future work. 

The design of Query Manager is based on a shared 
ontology called the CALO Ontology that serves as the 
mediated schema for all reasoners.  All the reasoners are 
expected to implement (parts of) the CALO Ontology. 
Developing such an ontology is usually the biggest 
challenge in implementing systems that access 
heterogeneous knowledge sources.  We bootstrapped this 
process by reusing a large shallow ontology that we had 
developed in a previous project [7].  Clearly, this 
ontology was inadequate for the office domain that was 
the focus of the current project and needed to be 
extended. Our strategy for extending the ontology was to 
set up a collaborative process between the developers of 
the knowledge sources and the knowledge engineers 
maintaining the ontology.  This strategy is not always 
possible in a typical project that integrates heterogeneous 
sources, but we had the advantage that the developers of 
the knowledge sources were also members of the team.  
For instance, development of CALO Office Ontology was 
a result of collaboration between IRIS developers and the 
knowledge engineers, and CALO Meeting Ontology a 
result of collaboration between MOKB developers and 
the knowledge engineers.  This approach, however, may 
not generalize to other systems or may be expensive to 
implement if there is no control on the schemas used by 
individual knowledge sources.  In these cases, a lot of 
translation work must be done.  

                                                           
2 For convenience in exposition, from now on we will use the 

terms reasoners and knowledge sources interchangeably. 
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Figure 1.  Query Manager Architecture 

In addition to the knowledge sources that we have 
introduced and shown in Figure 1 (KM, MOKB, Time 
Reasoner, and IRIS), two other reasoners are currently 
integrated into Query Manager: Mediator and PTIME. 
Mediator is a data integration system, developed 
independently by ISI, which extracts useful information 
from the Web [8].  For example, it is able to access the 
Web sites of Office Depot and CDW to extract product 
and pricing information for laptops.  In its current 
deployment in the CALO project, Mediator is interfaced 
with about two dozen Web sites in the office equipment 
domain.  PTIME is a general-purpose constraint reasoning 
system. It is currently used for scheduling meetings:  
given the constraints of the meetings to be scheduled, and 
a user’s preferences and calendar information, it can 
suggest alternative meeting times in the presence of 
schedule conflicts. 
    The current implementation of Query Manager is 
limited to only conjunctive queries.  This is not an 
inherent limitation of the Query Manager architecture.  
The use of model elimination in Asking Control Reasoner 
permits acceptance of queries in full first-order logic.  If 
we use a query language more expressive than 
conjunctive queries, then Query Planner will also need to 
be extended (a subject for future research).  We also note 
that the use of iterative deepening provides termination 
guarantees in the presence of recursive rules, thanks to 
controlled search capabilities (this subject is not the main 
focus of this paper). 

A big advantage of using the proposed architecture is 
that the query manager can be dynamically re-configured 
to use or not use a particular reasoner.  For example, one 
can start up the query manager with only a subset of 
reasoners.  Such dynamic flexibility is not available if one 
annotates individual relations with the reasoners that 
should be used for evaluating them.  

3. Query Manager Components 

3.1 Reasoner Interface 

In the Query Manager architecture, the reasoner interface 
is needed to specify a protocol for integrating knowledge 
sources into Query Manager.  This interface is based on 
an abstraction called a reasoning step. A reasoning step 
consists of the following elements: 

1. A claim, which is a sentence that this reasoning 
step justifies 

2. A set of premises on which the justification 
relies, each of which is a sentence 

3. A set of child reasoning steps on whose claims 
this justification relies 

4. A set of variable bindings 
5. An atomic justification for the claim of this 

reasoning step given its premises and the claims 
of its children 

An atomic justification can be either “Axiom” or an 
inference rule.  Reasoning steps justified as Axiom do not 
have any premises or children, while an inference rule 
serves to infer the reasoning step’s claim from its 
premises and the claims of its child reasoning steps. 

Query Manager interacts with a reasoner through the 
interface by sending the reasoner a goal to prove.  The 
reasoner responds by returning reasoning steps that are 
either partial or complete proofs of the goal.  A complete 
proof is a reasoning step that has no premises and no 
descendant reasoning steps that have any premises.  A 
partial proof is a reasoning step that has at least one 
unproved premise, either directly in itself or indirectly in 
a descendant reasoning step.  Query Manager can derive a 
complete proof from a partial proof by proving these 
premises.  Note that any reasoning step whose atomic 
justification is Axiom is a proof.  To facilitate returning of 
multiple reasoning steps corresponding to different proofs 
of a goal, a reasoner actually returns a reasoning step 
iterator. Query Manager accesses the reasoning steps 
generated by a reasoner via the reasoning step iterator 
returned.  The reasoner determines the order in which the 
reasoning steps are accessed via the iterator, and Query 
Manager determines when to retrieve reasoning steps 
from the iterator.  This provides a framework for 
streaming answers and in which reasoners can generate 
answers as needed. 

We first show an example of how this reasoning 
interface is used for interfacing Query Planner with Query 
Manager.  Suppose Query Planner receives the following 
query as input: , where , , , and  are 
positive, atomic literals, and decomposes this query into 
subgroups in two different ways.  Query Planner will 
produce a reasoning step iterator.  Each time Query 
Manaer invokes this iterator a reasoning step will be 
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returned corresponding to one way of decomposing the 
given query.  For example, the following illustrates the 
two reasoning steps generated: 

 
Note that in order to complete the proof of the claim in 
each reasoning step, Query Manager needs to find 
proofs of the two premises in each reasoning step. 

3.2 Query Planner 

The key capabilities of Query Planner are subgoal 
grouping and subgoal ordering.  As an example of 
subgoal grouping, consider a query  that 
could be broken into two groups, one consisting of (  

to be evaluated at one reasoner and the other  at 
another reasoner.  For an example of subgoal ordering, 
the groups in the above query must be evaluated in the 
order followed by (   

The subgoal grouping and ordering produced by Query 
Planner satisfies the following requirements: 

Satisfaction of binding pattern restrictions [9] of 
the predicates accepted by each reasoner. 
Modeling of predicate completeness and overlap, 
that is, whether a reasoner can provide the 
complete extension of a predicate or just a subset.  
Query Planner uses this information to minimize 
the number of reasoners accessed. 
Satisfaction of the query processing capabilities 
of different reasoners.   
Grouping of the subgoals in the query into 
maximal subgroups that can be handled by each 
reasoner, satisfying both the binding pattern 
restrictions and the reasoner query answering 
capabilities.  

The information about binding constraints, predicate 
completeness, and query answering capabilities is 
encoded in what is called a capability model in Query 
Manager (the figure below shows a fragment of the 
capability model relevant for the query of Section 2). The 
query planning algorithm in Query Manager consists of 
the following phases: 

1. Satisfaction of binding constraints.  It 
constructs a dependency graph to satisfy the 
binding pattern restrictions of the predicates in 
the query.  Since the dependency graph is a 
partial order, there may be many different 

groupings, depending on how we process the 
dependency graph.  In our implementation, we 
output either a single group or all the groups.  

2. Completeness reasoning.  A predicate 
appearing in multiple reasoners may have one of 
two semantics: 
a. Incomplete (Open-world): Each reasoner 

may contribute different bindings to the 
predicate. Query Manager needs to query all 
the reasoners and union the results. For 
example, if two sources know about the 
predicate (Laptop-Computer X), then each 
reasoner may provide different laptops. 

b. Complete (Closed-world): Each reasoner has 
a replica of the predicate.  Query Manager 
needs to query only one of the reasoners 
(preferably the most cost-effective one). For 
example, a predicate like ISI-Employee(X) 
may correspond to the directory listing at ISI 
and have all ISI employees; there is no need 
to go to any other sources. 

3. Selection assignments. Each (in) equality 
predicate (=, >, <, , , ) is assigned to the first 
group where it can go according to the 
dependency graph in order to filter intermediate 
results as soon as possible. 

4. Enforcement of reasoner query answering 
capabilities.  Currently, the only query 
restriction is that IRIS cannot execute joins 
across classes.  An analysis step further 
decomposes queries to IRIS into subgroups such 
that each group is a single-class query. 

To clarify the behavior of Query Planner, consider the 
following example query: Which meetings will have a 
conflict if the CALO Test meeting runs overtime by an 
hour?  This query can be formally expressed using KIF 
syntax as follows (note that names preceded by “?” 
represent variables, and all the relation names are drawn 
from the CALO ontology): 

 
  

 The fragment of the capability model for the 
predicates is depicted as follows (note that “f” means an 
argument can be free whereas “b” denotes that an 
argument must be bound): 
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By default, predicates are deemed incomplete: all 
relevant reasoners of a predicate must be queried to get all 
the answers.  Given the specification above, Query 
Planner first orders the predicates according to their 
binding pattern restrictions, and annotates the given query 
with the reasoners that can handle each of the predicates. 
The annotated query is as follows:  
 

  

The annotated query represents a conjunction of 
disjunctive queries.  For instance, the statement 

 is equivalent to 
the following disjunctive query: 

Query Planner searches the annotated query for 
maximal groups of predicates that can be executed at the 
same reasoner while satisfying the binding constraints. 
During the search, the planner ensures that the predicates 
sharing object IDs belong to the same reasoner.  In 
general, object IDs are internal to each reasoner and thus 
cannot be “joined” across different reasoners. For 
example, consider the following annotated query: 

 

Here are four ways of combining these predicates: 

Observe that variable  will be bound to object 
IDs.  Therefore, of these plan fragments, only those (two) 
plans where variable  is bound by the same 
reasoner in both literals are valid; the others would simply 
not produce any answers.  This heuristic has a significant 
impact as the size of the query (in terms of the number of 
predicates) increases.3  So after taking into account the 
assignment of predicates to reasoners and the dependency 
graph for the query, the query planning algorithm 
produces the following two query plans.  One plan uses 
only KM to retrieve calendar information: 

and the other uses only IRIS for calendar information: 

Observe that both query plans have three groups.  
Since only Time Reasoner can handle the predicate 

, it must be evaluated separately.  All these groups in 
each plan must be evaluated in succession so as to satisfy 
the binding constraints: evaluation of the first group will 
provide bindings for  needed by the predicate 

 in the second group, which will in turn provide 
bindings for the variable  needed by the 
time comparison operators in the third group. 

                                                           
3  At this point the query planner is considering only logical 

optimizations like removing subqueries with nonmatching 
object IDs. In the future we also plan to include cost-based 
optimizations based on the expected sizes of different 
predicates and subqueries. 
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a Query Manager called Mediator that in turn called 15 Web         

information extraction agents, one per Web site. 

Table 1. Evaluation of the Query Manager 

 

Finally, Query Planner must still take into account the 
fact that IRIS can only answer queries about instances of 
a single class.  This, however, does not result in a 
multiplication of the number of plans.  Instead, a further 
rewrite of the second query plan above suffices.  Its final 
plan is as follows: 

 

3.3 Reasoning System Adapters 

While implementing the reasoning system adapters we 
had to deal with the problems of ontology mismatches  
and impedance mismatches.  The ontology mismatch 
problem arises when the ontology used by a source is  
different from the one used by the query manager.  In 
such cases the reasoning system adapter implements the 
translation between the two ontologies.  The impedance 
mismatch problem arises when  a source does not support 
logical query interface.  In such cases, the reasoning  
 

 

 
b In addition to the 15 Web information extraction agents, 

two other sources were used for retrieving reviews by Mediator. 
 
 
 
 
system adapter implements a mapping between the logical 
specification of a query to the native API of a source.  An 
example native API for a source is based on Java 
functions.  The adapter then must map logical queries into  
Java functions, and the results of the function into 
variable bindings in the query. 
 
4. Evaluation 
 

We evaluated the performance of Query Manager in 
the context of an application of CALO in the office 
domain.  Specifically, we chose a set of queries from the 
following categories and studied various aspects of 
answering these queries in Query Manager (for simplicity, 
we have omitted the KIF representation of these queries 
and stated them in English without all the details): 

1. Task Fulfillment: Purchasing a piece of office 
equipment such as a laptop, printer, or scanner. 
(TF1) List all vendors from which purchase of flatbed 

scanners can be made. 
(TF2) Get real-time quotes, including price, vendor 

information, horizontal and vertical resolution, for 
flatbed scanners with price less than $200. 

(TF3) Show models of flatbed scanners having the 
greatest number of positive product reviews. 

(TF4) Show purchase request forms that were filled in 
for the latest purchase of flatbed scanners. 

2. Task Setup: Setting up an office task such as 
arranging a meeting. 
(TS1) List all schedule conflicts if the meeting “CALO 

Test” goes overtime by an hour. 
(TS2) Show the best times to schedule a one-hour 

meeting between 9 a.m., May 10, 2005 and 
3 p.m., May 12, 2005. 

(TS3) List all existing meetings that will be canceled if 
the current meeting is scheduled. 

Query # Literals # Expansion # Plans # Sources # Groups QP Time (ms) 
TF1 10 0 1 1 1 42.1 
TF2 13 0 2 2 (15)a 2 52.1 
TF3 5 0 2 2 (17)b 2 20.0 
TF4 9 0 1 1 1 38.1 
TS1 15 0 72 5 585 77.1 
TS2 20 0 2 3 4 85.1 
TS3 22 0 1 2 3 98.0 
TD1 1 3 38 4 150 85.1 
TD2 10 6 72 4 314 202.1 
TD3 12 1 18 4 47 69.1 
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3. Task Discussion: Observing a meeting in which 
participants are discussing a project schedule. 
(TD1) List all participants of a particular meeting. 
(TD2) Show all meeting artifacts that were in focus in a 

particular meeting. 
(TD3) Show the person who answered the question 

raised by Joe during a particular meeting. 
 
The current query manager was used by knowledge 

engineers for evaluating the overall performance of the 
system, and has not yet been put in front of the end-users 
of CALO.  In its use by the knowledge engineers, there 
were no problems in formulating the queries and getting 
the answers. We did face some difficulty in initially 
explaining the functionality and services offered by the 
system.  For example, one interesting feature of our 
approach is that one can decide at runtime which 
reasoners should be used in answering the queries.  It was 
not until the time that the users wanted this functionality 
that this became a compelling feature.  We also anticipate 
that as the overall capability of CALO evolves there will 
be increasing requirements for reasoning that can be only 
satisfied using the proposed architecture.  We also plan to 
investigate the questions that are of interest to end –users 
and provide a user-interface for formulating those 
questions. 

In the current paper, we have considered only a 
sampling of questions that the query manager can answer.  
The set of overall questions answered by it is a function 
of the questions that the reasoners integrated into it can 
answer.  It is capable of taking any conjunctive query, and 
decomposing and mapping it into individual sources, and 
presenting the answers.   The current system is limited to 
only conjunctive queries, and thus, will have trouble with 
queries that have disjunctions or negations in them.  It 
will also have trouble with queries that require significant 
re-planning during the query evaluation process. 

For the queries above, we consider the following 
metrics (results are shown in columns of Table 2): 

Number of literals in the original KIF encoding of the 
query (Column 21) 

Number of rule expansions involved in answering 
the query (Column 3) 
Number of conjunctive query plans generated by 
Query Planner (Column 4) 
Number of knowledge sources involved in 
answering the query (Column 5) 
Number of groups in query plans generated for this 
query (Column 6) 
Total running time taken by Query Planner in 
answering the question (Column 71) 

We conducted our test using a publicly released 
version of CALO v2.0.  Our test machine was an IBM 
T42 laptop with 1.5 GB of main memory, 1.7 GHz Intel 

Centrino CPU, and running on Windows XP Professional.  
Our system was implemented in Java and we used JRE 
v1.4.2 for our test.  To get an idea of the performance of 
Query Manager in real running environments, we used the 
measurement of elapsed time.  We executed each query 
multiple times to gather statistically significant results. 

First, observe that the running time taken by Query 
Planner alone in answering these questions ranges from 
40 to 200 ms.  This level of performance is satisfactory in 
real running environments since many of these queries 
take much longer than 200 ms to execute.  For instance, 
TF2 normally takes a couple of minutes because in 
answering this query Mediator needs to fetch HTML 
documents from multiple Web sites and then perform data 
extraction operations on these documents.  Therefore, the 
overhead introduced by Query Planner is not significant. 

In contrast to questions in the Task Fulfillment and 
Task Setup categories, answering questions in the Task 
Discussion category requires various degrees of rule 
expansion because of the limited reasoning capability of 
MOKB, which mainly serves as a persistent triple store 
and does not support reasoning. 

Clearly, the number of query plans increases with the 
number of rule expansions involved, because each 
different rule expansion results in a different query plan.  
This correlation can be validated in questions TD1, TD2, 
and TD3.  The number of knowledge sources involved 
also has an impact on the number of query plans 
generated, as can be observed in question TD3.  The large 
number of query plans generated for questions TS1, TD1, 
TD2, and TD3 is due to a limitation in our current 
implementation: our domain model is not expressive 
enough for pruning all query plans that are semantically 
equivalent.  In particular, questions TS1, TD1, TD2, and 
TD3 used a large number of time comparison operators 
that are declared to be implemented by several reasoners 
in their domain models.  Even though the “Completeness” 
reasoning discussed in Section 3.2 can be utilized to 
address this problem, predicates with operator-like 
semantics need to be optimized with additional 
constraints: Ideally, operators should be pushed down as 
close to the appropriate knowledge sources as possible; 
randomly selecting a knowledge source for this operator 
in general does not have good performance guarantees.  
Currently, we are working on developing a new domain 
model (in combination with a statistics model) for Query 
Manager to address this problem. 

In Column 2 of Table 1, the number of literals listed is 
for literals in the original KIF encoding.  In most cases, 
rule expansion will add literals to a query.  If no rule 
expansion is involved, the numbers in Column 2 are good 
indications of the size of the query submitted to Query 
Planner.  In these cases (questions TF1-4 and TS1-3), we 
can observe that the running time of Query Planner is 
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proportional to the size of its input.  The seemingly long 
running times for questions TD1 and TD2 need some 
further explanation. In the case of question TD1, rule 
expansion results in two final conjunctive queries, one 
with 15 literals and the other with 3 literals.  Therefore, 
the total input size to Query Planner is 18 and we can see 
that the total running time on these 18 literals (85.1 ms) is 
comparable to that of question TS2 (20 literals, 85.1 ms).  
In the case of TD2, rule expansion eventually results in 
two conjunctive queries, each with 23 literals.  We can 
observe that in this case the total running time roughly 
doubles that of question TS3 (22 literals, 98.0 ms). 

5. Related Work 

The CALO Query Manager is conceptually a hybrid 
reasoning system: the reasoning systems may return 
subgoals.  This is the most distinctive aspect of this 
system in relation to the most previous work on 
information integration. Approaches to incorporating 
external reasoners into first-order deductive systems 
include procedural attachment [10]  and theory resolution 
[11].  The resolution used in the QM might best be 
viewed as implementing the theory resolution approach, 
in a model-elimination setting. However, these hybrid 
reasoning frameworks do not specify how the literals 
should be grouped together, in what order they should be 
handled, or which reasoner to try first when there is a 
choice. More generally, our work addresses query 
optimization problems (such as grouping and ordering of 
literals) that are likely to appear in any hybrid reasoning 
system using heterogeneous sources. 

6. Conclusion and Future Work 

We have presented a system for integrating heterogeneous 
knowledge sources with the help of a reusable ontology, a 
query planner, and a hybrid reasoning architecture.  The 
main advantages of the approach include semantically 
well-defined interfaces, efficient execution of queries, and 
the ability to leverage reasoning for answering queries. 
We have also presented empirical results of evaluating 
our system that demonstrated its efficiency. 

This work can be extended in several ways:  (1) query 
planning needs to be made dynamic to handle partial 
proofs;  (2) query planning needs to take in statistics to 
achieve better performance;  (3) our domain model needs 
to represent a richer set of source capabilities;  (4) Query 
Manager should be able to work in a multi-CALO 
environment in which slight divergent ontologies may 
exist in individual CALOs. 
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