
Multi-Label Dimensionality Reduction via Dependence Maximization

Yin Zhang and Zhi-Hua Zhou ∗

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
{zhangyin, zhouzh}@lamda.nju.edu.cn

Abstract

Multi-label learning deals with data associated with multi-
ple labels simultaneously. Like other machine learning and
data mining tasks, multi-label learning also suffers from the
curse of dimensionality. Although dimensionality reduction
has been studied for many years, multi-label dimensionality
reduction remains almost untouched. In this paper, we pro-
pose a multi-label dimensionality reduction method, MDDM,
which attempts to project the original data into a lower-
dimensional feature space maximizing the dependence be-
tween the original feature description and the associated class
labels. Based on the Hilbert-Schmidt Independence Crite-
rion, we derive a closed-form solution which enables the di-
mensionality reduction process to be efficient. Experiments
validate the performance of MDDM.

Introduction
In many real-world problems one object usually inheres
multiple concepts simultaneously. One label per instance
is out of its capability to describe such scenario, and thus
multi-label learning has attracted much attention. Under
the framework of multi-label learning, each instance is as-
sociated with multiple labels indicating the concepts the
instance belongs to. Multi-label learning techniques have
already got diverse applications (Yu, Yu, & Tresp 2005;
Zhang & Zhou 2007).

The curse of dimensionality often causes serious prob-
lems to learning with high-dimensional data, and thus lots
of dimensionality reduction methods have been developed.
Upon whether the label information is used or not, current
methods can be roughly classified into two categories, i.e.,
unsupervised, e.g. principal component analysis (PCA) (Jol-
liffe 1986), orsupervised, e.g. linear discriminant analysis
(LDA) (Fisher 1936). In spite of the fact that multi-label
learning tasks usually involve high-dimensional data, multi-
label dimensionality reduction remains almost untouched.
Direct application of existing unsupervised dimensionality
reduction methods to multi-label tasks ignores the label in-
formation. As for existing single-label supervised dimen-
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sionality reduction methods, one possible way to extend to
multi-label learning is to treat every combination of concepts
as a class. Such an extension, however, suffers from the ex-
plosion of the possible combination of labels. To the best of
our knowledge, the only relevant work is the MLSI method
described in (Yu, Yu, & Tresp 2005), which is a multi-label
extension of Latent Semantic Indexing (LSI). It has been
shown that MLSI works well on text categorization tasks
(Yu, Yu, & Tresp 2005).

In this paper, we propose a multi-label dimensionality
reduction method called MDDM (Multi-label Dimension-
ality reduction via Dependence Maximization) which tries
to identify a lower-dimensional feature space maximizing
the dependence between the original feature description and
class labels associated with the object. We derive a closed-
form solution for MDDM, which enables the multi-label di-
mensionality reduction process to be not only effective but
also efficient. The superior performance of the proposed
MDDM method is validated in experiments.

The MDDM Method
Let X = R

D denote the feature space andΘ denote a con-
cept set. The proper concepts associated with an instance
x is a subset ofΘ, which can be represented as a|Θ|-
dimensional binary label vectory, with 1 indicating that the
instance belongs to the concept corresponding to the dimen-
sion and 0 otherwise. All the possible labels make up the
label spaceY = {0, 1}|Θ|. Given a multi-label data set
S = {(x1, y1), · · · , (xN , yN)}, the goal is to learn from
S a functionh : X → Y which is able to predict proper
labels for unseen instances.

Motivated by the consideration that there should exist
some relation between the feature description and labels as-
sociated with the same object, we attempt to find a lower-
dimensional feature space in which the dependence between
the features and labels are maximized. For simplicity, here
we consider a linear projectionP , while a non-linear exten-
sion can be obtained easily by transforming the primal prob-
lem into its dual form and then applying the kernel trick.
Assume that the instancex is projected into the new space
F by φ(x) = PT

x. Then, we try to maximize the depen-
dence between the feature descriptionφ(x) ∈ F and the
class labelsy ∈ Y. Many criteria can be used to measure
such dependence and here we adopt the Hilbert-Schmidt In-
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dependence Criterion (HSIC) (Grettonet al. 2005) due to its
simplicity and neat theoretical properties.

An empirical estimate of HSIC (Grettonet al. 2005) is

HSIC(F ,Y, Pxy) = (N − 1)−2tr (HKHL) , (1)

wherePxy is the joint distribution and tr(·) is the trace of
matrix. K = [Kij ]N×N andL = [Lij ]N×N are the matrices
of the inner product of instances inF andY which could
also be considered as the kernel matrices ofX andY with
kernel functionsk(x, x′) = 〈φ(x), φ(x′)〉 = 〈PT

x, PT
x
′〉

andl(y, y′) = 〈y, y′〉. H = [Hij ]N×N , Hij = δij − 1/N ,
δij takes1 wheni = j and0 otherwise.

Since the normalization term in Eq. 1 does not affect
the optimization procedure, we can drop it and only con-
sider tr(HKHL). DenoteX = [x1, · · · , xN ] and Y =
[y1, · · · , yN ]. Thus φ(X) = PT X and K = 〈φ(X),
φ(X)〉 = XT PPT X , L = Y T Y . We can rewrite the opti-
mization as searching for the optimal linear projection

P ∗ = arg max
P

tr
(

HXT PPT XHL
)

. (2)

Suppose we will reduce to ad-dimensional space and de-
noteP = [P1, · · · , Pd] (d ≪ D), the column vectors of
the matrixP forms a basis spanning of the new space. By
constraining the basis to be orthonormal, we have

max
P

tr
(

HXT PPT XHL
)

s.t. PT
i Pj = δij . (3)

To solve the problem, we have

tr
(

HXT PPT XHL
)

= tr

(

d
∑

i=1

HXT PiP
T
i XHL

)

=

d
∑

i=1

tr
(

HXT PiP
T
i XHL

)

=

d
∑

i=1

PT
i

(

XHLHXT
)

Pi

(4)

The optimalP ∗
i ’s (1 ≤ i ≤ d) can be obtained easily by

the Lagrangian method. If the eigenvalues ofXHLHXT

are sorted asλ1 ≥ · · · ≥ λD, the optimalP ∗
i ’s are the nor-

malized eigenvectors corresponding to the largestd eigen-
values. SinceXHLHXT is symmetric, the eigenvalues
are all real. If the optimal projectionP ∗ has been ob-
tained, the corresponding HSIC value is

∑d

i=1
λi. Since

the eigenvalues reflect the contribution of the correspond-
ing dimensions, we can controld by setting a thresholdthr
(0 ≤ thr ≤ 1) and then choosing the firstd eigenvectors
such that

∑d

i=1
λi ≥ thr × (

∑r

i=1
λi). Thus, the optimiza-

tion problem reduces to deriving eigenvalues of aD × D
matrix and the computational complexity isO(D3). The
Pseudo-code of the MDDM method is shown in Figure 1.

In the above analysis, we use inner product as kernel func-
tion on Y, i.e., l(y, y′) = 〈y, y′〉. If such a simple lin-
ear kernel is insufficient to capture the correlation between
concepts, we can use a more delicate kernel function, e.g.
quadratic or RBF. IfLij can encode the correlation between
labelsyi andyj , the dimensionality reduction process can
get a better result with the guidance ofL.

MDDM(X, Y , d or thr)

Input:
X : D × N feature matrix
Y : Q × N label matrix
d : the dimensionality to be reduced to
thr: a threshold

Process:
1 Construct the label kernel matrixL
2 ComputeXHLHXT

3 if d is given
4 Do eigenvalue decomposition onXHLHXT , then

construct D × d matrix P whose columns are
composed by the eigenvectors corresponding to the
largestd eigenvalues

5 else (i.e.,thr is given)
6 ConstructD × r matrix P̃ in a way similar to

Step 4 wherer is the rank ofL, then choose the
first d eigenvectors that enable

P

d

i=1
λi ≥ thr ×

`
P

r

i=1
λi

´

to composeP

7 end if
Output:

P : the projection fromR
D to R

d

Figure 1: Pseudo-code of the MDDM method

In contrast to previous HSIC methods which greedily se-
lected a subset of features (Songet al. 2007) or using gra-
dient descent to find a local optimal under the constraint of
distance preserving (Songet al. 2008), we have a close-form
solution for our purpose, which is effective and efficient.

Note that HSIC is just one among the many choices we
can take to measure the dependence. We have also evalu-
ated canonical component analysis (Hardoon, Szedmak, &
Shawe-Taylor 2004) yet the speed is slower than the current
MDDM. So we only report the results with HSIC here.

Experiments
We compare MDDM with three methods, including the lin-
ear dimensionality reduction method PCA (Jolliffe 1986),
nonlinear dimensionality reduction method LPP (He &
Niyogi 2004), and the only available multi-label dimension-
ality reduction method MLSI (Yu, Yu, & Tresp 2005). The
multi-label k-nearest neighbor method ML-kNN with de-
fault settingk = 10 (Zhang & Zhou 2007) is used for clas-
sification after dimensionality reduction. As a baseline, we
also evaluate the performance of ML-kNN in the original
feature space (denoted by ORI). For LPP, the number of
nearest neighbors used for constructingadjacency graph is
as the same as that used in ML-kNN for classification. For
MLSI, the parameterβ is set to0.5 as recommended in (Yu,
Yu, & Tresp 2005). In the first series of experiments, the di-
mensionality of the lower-dimensional space,d, is decided
by settingthr = 99%. All dimensionality reduction meth-
ods reduce to the same dimensionality. The performance
under differentd values will be reported later in this sec-
tion. For MDDM, we have evaluated differentl(·, ·) (linear,
quadratic and RBF) while the results are similar. So, here
we only report the simplest case, i.e., the linear kernel.
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Table 1: Average results (mean±std.) on 11 Yahoo data sets(↓ indicates “the smaller the better”;↑ indicates “the larger the better”)

Criterion MDDM MLSI PCA LPP ORI

Hamming Loss (×10
−1) ↓ 0.394±0.134 0.499±0.172 0.426±0.142 0.437±0.144 0.432±0.145

One-error↓ 0.415±0.135 0.539±0.066 0.469±0.155 0.488±0.161 0.471±0.157
Coverage (×10) ↓ 0.381±0.116 0.888±0.223 0.417±0.129 0.433±0.131 0.410±0.124
Ranking Loss↓ 0.092±0.038 0.247±0.091 0.104±0.042 0.109±0.045 0.102±0.045
Average Precision↑ 0.665±0.103 0.489±0.061 0.624±0.115 0.607±0.119 0.625±0.116

We evaluate the performance of the compared methods
using five criteria which are popularly used in multi-label
learning, i.e.,hamming loss, one-error, coverage, ranking
loss andaverage precision. These criteria evaluate multi-
label learning methods from different aspects, and it is dif-
ficult for one method to be better than another over all the
criteria. Details of these criteria can be found in (Zhang &
Zhou 2007).

Eleven web page classification data sets1 are used in our
experiments. The web pages were collected from the “ya-
hoo.com” domain. Each data set corresponds to a top-level
category of Yahoo. The web pages are classified into a num-
ber of second-level subcategories, and thus, one web page
may belong to several subcategories simultaneously. Details
of these data sets can be found in (Zhang & Zhou 2007).

The average results are shown in Table 1 where the best
result on each evaluation criterion is highlighted in boldface.
It is impressive that, pairwiset-tests at 95% significance
level reveal that MDDM is significantly better than all the
other methods on all the evaluation criteria.

We also study the performance of the compared meth-
ods under differentd, i.e., the dimensionality of the lower-
dimensional space. We run experiments withd from 2% to
100% of the original space’s dimensionality, with2% as in-
terval. Due to the page limit, we only present the results on
Hamming loss which is arguably the most important multi-
label evaluation criterion. It can be found from Figure 2(a)
that the performance of MDDM with anyd value is better
than the best performance of the compared methods with
their optimald values. It is clear that MDDM is superior to
the compared methods.

It is interesting to study that whether MDDM can also
work well with different settings ofk. So, we run experi-
ments withk values ranging from6 to 10 under the same
d as that used in the first series of experiments. The results
measured byHamming loss are shown in Figure 2(b). It is
nice to see that the performance of MDDM is quite robust to
the setting ofk, always better than the other methods.

Conclusion
In this paper, we propose the MDDM method, which per-
forms multi-label dimensionality reduction by maximizing
the dependence between the feature description and the as-
sociated class labels. It is easy to design variants of MDDM
by using dependence measures other than HSIC to guide the

1http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz
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Figure 2: Average results on eleven Yahoo data sets

induction of the lower-dimensional space. The label matrix
L encoding the label correlation plays an important role in
MDDM. Designing a better method for constructingL is an
important future work.
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