
Design and Implementation of the CALO Query Manager

Jose-Luis Ambite1, Vinay K. Chaudhri2, Richard Fikes3, Jessica Jenkins3, Sunil
Mishra2, Maria Muslea1, Tomas Uribe2, Guizhen Yang2

1. USC Information Sciences Institute, Marina del Rey, CA 90292, USA
2. Artificial Intelligence Center, SRI International, Menlo Park, CA 94087, USA

3. Knowledge Systems Group, Artificial Intelligence Laboratory, Stanford University, Stanford, CA 94305, USA

Abstract. We report on our experience in developing a
query-answering system that integrates multiple
knowledge sources. The system is based on a novel
architecture for combining knowledge sources in which
the sources can produce new subgoals as well as ground
facts in the search for answers to existing subgoals. The
system uses a query planner that takes into account
different query-processing capabilities of individual
sources and augments them gracefully. A reusable
ontology provides a mediated schema that serves as the
basis for integration. We have evaluated the system on a
suite of test queries in a realistic application to verify the
practicality of our approach.

1. Introduction
The problem of integrating and querying information
residing in heterogeneous knowledge sources has been a
focus of intensive research during the past several years,
[1], [2], [3]. In this paper, we report on our effort to build
a real system for integrating heterogeneous knowledge
sources with different query-answering capabilities. This
system is an application of a hybrid reasoning architecture
that is distinct from existing systems in two ways: (1)
Knowledge sources integrated into our system may return
logical formulas representing new subgoals as well as
ground facts in response to queries. (2) The limited
reasoning capabilities of individual knowledge sources
are augmented by using a powerful query planner.

We are conducting this work in the context of CALO
(Cognitive Assistant that Learns and Organizes), a
multidisciplinary project funded by DARPA to create
cognitive software systems that can reason, learn from
experience, be told what to do, explain what they are
doing, reflect on their experience, and respond robustly to
surprises. (See http://www.ai.sri.com/project/CALO). The
current project is targeted at developing personalized
cognitive assistants (which we will refer to as CALOs) in
an office environment where knowledge about email,
schedules, people, contact information, and so on is
distributed among multiple knowledge sources.

Copyright © 2006, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

 A CALO must be able to access and reason with this

distributed knowledge. We have encapsulated this
functionality in a CALO module called Query Manager
that serves as the unified access point within a CALO for
answering queries. In an office, multiple CALOs will
each support a single user. Each copy of CALO has its
own copy of the Query Manager. The following three
example queries typically arise in an office environment:

1. Which meetings will have a conflict if the current
meeting runs overtime by an hour? Answering this query
requires knowing the ending time of the current meeting,
computing the new ending time, and determining which
other meetings have been scheduled to pass over the new
ending time. In a CALO, a user’s schedules are stored in
a personal information knowledge source called IRIS.
The functionality of computing the new ending time is
implemented in a reasoner, called Time Reasoner, that
can evaluate simple functions and predicates on time
points and intervals.

2. Who was present in the meeting in conference room
EJ228 at 10 a.m. this morning? A person is considered
by a CALO to be present in a meeting if it can recognize
that person at the time of the meeting from images
provided by the meeting room camera. This knowledge is
stated as a rule in a knowledge source called Knowledge
Machine (KM) [4]. Given this query, KM uses that rule
to produce subgoals for retrieving meeting participants’
information from the image analysis results provided by
another independent knowledge source called Meeting
Ontology Knowledge Base (MOKB). Therefore, in this
example, one knowledge source produces new subgoals
that are then evaluated by another knowledge source.

3. List all the people who are mentioned in an article
in which Joe is also mentioned? This query requires first
retrieving all the articles that mention Joe, and then for
each of those articles, retrieving all the people mentioned
in them. This requires selecting instances of a class based
on a condition (articles that mention Joe), and then
retrieving values of a property (people mentioned in an
article) of each of those instances. This information is
stored in IRIS. However, IRIS cannot process queries
like this one that require successive retrievals from the
same class based on different criteria. Therefore, Query
Manager must take that limitation into account when

1751

developing query plans, and in this case form a plan that
involves multiple calls to IRIS.

The examples above illustrate the challenges facing
Query Manager in integrating knowledge sources and
answering queries of different sorts. However, the
intricacy of the internal workings of the system is
completely transparent to its users — be they humans
interacting with a CALO, or intelligent agents running on
behalf of a CALO. Neither do users of Query Manager
have to worry about how knowledge is expressed (e.g., as
ground facts or axioms) or distributed in the system.
Queries only need to be formulated using CALO
Ontology, and Query Manager will determine which
knowledge sources are required to produce the answers.

2. Query Manager Architecture

The Query Manager architecture is shown in Figure 1. It
is based on an object-oriented modular architecture for
hybrid reasoning, called the JTP architecture [5], which
supports rapid development of reasoners and reasoning
systems. The architecture considers each knowledge
source to be a reasoner.

A CALO component (called a client) can obtain
answers to a query and explanations for those answers by
conducting a query answering dialogue with the Query
Manager. A query includes a query pattern that is a
conjunctive sentence expressed in KIF (Knowledge
Interchange Format) [6] whose free variables 1 are
considered to be query variables. A query answer
provides bindings of constants to some of these query
variables such that the query pattern instance produced by
applying the bindings to the query pattern and considering
the remaining query variables in the query pattern to be
existentially quantified is entailed by the knowledge
sources in the Query Manager. Query Manager can
produce multiple answers to a query and be recalled to
provide additional answers when needed.

When queries arrive at the Query Manager, they first
undergo syntactic validation and then are sent to the
Asking Control Reasoner, which embodies two reasoning
methods: iterative deepening and model elimination. The
Asking Control Reasoner sends queries to the Asking
Control Dispatcher, which calls two reasoners and a
dispatcher in sequence: Rule Expansion Reasoner, Query
Planner, and Assigned Goal Dispatcher. Each reasoner
and dispatcher accepts as input a goal in the form of a
query pattern and produces a reasoning step iterator as
output. A reasoning step is a partial or complete proof of
a goal, and a reasoning step iterator is a construct that
when pulsed provides a reasoning step as output. The

1 A “free variable” in a KIF sentence is a variable that occurs in

the sentence outside the scope of any enclosing quantifier.

Rule Expansion Reasoner applies rules to its input goal,
and provides reasoning steps that contain new subgoals
that can be used to produce answers for the input goal.
The Assigned Goal Dispatcher dispatches (groups of)
subgoals to different reasoners per the query plan
produced by Query Planner. Note that each knowledge
source is integrated into the Query Manager by
implementing an asking reasoner per the JTP reasoner
interface specification (see Section 3 for more details) that
encapsulates the knowledge source and the specific
details of how it answers queries. We refer to such
reasoners as reasoning system adapters.2

Ideally, there would not be a separate rule expansion
reasoner in Query Manager. Any reasoner should be
allowed to infer new subgoals that are not in the original
query plan, and the query plan would then be revised to
include the new subgoals. But such a control structure
would require dynamic query planning, which is outside
the scope of the current phase of the project. We worked
around this problem by storing rules (i.e., Horn Clauses)
in a separate reasoner (i.e., the Rule Expansion Reasoner)
that is invoked before a query plan is generated. This
solution is not completely general because it is not always
possible to anticipate all such rules. Extending the
architecture to support dynamic query planning is the
subject of future work.

The design of Query Manager is based on a shared
ontology called the CALO Ontology that serves as the
mediated schema for all reasoners. All the reasoners are
expected to implement (parts of) the CALO Ontology.
Developing such an ontology is usually the biggest
challenge in implementing systems that access
heterogeneous knowledge sources. We bootstrapped this
process by reusing a large shallow ontology that we had
developed in a previous project [7]. Clearly, this
ontology was inadequate for the office domain that was
the focus of the current project and needed to be
extended. Our strategy for extending the ontology was to
set up a collaborative process between the developers of
the knowledge sources and the knowledge engineers
maintaining the ontology. This strategy is not always
possible in a typical project that integrates heterogeneous
sources, but we had the advantage that the developers of
the knowledge sources were also members of the team.
For instance, development of CALO Office Ontology was
a result of collaboration between IRIS developers and the
knowledge engineers, and CALO Meeting Ontology a
result of collaboration between MOKB developers and
the knowledge engineers. This approach, however, may
not generalize to other systems or may be expensive to
implement if there is no control on the schemas used by
individual knowledge sources. In these cases, a lot of
translation work must be done.

2 For convenience in exposition, from now on we will use the

terms reasoners and knowledge sources interchangeably.

1752

Figure 1. Query Manager Architecture

In addition to the knowledge sources that we have
introduced and shown in Figure 1 (KM, MOKB, Time
Reasoner, and IRIS), two other reasoners are currently
integrated into Query Manager: Mediator and PTIME.
Mediator is a data integration system, developed
independently by ISI, which extracts useful information
from the Web [8]. For example, it is able to access the
Web sites of Office Depot and CDW to extract product
and pricing information for laptops. In its current
deployment in the CALO project, Mediator is interfaced
with about two dozen Web sites in the office equipment
domain. PTIME is a general-purpose constraint reasoning
system. It is currently used for scheduling meetings:
given the constraints of the meetings to be scheduled, and
a user’s preferences and calendar information, it can
suggest alternative meeting times in the presence of
schedule conflicts.
 The current implementation of Query Manager is
limited to only conjunctive queries. This is not an
inherent limitation of the Query Manager architecture.
The use of model elimination in Asking Control Reasoner
permits acceptance of queries in full first-order logic. If
we use a query language more expressive than
conjunctive queries, then Query Planner will also need to
be extended (a subject for future research). We also note
that the use of iterative deepening provides termination
guarantees in the presence of recursive rules, thanks to
controlled search capabilities (this subject is not the main
focus of this paper).

A big advantage of using the proposed architecture is
that the query manager can be dynamically re-configured
to use or not use a particular reasoner. For example, one
can start up the query manager with only a subset of
reasoners. Such dynamic flexibility is not available if one
annotates individual relations with the reasoners that
should be used for evaluating them.

3. Query Manager Components

3.1 Reasoner Interface

In the Query Manager architecture, the reasoner interface
is needed to specify a protocol for integrating knowledge
sources into Query Manager. This interface is based on
an abstraction called a reasoning step. A reasoning step
consists of the following elements:

1. A claim, which is a sentence that this reasoning
step justifies

2. A set of premises on which the justification
relies, each of which is a sentence

3. A set of child reasoning steps on whose claims
this justification relies

4. A set of variable bindings
5. An atomic justification for the claim of this

reasoning step given its premises and the claims
of its children

An atomic justification can be either “Axiom” or an
inference rule. Reasoning steps justified as Axiom do not
have any premises or children, while an inference rule
serves to infer the reasoning step’s claim from its
premises and the claims of its child reasoning steps.

Query Manager interacts with a reasoner through the
interface by sending the reasoner a goal to prove. The
reasoner responds by returning reasoning steps that are
either partial or complete proofs of the goal. A complete
proof is a reasoning step that has no premises and no
descendant reasoning steps that have any premises. A
partial proof is a reasoning step that has at least one
unproved premise, either directly in itself or indirectly in
a descendant reasoning step. Query Manager can derive a
complete proof from a partial proof by proving these
premises. Note that any reasoning step whose atomic
justification is Axiom is a proof. To facilitate returning of
multiple reasoning steps corresponding to different proofs
of a goal, a reasoner actually returns a reasoning step
iterator. Query Manager accesses the reasoning steps
generated by a reasoner via the reasoning step iterator
returned. The reasoner determines the order in which the
reasoning steps are accessed via the iterator, and Query
Manager determines when to retrieve reasoning steps
from the iterator. This provides a framework for
streaming answers and in which reasoners can generate
answers as needed.

We first show an example of how this reasoning
interface is used for interfacing Query Planner with Query
Manager. Suppose Query Planner receives the following
query as input: , where , , , and are
positive, atomic literals, and decomposes this query into
subgroups in two different ways. Query Planner will
produce a reasoning step iterator. Each time Query
Manaer invokes this iterator a reasoning step will be

1753

returned corresponding to one way of decomposing the
given query. For example, the following illustrates the
two reasoning steps generated:

Note that in order to complete the proof of the claim in
each reasoning step, Query Manager needs to find
proofs of the two premises in each reasoning step.

3.2 Query Planner

The key capabilities of Query Planner are subgoal
grouping and subgoal ordering. As an example of
subgoal grouping, consider a query that
could be broken into two groups, one consisting of (

to be evaluated at one reasoner and the other at
another reasoner. For an example of subgoal ordering,
the groups in the above query must be evaluated in the
order followed by (

The subgoal grouping and ordering produced by Query
Planner satisfies the following requirements:

Satisfaction of binding pattern restrictions [9] of
the predicates accepted by each reasoner.
Modeling of predicate completeness and overlap,
that is, whether a reasoner can provide the
complete extension of a predicate or just a subset.
Query Planner uses this information to minimize
the number of reasoners accessed.
Satisfaction of the query processing capabilities
of different reasoners.
Grouping of the subgoals in the query into
maximal subgroups that can be handled by each
reasoner, satisfying both the binding pattern
restrictions and the reasoner query answering
capabilities.

The information about binding constraints, predicate
completeness, and query answering capabilities is
encoded in what is called a capability model in Query
Manager (the figure below shows a fragment of the
capability model relevant for the query of Section 2). The
query planning algorithm in Query Manager consists of
the following phases:

1. Satisfaction of binding constraints. It
constructs a dependency graph to satisfy the
binding pattern restrictions of the predicates in
the query. Since the dependency graph is a
partial order, there may be many different

groupings, depending on how we process the
dependency graph. In our implementation, we
output either a single group or all the groups.

2. Completeness reasoning. A predicate
appearing in multiple reasoners may have one of
two semantics:
a. Incomplete (Open-world): Each reasoner

may contribute different bindings to the
predicate. Query Manager needs to query all
the reasoners and union the results. For
example, if two sources know about the
predicate (Laptop-Computer X), then each
reasoner may provide different laptops.

b. Complete (Closed-world): Each reasoner has
a replica of the predicate. Query Manager
needs to query only one of the reasoners
(preferably the most cost-effective one). For
example, a predicate like ISI-Employee(X)
may correspond to the directory listing at ISI
and have all ISI employees; there is no need
to go to any other sources.

3. Selection assignments. Each (in) equality
predicate (=, >, <, , ,) is assigned to the first
group where it can go according to the
dependency graph in order to filter intermediate
results as soon as possible.

4. Enforcement of reasoner query answering
capabilities. Currently, the only query
restriction is that IRIS cannot execute joins
across classes. An analysis step further
decomposes queries to IRIS into subgroups such
that each group is a single-class query.

To clarify the behavior of Query Planner, consider the
following example query: Which meetings will have a
conflict if the CALO Test meeting runs overtime by an
hour? This query can be formally expressed using KIF
syntax as follows (note that names preceded by “?”
represent variables, and all the relation names are drawn
from the CALO ontology):

 The fragment of the capability model for the
predicates is depicted as follows (note that “f” means an
argument can be free whereas “b” denotes that an
argument must be bound):

1754

By default, predicates are deemed incomplete: all
relevant reasoners of a predicate must be queried to get all
the answers. Given the specification above, Query
Planner first orders the predicates according to their
binding pattern restrictions, and annotates the given query
with the reasoners that can handle each of the predicates.
The annotated query is as follows:

The annotated query represents a conjunction of
disjunctive queries. For instance, the statement

 is equivalent to
the following disjunctive query:

Query Planner searches the annotated query for
maximal groups of predicates that can be executed at the
same reasoner while satisfying the binding constraints.
During the search, the planner ensures that the predicates
sharing object IDs belong to the same reasoner. In
general, object IDs are internal to each reasoner and thus
cannot be “joined” across different reasoners. For
example, consider the following annotated query:

Here are four ways of combining these predicates:

Observe that variable will be bound to object
IDs. Therefore, of these plan fragments, only those (two)
plans where variable is bound by the same
reasoner in both literals are valid; the others would simply
not produce any answers. This heuristic has a significant
impact as the size of the query (in terms of the number of
predicates) increases.3 So after taking into account the
assignment of predicates to reasoners and the dependency
graph for the query, the query planning algorithm
produces the following two query plans. One plan uses
only KM to retrieve calendar information:

and the other uses only IRIS for calendar information:

Observe that both query plans have three groups.
Since only Time Reasoner can handle the predicate

, it must be evaluated separately. All these groups in
each plan must be evaluated in succession so as to satisfy
the binding constraints: evaluation of the first group will
provide bindings for needed by the predicate

 in the second group, which will in turn provide
bindings for the variable needed by the
time comparison operators in the third group.

3 At this point the query planner is considering only logical

optimizations like removing subqueries with nonmatching
object IDs. In the future we also plan to include cost-based
optimizations based on the expected sizes of different
predicates and subqueries.

1755

a Query Manager called Mediator that in turn called 15 Web

information extraction agents, one per Web site.

Table 1. Evaluation of the Query Manager

Finally, Query Planner must still take into account the
fact that IRIS can only answer queries about instances of
a single class. This, however, does not result in a
multiplication of the number of plans. Instead, a further
rewrite of the second query plan above suffices. Its final
plan is as follows:

3.3 Reasoning System Adapters

While implementing the reasoning system adapters we
had to deal with the problems of ontology mismatches
and impedance mismatches. The ontology mismatch
problem arises when the ontology used by a source is
different from the one used by the query manager. In
such cases the reasoning system adapter implements the
translation between the two ontologies. The impedance
mismatch problem arises when a source does not support
logical query interface. In such cases, the reasoning

b In addition to the 15 Web information extraction agents,

two other sources were used for retrieving reviews by Mediator.

system adapter implements a mapping between the logical
specification of a query to the native API of a source. An
example native API for a source is based on Java
functions. The adapter then must map logical queries into
Java functions, and the results of the function into
variable bindings in the query.

4. Evaluation

We evaluated the performance of Query Manager in
the context of an application of CALO in the office
domain. Specifically, we chose a set of queries from the
following categories and studied various aspects of
answering these queries in Query Manager (for simplicity,
we have omitted the KIF representation of these queries
and stated them in English without all the details):

1. Task Fulfillment: Purchasing a piece of office
equipment such as a laptop, printer, or scanner.
(TF1) List all vendors from which purchase of flatbed

scanners can be made.
(TF2) Get real-time quotes, including price, vendor

information, horizontal and vertical resolution, for
flatbed scanners with price less than $200.

(TF3) Show models of flatbed scanners having the
greatest number of positive product reviews.

(TF4) Show purchase request forms that were filled in
for the latest purchase of flatbed scanners.

2. Task Setup: Setting up an office task such as
arranging a meeting.
(TS1) List all schedule conflicts if the meeting “CALO

Test” goes overtime by an hour.
(TS2) Show the best times to schedule a one-hour

meeting between 9 a.m., May 10, 2005 and
3 p.m., May 12, 2005.

(TS3) List all existing meetings that will be canceled if
the current meeting is scheduled.

Query # Literals # Expansion # Plans # Sources # Groups QP Time (ms)
TF1 10 0 1 1 1 42.1
TF2 13 0 2 2 (15)a 2 52.1
TF3 5 0 2 2 (17)b 2 20.0
TF4 9 0 1 1 1 38.1
TS1 15 0 72 5 585 77.1
TS2 20 0 2 3 4 85.1
TS3 22 0 1 2 3 98.0
TD1 1 3 38 4 150 85.1
TD2 10 6 72 4 314 202.1
TD3 12 1 18 4 47 69.1

1756

3. Task Discussion: Observing a meeting in which
participants are discussing a project schedule.
(TD1) List all participants of a particular meeting.
(TD2) Show all meeting artifacts that were in focus in a

particular meeting.
(TD3) Show the person who answered the question

raised by Joe during a particular meeting.

The current query manager was used by knowledge

engineers for evaluating the overall performance of the
system, and has not yet been put in front of the end-users
of CALO. In its use by the knowledge engineers, there
were no problems in formulating the queries and getting
the answers. We did face some difficulty in initially
explaining the functionality and services offered by the
system. For example, one interesting feature of our
approach is that one can decide at runtime which
reasoners should be used in answering the queries. It was
not until the time that the users wanted this functionality
that this became a compelling feature. We also anticipate
that as the overall capability of CALO evolves there will
be increasing requirements for reasoning that can be only
satisfied using the proposed architecture. We also plan to
investigate the questions that are of interest to end –users
and provide a user-interface for formulating those
questions.

In the current paper, we have considered only a
sampling of questions that the query manager can answer.
The set of overall questions answered by it is a function
of the questions that the reasoners integrated into it can
answer. It is capable of taking any conjunctive query, and
decomposing and mapping it into individual sources, and
presenting the answers. The current system is limited to
only conjunctive queries, and thus, will have trouble with
queries that have disjunctions or negations in them. It
will also have trouble with queries that require significant
re-planning during the query evaluation process.

For the queries above, we consider the following
metrics (results are shown in columns of Table 2):

Number of literals in the original KIF encoding of the
query (Column 21)

Number of rule expansions involved in answering
the query (Column 3)
Number of conjunctive query plans generated by
Query Planner (Column 4)
Number of knowledge sources involved in
answering the query (Column 5)
Number of groups in query plans generated for this
query (Column 6)
Total running time taken by Query Planner in
answering the question (Column 71)

We conducted our test using a publicly released
version of CALO v2.0. Our test machine was an IBM
T42 laptop with 1.5 GB of main memory, 1.7 GHz Intel

Centrino CPU, and running on Windows XP Professional.
Our system was implemented in Java and we used JRE
v1.4.2 for our test. To get an idea of the performance of
Query Manager in real running environments, we used the
measurement of elapsed time. We executed each query
multiple times to gather statistically significant results.

First, observe that the running time taken by Query
Planner alone in answering these questions ranges from
40 to 200 ms. This level of performance is satisfactory in
real running environments since many of these queries
take much longer than 200 ms to execute. For instance,
TF2 normally takes a couple of minutes because in
answering this query Mediator needs to fetch HTML
documents from multiple Web sites and then perform data
extraction operations on these documents. Therefore, the
overhead introduced by Query Planner is not significant.

In contrast to questions in the Task Fulfillment and
Task Setup categories, answering questions in the Task
Discussion category requires various degrees of rule
expansion because of the limited reasoning capability of
MOKB, which mainly serves as a persistent triple store
and does not support reasoning.

Clearly, the number of query plans increases with the
number of rule expansions involved, because each
different rule expansion results in a different query plan.
This correlation can be validated in questions TD1, TD2,
and TD3. The number of knowledge sources involved
also has an impact on the number of query plans
generated, as can be observed in question TD3. The large
number of query plans generated for questions TS1, TD1,
TD2, and TD3 is due to a limitation in our current
implementation: our domain model is not expressive
enough for pruning all query plans that are semantically
equivalent. In particular, questions TS1, TD1, TD2, and
TD3 used a large number of time comparison operators
that are declared to be implemented by several reasoners
in their domain models. Even though the “Completeness”
reasoning discussed in Section 3.2 can be utilized to
address this problem, predicates with operator-like
semantics need to be optimized with additional
constraints: Ideally, operators should be pushed down as
close to the appropriate knowledge sources as possible;
randomly selecting a knowledge source for this operator
in general does not have good performance guarantees.
Currently, we are working on developing a new domain
model (in combination with a statistics model) for Query
Manager to address this problem.

In Column 2 of Table 1, the number of literals listed is
for literals in the original KIF encoding. In most cases,
rule expansion will add literals to a query. If no rule
expansion is involved, the numbers in Column 2 are good
indications of the size of the query submitted to Query
Planner. In these cases (questions TF1-4 and TS1-3), we
can observe that the running time of Query Planner is

1757

proportional to the size of its input. The seemingly long
running times for questions TD1 and TD2 need some
further explanation. In the case of question TD1, rule
expansion results in two final conjunctive queries, one
with 15 literals and the other with 3 literals. Therefore,
the total input size to Query Planner is 18 and we can see
that the total running time on these 18 literals (85.1 ms) is
comparable to that of question TS2 (20 literals, 85.1 ms).
In the case of TD2, rule expansion eventually results in
two conjunctive queries, each with 23 literals. We can
observe that in this case the total running time roughly
doubles that of question TS3 (22 literals, 98.0 ms).

5. Related Work

The CALO Query Manager is conceptually a hybrid
reasoning system: the reasoning systems may return
subgoals. This is the most distinctive aspect of this
system in relation to the most previous work on
information integration. Approaches to incorporating
external reasoners into first-order deductive systems
include procedural attachment [10] and theory resolution
[11]. The resolution used in the QM might best be
viewed as implementing the theory resolution approach,
in a model-elimination setting. However, these hybrid
reasoning frameworks do not specify how the literals
should be grouped together, in what order they should be
handled, or which reasoner to try first when there is a
choice. More generally, our work addresses query
optimization problems (such as grouping and ordering of
literals) that are likely to appear in any hybrid reasoning
system using heterogeneous sources.

6. Conclusion and Future Work

We have presented a system for integrating heterogeneous
knowledge sources with the help of a reusable ontology, a
query planner, and a hybrid reasoning architecture. The
main advantages of the approach include semantically
well-defined interfaces, efficient execution of queries, and
the ability to leverage reasoning for answering queries.
We have also presented empirical results of evaluating
our system that demonstrated its efficiency.

This work can be extended in several ways: (1) query
planning needs to be made dynamic to handle partial
proofs; (2) query planning needs to take in statistics to
achieve better performance; (3) our domain model needs
to represent a richer set of source capabilities; (4) Query
Manager should be able to work in a multi-CALO
environment in which slight divergent ontologies may
exist in individual CALOs.

Acknowledgments
This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA, or the Department
of Interior-National Business Center (DOI-NBC).

References

1. Noy, N. and A. Halevy, eds. ACM SIGMOD

Record. . Vol. 33. 2004.
2. Noy, N.F., A. Doan, and A.Y. Halevy, eds. AAAI

Magazine Special Issue on Semantic Data
Integration. Vol. 26. Spring, 2005.

3. Ouksel, A. and A. Sheth, eds. ACM SIGMOD
Record Special Issue on Semantic
Interoperability in Global Information Systems.
Vol. 28. March 1999.

4. Clark, P. and B. Porter. KM -- The Knowledge
Machine: Users Manual. 1999. The system code
and documentation are available at
http://www.cs.utexas.edu/users/mfkb/km.html.

5. Fikes, R., J. Jenkins, and G. Frank. JTP: A
System Architecture and Component Library for
Hybrid Reasoning, in Proc. Seventh World
Multiconference on Systemics, Cybernetics, and
Informatics. 2003. Orlando, FL, USA.

6. Genesereth, M.R. and R.E. Fikes. Knowledge
Interchange Format, Version 3.0 Reference
Manual. 1992 (Logic-92-1).

7. Barker, K., B. Porter, and P. Clark. A Library of
Generic Concepts for Composing Knowledge
Bases, in Proc. 1st Int Conf on Knowledge
Capture (K-Cap'01). 2001. p. 14--21

8. Thakkar, S., J.L. Ambite, and C.A. Knoblock. A
Data Integration Approach to Automatically
Composing and Optimizing Web Services. in
ICAPS Workshop on Planning and Scheduling
for Web and Grid Services. 2004.

9. Ullman, J. Principles of Database and
Knowledge Base Systems, Volume 2. 1989.

10. Myers, K. Hybrid Reasoning Using Universal
Attachment. Artificial Intelligence, 1994. 67: p.
329-375.

11. Stickel, M. Automated Deduction by Theory
Resolution. Journal of Automated Reasoning,
1985. 4: p. 333-355.

1758

