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Abstract

This paper contains two important contributions for the
development of possibilistic causal networks. The first
one concerns the representation of interventions in pos-
sibilistic networks. We provide the counterpart of the
”DO” operator, recently introduced by Pearl, in possi-
bility theory framework. We then show that interven-
tions can equivalently be represented in different ways
in possibilistic causal networks. The second main con-
tribution is a new propagation algorithm for dealing
with both observations and interventions. We show that
our algorithm only needs a small extra cost for handling
interventions and is more appropriate for handling se-
quences of observations and interventions.

Introduction
Bayesian probabilistic networks (Pearl 1988; Jensen 1996;
Lauritzen & Spiegelhalter 1988) are powerful computa-
tional tools for identifying interactions among variables
from observational data. Recently, Pearl (Pearl 2000) has
proposed approaches based on probability theory using
causal graphs to give formal semantics to the notion of
interventions. From representational point of view, in-
terventions are distinguished from observations using the
concept of the ”do” operator (Goldszmidt & Pearl 1992;
Pearl 2000). From reasoning point of view, handling
interventions consists of altering the graph by excluding all
direct causes related to the variable of interest other than
interventions by maintaining intact the rest of the graph.
Effects of such interventions over the remaining variables
are then computed by applying conditioning over the altered
graph.
The ”do” operator has been first proposed in
(Goldszmidt & Pearl 1992) within ordinal con-
ditional functions frameworks (Spohn 1988b;
1988a). Revisions and updates are unified through the
conditioning on action to support causal reasoning. Spohn’s
ordinal conditional functions framework is a ”qualitative”
model for representing uncertainty, and has strong relation-
ships with infinitesimal probabilities and with possibility
theory (Dubois & Prade 1991).
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This paper focuses on the developments of possibilistic
causal networks in order to deal with both interventions and
observations. It contains two main contributions:

• It provides theoretical foundations of possibilistic causal
networks. Namely, it defines possibilistic causal networks
and introduces the ”do” operator in possibility theory. We
show that the different equivalent representations of inter-
ventions in probabilistic networks are still valid in possi-
bility theory framework.

• It provides a new propagation algorithm for dealing with
both interventions and observations. We first show that
a direct adaptation of propagation algorithms for prob-
abilistic networks is not appropriate incrementally with
new observations and interventions. Indeed, for multi-
ply connected networks, when dealing with interventions,
answering to queries is no longer immediate. It requires
O(|D||u|×|r|) computations where |D| denotes the size
of a variable domain, |u| is the number of parents in-
stances and |r| is the number of different interventions.
Now, if one imposes an efficient handling of queries, then
a possible solution is to use augmented graphs (interven-
tions are then encoded as observations on the augmented
graph). This solution is not satisfactory, since for instance
for multiply connected graphs, one cannot deal with se-
quences of observations and interventions unless the ini-
tialization step is repeated.

This paper takes advantage of properties of possibilistic
networks and proposes a new algorithm where on one hand,
junction tree is only constructed one time, and on the other
hand queries are answered in a linear time.

The rest of the paper is organized as follows: next sec-
tion gives a brief background on possibility theory and pos-
sibilistic networks. The possibilistic counterpart of the do
operator is then proposed in the third section. Finally, we
present our new possibilistic algorithm to deal with sequen-
tial non-simultaneous interventions. Last section concludes
the paper.

Possibility Theory
This section only provides a brief background on possibility
theory; for more details see (Dubois, Lang, & Prade 1994).
Let V = {A1, A2, ..., An} be a set of variables. DAi
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denotes the finite domain associated with the variable Ai.
ai denotes any of the instances of Ai. X, Y, Z.. denote
sets of variables. x is an element of the cartesian prod-
uct ×Ai∈XDAi

which is a subset of Ω = ×Ai∈V DAi
the

universe of discourse. ω, an element of Ω, is called an in-
terpretation or event. It is denoted by tuples (a1, ..., an),
where ai’s are respectively instance of Ai’s. ω[Ai] denotes
the value that the variable Ai takes in the interpretation ω.

Possibility Measures and Possibility Distributions
A possibility distribution π is a mapping from Ω to the inter-
val [0, 1]. The possibility degree π(ω) represents the com-
patibility of ω with available pieces of information. By con-
vention, π(ω) = 1 means that ω is totally possible, and
π(ω) = 0 means that ω is impossible. When π(ω) > π(ω′),
ω is preferred to ω′ for being the real state of the world. A
possibility distribution π is said to be normalized if there ex-
ists at least one interpretation which is consistent with avail-
able pieces of information, namely: ∃ω ∈ Ω, π(ω) = 1.
A possibility measure Π is a function that associates to each
ϕ ⊆ Ω a weight in a unit interval [0, 1]. Π can be simply
obtained from π as follows : Π(ϕ) = max{π(ω) : ω ∈ ϕ}.
Conditioning (Hisdal 1978) consists of propositionally in-
creasing elements consistent with x:

π(ω | x) =

{
π(ω)
Π(x) if ω[X] = x

0 otherwise.
(1)

Possibilistic Networks
Possibilistic networks (Fonck 1994; Borgelt, Gebhardt, &
Kruse 1998), denoted by G, are directed acyclic graphs
(DAG). Nodes correspond to variables and edges encode re-
lationships between variables. A node Aj is said to be a
parent of Ai if there exists an edge from the node Aj to the
node Ai. Parents of Ai are denoted by UAi

or Ui.
There are two kinds of possibilistic networks (depending on
used conditioning). This paper focuses on possibilistic net-
works where conditioning is given by equation 1.
Uncertainty is represented at each node by local conditional
possibility distributions. More precisely, for each variable
Ai and for each ui an element of the cartesian product of
domains of variables which are parents of Ai, we provide
Π(ai | ui) for all ai ∈ DAi

, with maxai∈DAi
π(ai|ui) = 1.

Possibilistic networks are compact representations of pos-
sibility distributions. More precisely, the joint possibility
distributions associated with possibilistic networks are com-
puted using a so-called product-based possibilistic chain rule
similar to the probabilistic one, namely :

πΠG(a1, ..., an) =
∏

i=1,...,n

Π(ai | ui) (2)

Example 1 Figure 1 gives an example of possibilistic net-
works. The joint possibility distribution πG(AB) =
πG(A).πG(B|A) associated with G is given in Table 1.

Possibilistic Causal Networks
The ability of causal networks to predict the effects of
interventions requires a stronger set of assumptions in

Figure 1: Example of a possibilistic causal network G

A B πG(AB)
a1 b1 1
a1 b2 0.5
a2 b1 0.24
a2 b2 0.4

Table 1: The joint possibility distribution πG(AB)

the construction of those networks. A possibilistic causal
network is a possibilistic network where directed arcs of
the graph are interpreted as representing causal relations
between events. Arcs also follows the direction of causal
process. Intuitively, the parent set Ui of Ai represents all the
direct causes for Ai. Arrows indicate only that one variable
is causally relevant to another, and say nothing about the
way in which it is relevant.

The relation between causal and probabilistic information
is a topic of several works. We argue that the same results
also hold for other uncertainty theories since basically the
main changes between probabilistic networks and proba-
bilistic causal networks concerns the graphical structure. In
this paper, we focus on possibilistic interpretations of causal
relationships.
Interventions are handled as modalities over variables. A
simple intervention, called ”atomic”, is one in which only a
variable Ai is forced to take the value ai. This intervention
over Ai is denoted do(Ai = ai) or do(ai). do(ai) is viewed
as an external intervention which alters just one mechanism
(child-parent family) while leaving other mechanism intact.

The following subsection proposes a possibilistic model
allowing to represent interventions using possibilistic causal
networks.

Intervention as Negation of all Other Direct Causes
Pearl and Verma (Verma & Pearl 1990) interpreted the
causal child-parent relationships in a DAG as a determin-
istic function ai = fi(ui, γi), i = 1, ..., n where ui are the
parents of variable Ai in a causal graph. γi, 1 ≤ i ≤ n
are independent disturbances and are instances of the
unobservable variable set Γ .
The effect of an intervention, denoted do(Ai = ai) or
do(ai), on Y (a subset of V ) is induced from the model by
deleting all equations associated with Ai and by substituting
Ai = ai in the remaining equations.

In graphical models, interventions on a variable Ai also
expresses that our beliefs (expressed in some uncertainty
framework, here possibility theory) on parents Ui of Ai
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Figure 2: The mutilated graph Gm

should not be affected. This is represented by the dele-
tion (also called mutilation) of the links between Ui and Ai.
The rest of the graph remains intact. The resulting mutilated
graph is denoted Gm such that π(ω|do(ai)) = πGm

(ω|ai),
where πGm

is the possibility distribution associated with the
mutilated graph Gm.
The effect of the intervention do(ai) is to transform π(ω)
into the possibility distribution πai

(ω) = π(ω|do(ai)). We
have,

∀ω, πai
(ω) = π(ω|do(ai)) = πGm

(ω|ai) (3)

All other direct causes (parents) other than the action
performed becomes independent of the variable of interest.

By observing the mutilated graph, the parents of the vari-
able of interest becomes independent of the latter. Further-
more, the event that assigns the variable of interest Ai to the
value a′

i after the performed intervention do(a′
i) becomes

certain. More formally, πGm
(a′

i) = 1 and ∀ai ∈ DAi
:

ai �= a′
i, πGm

(ai) = 0. Then, the effect of such intervention
on the possibility distribution is given as follows, ∀ω:

π(ω|do(a′
i)) =

{ ∏
j �=i π(aj |Uj(ω)) if ω[Ai] = a′

i

0 else
(4)

where Uj(ω) = uj corresponds to the values that ω assigns
to the parents of aj .

Example 2 Considering the possibilistic causal network G
given in Example 1, the mutilated graph Gm obtained after
intervention do(B = b1) = do(b1) is given by the figure 2.
The effect of the intervention do(B = b1) on the joint dis-

tribution π(AB) associated with the graph in example 1 is
given by the table 2

A B π(AB|do(b1))
a1 b1 1
a1 b2 0
a2 b1 0.4
a2 b2 0

Table 2: The joint possibility distribution π(AB|do(b1))

This form of the equation (see 4) is interesting since it allows
us to compute the effect of an intervention do(a′

i) on a set of
variable Y which is disjoint of {Ai ∪ Ui}:

Proposition 1 Let Y be a set of variable disjoint from {Ai∪
Ui} where Ai is a variable in V altered by an intervention
do(a′

i) and Ui is the set of direct causes of Ai:

π(y|do(a′
i)) = max

ui

π(y|a′
i, ui).π(ui) (5)

Proposition 1 is the counterpart of Pearl’s proposition (Pearl
2000) in the probability theory framework. This result is not

Figure 3: The augmented graph Ga

very surprising given the similarity between product-based
possibilistic networks and a particular case of probabilistic
networks where conditional probabilities are either close to
1 or close to 0.

Adding Extra-Nodes
An alternative but equivalent approach (Pearl 1993) con-
sists of considering the intervention as a new variable into
the system. This subsection shows that this alternative ap-
proach is also valid in possibility theory. Intervention can
be considered as a conditioning after altering the system.
This alteration consists of adding a new link DOi → Ai

where DOi represents the new intervention taking value in
{{doai

: ∀ai ∈ DAi
}, doi−noact}. The value ”doi−noact”

(or ”doAi−noact”) means no intervention is performed on
Ai. Values doai

mean that the variable Ai is forced to take
the value ai. The resulting augmented graph is denoted Ga.
The parent set Ui is then augmented by the variable DOi

(U ′
i = Ui ∪ DOi).

The new local possibility distribution at the level of the vari-
able Ai after augmenting the graph is given by:

π(a′
i|u

′
i) =

{
π(a′

i|ui) if DOi = doi−noact

1 if a′
i = ai

0 if a′
i �= ai

(6)

As it is the case in probability theory, the two ways for han-
dling interventions (mutilating or augmenting the graph) are
also equivalent in possibility theory framework. Namely,

Proposition 2 Let G be a possibilistic causal network and
Gm (resp. Ga) be the mutilated (resp. augmented) graph
obtained from G after performing intervention do(ai) on a
variable Ai in G. Then, ∀ω, ∀ai ∈ DAi

,

πGa
(ω|DOi = doai

) = πGm
(ω|Ai = ai) = π(ω|do(ai))

This approach have the advantage to be applicable to any
type of intervention. By adding a link DOi → Ai to each
node (on which intervention is possible) in the graph, we can
construct a new possibility distribution containing informa-
tion about richer types of interventions.

Example 3 The augmented graph Ga obtained after inter-
vention do(b1) from the graph G introduced in example 1 is
given by the figure 3.
The local possibility distribution π(B|A, DOB) at the level
of B is given using 6. For instance, π(b1|a2, doB−noact) =
π(b1|a2) = 0.6 and π(b1|a2, dob2) = 0.

Propagation in Possibilistic Causal Networks
The above section has shown that the probabilistic handling
of interventions can be easily adapted for possibility theory
frameworks. This section provides a new propagation
algorithm for reasoning from possibilistic causal networks
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which is better than a simple adaptation of the probabilistic
one, since it allows an incremental handling of sequences of
both observations and interventions.

Computing the effect of sequences of interventions and
observations may be done either:

• by generalizing the explicit formula (5) to handle obser-
vations E (see 1) and a set of interventions F .

• or by adding a parent-node to each variable in F (aug-
menting the graph) and then applying standard possibilis-
tic conditioning where interventions are interpreted as ob-
servations at the level of added nodes.

The generalization of (5) is given as a corollary of Proposi-
tion 1.

Corollary 1 Let E = e be an observation. Let F be the
variables set affected by interventions and f be an element
of ×Ai∈F DAi

. Let UF =
⋃

Ai∈F Ui, where Ui denotes
the parents set of Ai. Let us denote by uF an element of
×Ai∈UF

DAi
. The effect of the set of interventions denoted

do(f) and observations e on a remaining variable Aj = aj

with Aj �∈ E ∪ F ∪ UF is given by:

Π(aj |e, do(f)) = max
uF

π(aj |e, f, uF ).π(uF |e) (7)

Hence, to compute Π(aj |e, do(f)), it is enough to compute
for each uF the expression π(aj |e, f, uF ).π(uF |e), and
then take the maximum of obtained results. The expression
π(aj |e, f, uF ).π(uF |e) can be obtained using any direct
adaptation of probabilistic propagation algorithms since
it corresponds to a simple conditioning. This is clearly
not satisfactory, unless the number of interventions is low.
Indeed, using such equation is inadequate when handling
variables with important number of parents. Namely, this
operation requires O(|D||u|×|r|) where |D| denotes the size
of a variable domain, |u| is the number of parents instances
and |r| is the number of interventions.

Another way to compute the effects of interventions con-
sists of mutilating the initial graph. This approach is not
adequate neither, especially for multiply connected graphs
which require graphical transformation to junction trees in
order to realize inference. In fact, let G be a multiply-
connected possibilistic network. Suppose that an interven-
tion do(a′

i) is applied on the variable Ai. Then, the graph
is mutilated and all arrows into Ai are deleted. A junction
tree is formed after this operation. Suppose that another in-
tervention do(a′

j) is also applied on Aj such that j �= i. By
mutilating the initial graph, the junction tree resulting from
G may change then it must be recomputed again.
The process of constructing junction trees is computation-
ally expensive. This process must be repeated whenever
changes are made to the network.
In the following, we present a new propagation algorithm
using augmented graphs to deal with a sequence of inter-
ventions and observations.

A New Algorithm for Possibilistic Causal Networks
Our objective is to propose a new algorithm such that:

• queries are answered in a linear time.

• only a unique transformation from initial augmented
graph into a junction tree is processed.

• observations and interventions may be handled incremen-
tally (namely, the junction tree is incrementally updated
without need of reinitialization).

The main point of our algorithm is the ability to express
that by default there is no intervention, and then allowing
to update possibility distributions if some interventions oc-
cur. The updating process should not lead to a degenerate
case. Namely, we need to have an assignment of possibility
distributions associated with new nodes added to the graph,
i.e. we need to express on the ”DOi” nodes that there is no
intervention by default. Unfortunately, in probabilistic net-
works, this is not easy to achieve (unless a reinitialization of
the junction tree is repeated for each observation and inter-
vention). In fact, let BN be a Bayesian network and let F
be the variables set in G that may be directly affected by in-
terventions. To each node Ai in F we assign a parent-node
DOi. The resulting graph is denoted BNa.
One can expect that realizing inference without observing
any evidence or applying any intervention on this augmented
graph BNa will induce an equivalent probability distribu-
tion (PBNa

) to the initial one associated with BN (PBN ).
Unfortunately, for any local probability distribution assigned
to added nodes DOi, including equiprobability, the a pos-
teriori (i.e. resulting) distribution is different from the ini-
tial one except for local probability distributions that assign
the highest degree (i.e. 1) to the value ”doi−noact” for each
node DOi and the degree 0 to all remaining values. More
formally, ∀ω, ∀i : Ai ∈ F ,

PBN (ω) = PBNa
(ω) iff PBNa

(doi−noact) = 1

Assigning such distributions (namely a degree 1 to
doi−noact) excludes any future interventions. Said differ-
ently, assigning the degree 0 to all other values different
from ”doi−noact” means that it is impossible to have
interventions on variables Ai.
In possibility theory, the situation is different, and this helps
us to propose our new algorithm.

Local Possibility Distributions for DO variables

The following definition gives the local possibility dis-
tribution associated with a DOi node, and which expresses
that by default there is no intervention. This possibility dis-
tribution does not exclude future interventions.

Definition 1 Let G be a causal network and Ga be the aug-
mented graph obtained from G by adding a parent node
DOi for each variable Ai in F (variables set concerned by
interventions). Let Ai ∈ F be a node on which one may
have an intervention. The a priori possibility distribution is
defined on added node DOi by:

• πGa
(DOi = doi−noact) ← 1,

• ∀ai ∈ DAi
, πGa

(DOi = doai
) ← ε,

where ε is an infinitesimal (in fact, ε should be such that
ε ≤ minω∈Ω πG(ω)),
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where πG (resp. πGa
) is the possibility distribution associ-

ated with the graph G (resp. Ga).

In fact, by assigning the possibility degree 1 to
the ”doi−noact” for each added node DOi, events
{DOi = doi−noact : Ai ∈ F} are accepted by de-
fault as an expected truth.
By assigning a degree ε to π(DOi = doai

) for all instance
ai ∈ DAi

: Ai ∈ F ), events {DOi = doai
: Ai ∈ F} are

considered to be the less normal and the less preferred in
the graph, so that they do not bias our initial beliefs on the
remaining (i.e. initial) variables.

The following proposition shows that if we are in a sit-
uation where there is neither interventions nor observations
then the joint distributions associated with initial graph and
augmented graph are the same. More precisely,

Proposition 3 Let F be the set of manipulated variables.
Ga denotes the augmented graph built from G by adding
nodes DOi as a parent to each Ai ∈ F whose local distri-
butions are given by Definition 1. The joint possibility πGa

obtained from Ga over initial variables V = {A1, ..., An}
is equivalent to the joint possibility distribution associated
with the initial graph G. More formally,

i) ∀ω∀i : 1, ..., n, πGa
(ω) = πG(ω) = πGa

(ω|doi−noact),
ii) ∀ω∀i : 1, ..., n, πGa

(ω|DOi = doai
) = πG(ω|do(ai)).

Proof 1 Let ω be an interpretation over the variables set
V = {A1, ..., Ai, ..., An} and doi be any instance of the
variable DOi. We have,
i) πGa

(ω) = maxdoi
πGa

(ω, doi)
= maxdoi

(πGa
(a1|u1)....πGa

(ai|ui, doi)....πGa
(an|un).

πGa
(doi))

= [
∏

aj �=ai
πGa

(aj |uj)].[max(πGa
(ai|ui, doi−noact).

πGa
(doi−noact),maxdoa′

i

(πGa
(ai|ui, doa′

i
).πGa

(doa′

i
)))]

= [
∏

aj �=ai
π(aj |uj)].[max(πGa

(ai|ui, doi−noact),

πGa
(doai

))]
= [

∏
aj �=ai

π(aj |uj)].[max(πGa
(ai|ui), ε)]

=
∏

ai∈DAi∈V
π(ai|ui) = πG(ω)

We also have,
πGa

(ω|Doi = doi−noact)
= πGa

(a1|u1)...πGa
(ai|ui, doi−noact)...πGa

(an|un)
= πGa

(a1|u1)...πGa
(ai|ui)...πGa

(an|un)
= πGa

(ω) = πG(ω)
ii) When DOi �= doi−noact, we obtain ∀ai : ω[Ai] = ai,:
πGa

(ω|Doi = doai
)

= πGa
(a1|u1, doai

)...πGa
(ai|ui, doai

)...πGa
(an|un, doai

)
= πGa

(a1|u1)...πGa
(ai|ui, doai

)...πGa
(an|un)

Using equation 6 (definition of πGa
(ai|ui, doai

)), we obtain
the same result as πG(ω|do(ai)) (see 4).
When ω[Ai] �= ai,
πGa

(ω|Doi = doai
) = πG(ω|do(ai)) = 0.

This result can be easily extended for handling several inter-
ventions.

Example 4 Let us consider the possibilistic causal network
G in the figure 1 and the augmented graph Ga in figure 3 af-
ter applying the intervention do(B = b1). Local possibility
distribution at the level of the added node DOB are given

in table 3. Local possibility distribution at the level of B is
computed using (6). The possibility distribution πGa

related
to Ga is given in table 4. The possibility distributions πG

(see table 1) and πGa
over initial nodes A and B are equiv-

alent. For instance, πG(a2, b1) = πGa
(a2, b1) = 0.24.

DOB πGa
(DOB)

doB−noact 1
dob1 0.001
dob2 0.001

Table 3: Local possibility distribution πGa
(DOB)

A B DOB πGa
A B DOB πGa

a1 b1 noact 1 a2 b1 noact 0.24
a1 b1 dob1 0.001 a2 b1 dob1 0.001
a1 b1 dob2 0 a2 b1 dob2 0
a1 b2 noact 0.5 a2 b2 noact 0.4
a1 b2 dob2 0.001 a2 b2 dob2 0.001

where noact = doB−noact

Table 4: Joint distribution πGa
(A, B, DOB)

Augmented Junction Trees
A second important point is that the ”DOi” nodes can equiv-
alently be added either before or after junction tree construc-
tion. From computational point of view it is better to first
construct a junction tree associated with the initial possi-
bilistic network. And, once the junction tree is constructed,
we proceed to the addition of new nodes (namely DOi).
This is done when initializing the junction tree as follows:
- For each clique Ci in the junction tree: ∀ω, πCi

(ω) ← 1
where πCi

is the possibility distribution associated with Ci.
- For each node Ai in G, select a clique Ci containing Ai∪Ui

• if Ai ∈ F (a set of variables where intervention is possi-
ble), then

– add the node DOi to Ci

– πCi
← (πCi

.π(Ai|Ui, DOi).π(DOi))

• else πCi
← (πCi

.π(Ai|Ui))

The following proposition shows that joint possibility distri-
butions associated with the junction tree and the augmented
graph Ga of G are equivalent.

Proposition 4 Let G be a possibilistic causal network and
F be a set of manipulated variables in G. doF denote an
element of ×Ai∈F DDOi

and ω is an interpretation over
V = {A1, ..., An}. Let Ga be the augmented graph ob-
tained from G adding to each node Ai in F a parent node
DOi. JT is the junction tree formed from G and initialized
as indicated above. Then we have,

∀ω∀doF , πJT (ω, doF ) = πGa
(ω, doF )

where πJT (resp. πGa
) denotes the possibility distribution

associated with JT (resp. Ga).

To summarize, our new propagation algorithm is described
by the following steps:

• Construct a junction tree (JT ) from the initial graph G.

• For each clique Ci, ∀ω, πCi
(ω) = 1.
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Figure 4: The multiply connected graph G

• For each node Ai in G, select a clique Ci containing Ai ∪
Ui

– if Ai ∈ F , then
∗ add the node DOi to Ci

∗ πCi
← (πCi

.π(Ai|UiDOi).π(DOi)) (using Equa-
tion 6 and Definition 1),

– else πCi
← (πCi

.π(Ai|Ui)).

• Integrate evidence (observations and interventions).

• Propagate evidence until stability of the junction tree

• Answer queries

Example 5 Let us consider the causal network in the figure
4. Let A and B be variables that may have interventions.
The resulting augmented graph Ga is obtained by adding a
parent node DOA (resp. DOB) to A (resp. B). Local possi-
bility distribution assigned to added nodes DOA and DOB

are given as follows: π(doA−noact) = π(doB−noact) = 1
and π(doa1

) = π(doa2
) = π(dob1) = π(dob2) = 0.001.

The possibility degree associated to the event ω+ =
(a1, b1, c1, d1, doa1

, doB−noact) is computed from Ga as
follows:

πGa(ω+) = (πGa(a1|doa1
).πGa(b1|a1, doB−noact).πGa(c1|a1).

πGa(d1|b1, c1).πGa(doa1
).πGa(doB−noact))

= 0.00009

where local distributions at the level of A and B are computed
using 6. Initializing the junction tree JT (formed from G) consists

Figure 5: The junction tree JT after the initialization step

of initializing possibility distributions at the level of each clique:
πC1

(A, B, C, DOA, DOB) = (π(A|DOA).π(DOA).
π(B|ADOB).π(DOB).π(C|A)).
πC2

(B, C, D) = π(D|BC).
The junction tree obtained after initialization is given in figure 5.
Computing the possibility degree of the event ω+ from the initial-
ized junction tree JT , we obtain:

πJT (ω+) = πC1
(ω+).πC2

(ω+)
= πC1

(a1, b1, c1, doa1
, doB−noact).πC2

(b1, c1, d1)
= 0.00009

which is equal the possibility degree computed from the augmented
graph Ga.

Conclusion
The first important contribution of this paper concerns the-
oretical foundations of possibilistic networks. We showed

how interventions can be handled either by means of muti-
lated graphs or by means of augmented possibilistic causal
networks or even by means of augmented junction trees. A
new propagation algorithm through causal possibilistic net-
works dealing with both observations and interventions rep-
resents the second main contribution of this paper.
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