
An AI Approach to Computer Assisted Tomography

John F. Kolena’b, David A. Shammaa’b, Thomas Reiehherzera, and Timothy Fluehartya’b

Institute for Human and Machine Cognitiona &
Department of Computer Scienceb

University of West Florida
1 [000 University Parkway

Pensacola. FL 32514

Abstract

Computer assisted tomography (CAT) systems
demand large amounts of time and space. In this
paper, we describe an approach to solving the CAT
problem using several AI techniques including rep-
resentation selection and pruning. Rather than
backproject intensity data onto a pixel grid or voxel
lattice, we solve the problem geometrically -- a
backprojection region is stored as a convex poly-
gon in a planar decomposition. An algorithm for
intersecting two planar decompositions is
described below. This algorithm allows us to merge
intensity information from multiple sources into a
single coherent structure. Knowledge of the task
can provide pruning information in the form of sta-
bilized regions that need not to be decomposed.

Background

Standard medical and industrial computer assisted tomogra-
phy (CAT) systems collect a series of 2-D x-ray images
an object and produce a 3-D reconstruction of the interior
structure of the object (Figure I). The 2-D images are back-
projected (Herman, 1980) from the image through the
reconstruction arena. The back-projection process is the
inverse of the standard computer graphics methods used to
project views of 3-D objects onto a 2-D view port (e.g. (Hill,
1990)). The 3-D reconstruction consists of a spaeial matrix
of density estimates within volume elements (voxels) of the
surveyed object. CAT relies upon the assumption that the
radiation traveling through the object will be linearly modu-
lated according to the density of the path traced through the
object. This assumption allows one to reduce the reconstruc-
tion problem, i.e. estimating the density of a given voxel, to
solving a large number of linear equations. Other methods,
which incorporate various assumptions of the nature of the
objects under study, may resort to nonlinear optimization
(Verhoeven, 1993). An example of this approach may
found in Figure 2.

We became interested in CAT while working on data reduc-
tion for ballistic tests (Gordon et al., 1995). The purpose

¯ Copyright © 1998, American Association for Artificial Intelligence
(www.na.ql.org). All rights reserved.

Sensor Dala
(Intensity
images)

Backprojccdon
"- ~ Pixels0¢ ~ ExtractedRegions

Voxels Objects

Polygon/ Line/
lm~rse polyt0pe Region
Ray Tracing Rendering Extraction

Intersect polygons/polytopcs

FIGURE I. Standard CAT architecture. The last step is
performexl it" additional processing/reasoning is required. The
gray arrow indicates the approach taken in this paper.

these experiments was to characterize the debris fields gen-
erated by a projectile penetrating armor. Holograms were
taken of the ballistic event and provided a 180-degree view.
A 3-D computer model of the debris field was to be con-
structed from the images. The resource requirements for
such a system is very high as the number of voxels scales
cubically with respect to the resolution. Assuming a resolu-
tion target of 1 mm implies approximately 60 million voxels
in a 500mm diameter and 300mm high cylinder. If each
voxel requires an integer (2 bytes) and a floating point num-
ber (8 bytes), the voxel space would require approximately
600Mb of storage. A data structure such as this would over-
whelm most workstation CPU and memory systems. Hence,
we began to look for alternative methods of performing the
CAT process.

The Planar Algorithm

Our first insight occurred when we realized that polygons
were used in two places: to update pixels in the slice (ren-
dering) and in the final product (extraction). A planar
decomposition (PD) is a partition of a plane such that every
point in the plane either belongs to the interior of some
polygon, lies on the edge of a polygon shared by one or two
polygons, or is a vertex shared by one or more polygons. A
PD is labeled when there is non-geometrical information
associated with the polygons composing the PD. The CAT
process can be described as the overlaying of multiple
labeled PDs to form a new labeled PD (Figure 6). The origi-
nal labels for the regions are inferred from the image (e.g.
the probability that an object lies somewhere in the poly-
gon). The derived labels in the resulting PD can then be

40 Kolen

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

0 0 0 0 0 0
0 (] o 0 0
1 I I 1 I I
I I I 1 1 I
0 (] o o 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 o 0 0
o o o o

o I] I I (I o
0 0 1 1 0 fl
I I 2 2 I 1
I I 2 2 I I
I] 0 1 1 0 (]
0 0 1 1 0 0

B

B

HGURE 2. An example of CAT. Two images (A,B) are back
projected from the images to form planar region C & D. These
regions are then averaged to produce region E. The right column
illustrates how CAT renders the regions onto a pixel/voxel
discretization of the region. Note that the number of pixels/
voxels depends upon the desired reconstruction scale.

inferred from original labels of all regions ovedapping the
given region. For instance, we might label each polygon
with a sum and count, where sum is the total confidence for
that region and the count is the number of regions contribut-
ing to that sum. A new label would be constructed by sum-
ming these two quantities. An average confidence can be
readily calculated from these values.

The algorithm for merging two PD is fairly straight forward
(Figure 3). Consider one PD the destination PD, the other
the source PD. Find a common vertex between the two PDs.
(If one does not exist, find two edges (one from each PD)
that intersect. Given the source of the PD, an intersection
should always exist.) From this registration vertex, we
recursively visit the spanning tree of the vertex-edge graph
defining the PD. As each source edge is visited, this edge is
added to the destination PD. Since we keep track of the cur-
rent vertex in the destination PD and maintain sorted edges
for each vertex, it is trivial to discover destination edges that
intersect the source edge. A detailed version of the algo-
rithm appears in the Appendix.

In the worst case, a n region PD merged with an m region
PD can produce an mn region PD. We use two methods for
minimizing this exponential growth effect. First, when an
edge crosses a polygon we may or may not divide the exist-
ing polygon. One reason for not adding the new edge is that
the polygon is indivisible, i.e. we have enough data to con-

Source

New Polyge~ Formed

Pesuit

FIGURE 3. The PD merge process. The destination PD is
shown after adding each edge from the spanning tree
generated by the source PD.

Don’t
Add
Edge

Add Add
Edge Edge

~ Stable
Region

FIGURE 4. Preventive edge pruning. When travelling
across a stable region (i.e. a region where new information
will not change the final classification) do not add an edge
to create two new polygons.

elude that the region is of a certain density. Another reason
for not dividing the polygon is that the two polygons sepa-
rated by the edge have no impact on the existing polygon.
This can occur when the involved polygons convey the sim-
ilar labeling information.

A second method for reducing the number of regions pro-
duced by the merge is to perform a post hoc cleanup of the
PD. Two adjacent polygons can be combined if their density
information is similar to one another. For instance, P~ may
have an average intensity of 100 over 10 images and /’2
may have an average intensity of 99 over 11 images. If this

Computer Vision 41

FIGURE 5. Merging Adjacent Polygons. When two
polygons are adjacent and have the similar intensity
values merge them together if the resulting polygon is
convex. Assuming that A, B, and C have similar
intensity values, we can merge A and B, but not B and
C.

6x6 lattice 8x8 lattice

A

C
0/I

III

0/I

0/I Ill 0/I

n

F

0/2 I/2 0/2.

A 112 ~ I/2.

0/2 I/2 0/2

B

FIGURE 6. CAT using the labeled planar decomposition
method described in the text. (X/Y signifies sum over
count.) Note that the data needed to specify a given
region is independent of the desired reconstruction scale.

difference is insignificant (a problem specific relation), then
it is rational to merge PI and P2 into a single polygon.
However, we must maintain the convexity of the polygons
and only allow the merge if the resulting polygon is convex.
If this constraint is not maintained, it is possible to create
islands within polygons.

The final 3-D model is constructed by pasting several 2-D
planar decompositions together.

Evaluation

A preliminary implementation of the algorithm was evalu-
ated using a synthetic data set described in Figure 7. Images
from two latices of different sizes were overlapped and aver-
aged. This implementation did not include merge pruning.
We performed the merge process with both the conventional
pixel representation and the geometrical approach described
above. The implementatkm of the conventional approach,
however, did not include the final step of extracting poly-

merged result

FIGURE 7. The sample data sets are listed as n × m pairings.
The first decomposition is an n × n lattice, while the second is
a m xm lattice. This ligure illustrates the 6-8 pairing.
Polygon intensities have been removed for sake of clarity.

gons from the image. The independent variables consisted
of image resolution (measured in pixels), lattice granularity
of the two original images (the number of regions), and
method. The dependent variable was the number of seconds
the implementation used to perform the planar decomposi-
tion merge. Table I, Table 2, and Figure 8 summarize the
results of the experiment. Run-times reported in the table
are averages over five runs on an SGI Indigo2 (100MHz
R4000, 64MB RAM).

lO00r

i
120+180

/iooi

:
40+80

~//

i0

~ 6+81

O. 1
2+4

0.01

500 i000 1500 2000 2500

Image Size

FIGURE 8. Comparison of the two approaches. Since the
conventional approach is insensitive to the complexity of the
images and the geometric approach is insensitive to the
resolution of the images, the run-times for the geometric
approach appear as straight lines when plotted against
resolution.

The conventional pixel approach is a O(r 2) algorithm,
where r is the resolution of the image. The geometric

42 Kolen

Pixels Time n-m Time

IOOxlO0 0.0171 2+4 0.120

500x500 0.438 6+8 1.04

1000x 1000 1.81 40+80 58.1

1500xl500 3.97 120+180 728

2000x2000 49.1 TABLE 2.

2500x2500 432. Geometrical
Method

TABLE 1.
Conventional
Method

approach is a O(s + d) algorithm, where s and d are the
number of edges in the source and destination decomposi-
tions. The empirical results demonstrate this relationship as
well. The run-times for the geometric method are inflated by
recursive call overhead. This recursion can be eliminated by
providing a stack to manage the spanning tree traversal of
the edge graph.

Summary

Appropriate choice of representation and domain knowl-
edge can simplify the CAT process. The major advantage of
this method is that it dispenses with the traditional interme-
diate spatial representation via pixels and voxels. Originally,
the final product of a CAT operation was an intensity image
of some slicing plane. However, in many applications the
tomographic reconstruction is only a small part of a much
larger data analysis problem. For instance, we are interested
in extracting computer-aided-design-like 3-D models from
our reconstructions (e.g. wire-frame models). The planar
decomposition representation is much closer to this goal
than pixels or voxels as it avoids any additional image pro-
cessing necessary for the extraction of lines and regions. We
also see the planar decompositions as an intermediate repre-
sentation in that they must go through another processing
step (layer gluing). As such, we are exploring a 3-D version
of the algorithm that manipulates spatial decompositions
(SDs) of convex polytopes.

The method described above is currently being used to
develop a data collection system for analyzing behind the
armor debris of munitions (Anderson, Gordon, Watts,
Marsh, 1995; Gordon, Watts, & Talbot, 1995). Intensity data
is collected from holograms of munition tests. Holograms
do not suffer from point of view problems associated with
camera-based data collection--viewing angle selection can
be performed after the event. Data extracted from the static
holograms of test via CCD camera is further reduced to a 3-
D structural model of debris. The CAT technique was cho-
sen due to its ability to produce high resolution reconstruc-
tions (Cheeseman, Kanefsky, Hanson, & Stutz, 1994) in the
presence of noise. These 3-D models will provide quantita-
tive debris data for use in hydrocode modeling of munition/

target interactions and lethality/vulnerability modeling of
fragment interaction with threat target components and
structures.

Acknowledgments

This work was funded by the U.S. Air Force under contract
FO8630-96-K-0013.

References
Anderson, C., J. Gordon, D. Watts, J. Marsh. (1995) "Mea-
surement of Behind Armor Debris Using Cylindrical Holo-
grams", In Benton, S. (Ed.), Practical Holography IX. SPIE
Proceedings Series, Volume 2406. 132-146.
Cheeseman, P., B. Kanefsky, R. Hanson, & J. Stutz, (1994)
"Super-Resolved Surface Reconstruction from Multiple
Images", Technical Report FIA-94-12, NASA Ames
Research Center, Artificial Intelligence Branch, October
1994.

Gordon, J., D. Watts, & I. Talbot, (1995) "Behind-the-
armor-debris Data Collection Using Holography". Pre-
sented at "lest & Evaluation Symposium and Exhibition XI,
Austin TX, January 31 to February 3, 1995.
Herman, G. T. (1980) lma&e Reconstruction from Projec-
tions. Academic, New York.
Hill, F. S., (1990) Computer Graphics. Macmillan Publish-
ing Company, New York.
Verhoeven, D. (1993) "Limited-data computed tomography
algorithms for the physical sciences". Applied Optics.
32:20. 3736-3754.

Appendix

The planar decomposition merge algorithm is described
below.

Data structures

¯ Points: A point in a two-dimensional Cartesian coordi-
nate system. Points can be marked when visiting them.

¯ Vertex: A vertex in a graph G(V, E). A vertex maintains
angle reference information about each edge with which
the vertex is connected.

¯ Edge: An edge in a graph G(V, E) implemented as a pair
of vertices. An edge maintains information about the two
possible polygons of which it is a member for both the
source planar decomposition (source poly info) and the
destination planar decomposition (destination poly info).
An edge maintains also the angles between the endpoints
of an edge and the horizontal line. Edges can be marked
when visiting them.

¯ Polygon: A list of edges of which the polygon consists
and information about the intensity and the cardinality of
a polygon.

Computer Vision

¯ Vertex pool: A set of vertices. We impose a less-order on
the set. A vertex v is less than a vertex w if v.x < ~:x or
v.y < w.y when v.x = w.x.

¯ Edge pool: A set of edges. We impose a less-order on the
set. An edge a is less than an edge b if the lesser vertex
in a is less than the lesser vertex in b. If the lesser vertex
in a is equal to the lesser vertex in b then the greater ver-
tex in a must be less then the greater vertex in b.

¯ Polygon pool: A list of polygons.

¯ Planar Decomposition (PD): A set of vertices (Vertex
pool), a set of edges (Edge pool), and a set of polygons
(Polygon pool).

Algorithm

Given is a source PD srcPD, and a destination PD destPD.

Merge(PlanarDecomp destPD. PlanarDecomp srcPD)
Merges the source PD with the destination PD. The result
will be swred in destPD.

Set vd to a vertex in destPD whose location is common to both
PDs.

Set vs to a vertex in srcPD whose location is common to both
PDs.

Unmark all vertices in the vertex pool of destPD.
Mark all edges in the edge pool of destPD with OLD.
Unmark all edges in the edge pool of srcPD.
MergeCommonVertex(vd. vs)

MergeCommonVertex(Vertex v, Vertex vNext)

Merges all outgoing edg,,.~" from v with outgoing edges from
vd

For all unmarked outgoing edges e of vNext (start with smallest
angle of the edge with the horizontal line).

Mark edge e.
Compute a polygon pair pPair consisting of two polygons

which e may reference.
Set vOther to the vertex in e that is different from vNext.
MergeFromCommonVertex(i; vOther, pPair).

MergeFromCommonVertex(Vertcx v Vertex vNe.rt. PolyPair
pPair)

Merges an edge defined by v and vNext with the destination
planar decomposition.

Set the line segment is to the line between v and vNext.
Traverse the outgoing edges of v and identify:

The edge e that overlaps the line segment Is or
The two edges el and e2 of which the line segment Is is in-

between if no outgoing edge overlaps the line segment.
If edge e overlaps the line segment Is then:

MergeEdge(e. ,; vNext, pPair).
else:

Set pCommon to the common polygon of the two edges el
and e2.

MergePolygon(pCommon. v, vNext, pPair).

MergeEdge(Edge er. Vertex v, Vertex vNext. PolyPair ph!]b)
Merges two overlapping edges.

Set vOther to the vertex in e that is different from ~:
If the location of vOther and vNext is the same then:

Set the source polygon info in edge er to plnfo.
MergeCommonVertex(vOther, vNext).

44 Kolen

If the location of vNext is between the location of v and the loca-
tion of vOther then:

Create a new vertex vNew with the location of vertex vNext.
Add vNew to the vertex pool of the destination planar

decomposition.
Replace edge er with two new edges el = v vNert, e2 =

vNext vOther.
Set the source polygon info in the two edge el and e2 to

plnfo.
MergeCommon Vertex(vNew, vNext).

Otherwise the location of vOther must be between the location of
v and the location of vNext. Then:

Set the source polygon info in edge er to plnfo.
MergeFromCommon Vettex(vOther, vNext, plnfo).

MergePolygon{’Polygon pDest, Vertex vPoly, Vertex vNext, Poly-
Pair phlfo)

Splits a polygon. A single edge e may intersect a polygon
completely or partiall): In the latter case the outgoing
edges from the endpoint of e including their outgoing edges
eventually split the polygon into several pieces.

Set the line segment Is to the line between vPoly (a vertex of the
polygon) and vNext.

Determine the edge e in Polygon pDest that intersects Is.
If no such edge e exists then the line segment must terminate

inside the polygon. In this case:
Create a new vertex vNew using the location of vertex vNext.
Add vNew to the vertex pool of the destination PD.
Create a new edge eNew = vPoly vNext.
Set the source polygon info in the edge eNew to plnfo.
Set the destination polygon info in the edge eNew to the pair

(pDest, pDest).
Mark eNew with NEW.
For all unmarked outgoing edges e of vertex vNext in the

source planar decomposition do:
Mark e with VISITED.
Set pairSrc to the poly pair info in e.
Set vOther to the vertex in e that is different from vNext.
MergePolygon(pDest, vNext, vOther, pairSrc).

If line segment Is intersects e in a vertex vlntersect then:
Create a new edge eNew = vPolv vlntersect and add it to the

edge pool of the destination PD.
Adjust source polygon info of the two edges in polygon

pDest that arc adjacent to eNew with plnfo.
Set source and destination polygon info of eNew using plnfo

and pair (pDest, pDest).
If the location of vlntersect and vNext is identical then

MergeCommonVertex(vlntersect. vNext).
Otherwise MergeFromCommon Vertexf vlntersect, rNext,

plnfo).
Otherwise do the following:

Add a new vertex vlntersect to the vertex pool of the desti-
nation PD. The location of vlntersect is the intersection of
ls with e.

Add a new edge eNew = vPolv vlntersect to the edge pool of
the destination PD.

Replace edge e by the two edges el and e2. Both edges
result from the splitting of e with vlntersect.

Update source and destination polygon info for eNew el,
and e2 using pair tpDest, pDest) and plnfo.

If line segment ls intersects e and the endpoint of Is is
located on e {T-intersection) then:

MergeCommon Vertex(vlntersect, vNe.xt).
Otherwise line segment Is intersects e and the endpoint of Is

is located outside of the polygon (X-intersection). Then:
If the endpoint of is is located in another polygon then:

Set nextPoly to be the polygon of destination PD in
which the endpoint of Is is located.

MergePolygonfnextPol% vlntersect, vNext, plnfiO.
otherwise:

MergeFromCommon Vertexf vlntersect,vNext, plnfo).

