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Abstract

In formally analyzing and developing industrial sized systems
we are often confronted with the problem of expressing re-
altime properties. Especially in safety critical applications
as, for example, in embedded systems or in control software
these properties are crucial for the fight functioning of the
systems.
There are numerous suitable approaches that allow us to spec-
ify realtime properties: MTL, TLA or VSE-SL to name a few,
and also there are various tools available to formally develop
such systems. But in most cases the approaches are trimmed
for their own highly specialized application area. We try to
overcome this restriction by exploiting the advantages of a
(fairly general) formal development tool like VSEolI and the
rather specialized Hybrid Automata by combining these two
approaches.

Introduction
In specifying industrial (sized) systems, we are often con-
fronted with the problem of expressing realtime properties
of systems. In these applications we realized that these
propositions are both hard to find and hard to verify. Those
properties could be expressed in many specification lan-
guages as, for instance, MTL, TLA or VSE-II. One of the
main problems in this area is the complexity of timing con-
straints that could arise and the variety of situations which
could appear in such a system. In writing formulae like

rq(timer <_ 10 ~ D(to < now < tl --~ x = false))

which says that whenever timer does not exceed 10 then
x remains false throughout the interval [to, h], we are only
able to capture particular aspects of the timing behavior of
the system. People specifying such systems often draw di-
agrams that describe such a particular behavior and they try
to find critical situations in this way. It is clear that these
diagrams might help to understand the system, but they cer-
tainly are not suitable to express the entire temporal behav-
ior of a system. A more adequate way is to exploit timed
automata or linear hybrid automata in this context.

We want to use linear hybrid automata as an extension
of the formalism used in VSE-II to express (complex) re-
altime behaviors. It is not our intuition to subsume hybrid
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automata, we rather want to integrate them in a formal soft-
ware development process which is fully supported by a tool
like VSE-II.

The paper is organized as follows: We start giving short
descriptions of VSE-II and hybrid automata. Hereafter
known results of the the process of embedding hybrid au-
tomata into VSE-II are presented. These results are needed
as preliminaries to use hybrid automata as a specification
language for realtime properties in VSE-II. The paper fin-
ishes with a conclusion and future work to be done in this
area.

Formal Systems and Logics
In what follows we present the Verification Support Envi-
ronment as well as the hybrid automata as they are used in
our approach.

VSE-Verification Support Environment
The VSE system is a tool for the formal development of
software systems. It consists of: A basic system for editing
and type checking specifications and implementations writ-
ten in the specification language VSE-SL, a facility to dis-
play the development structure, a theorem prover for treating
the proof obligations arising from development steps as for
example refinements, a central database to store all aspects
of the development and an automatic management of depen-
dencies between development steps.

Compared to VSE I (Hutter et al. 1996a; 1996b), which
was based on a simple, non-compositional approach for state
based systems, VSE II (Hutter et al. 1999) is extended
with respect to comprehensive methods in order to deal
with distributed and concurrent systems (Rock, Stephan, and
Wolpers 1997) and with respect to an even more efficient and
uniform proof support which makes use of implicit structur-
ing of the proof obligations that arise. The basic formalism
used in VSE II is close to TLA (Temporal Logic of Actions)
(Lamport 1994). A refined correctness management allows
for an evolutionary software development.

VSE is based on a methodology to use the structure of a
given specification (e.g. parameterization, actualization, en-
richment, or modules) as a means to distribute the deductive
reasoning into local theories (Rock, Stephan, and Wolpers
1999). Each theory is considered as an encapsulated unit,
which consists of a local signature and certain reasonable
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axioms. Relations between different theories, as they are
given by the model-theoretic structure of the specification,
are represented by different links between theories. Each
theory maintains its own set of consequences or lemmata
obtained by using local axioms and other formulas included
from linked theories.

This method of a structured specification and verification
is reflected in the central data structure of a development
graph, the nodes of which correspond to the units mentioned
above. It also provides a graphical interface for the system
under development.

There are two kinds of VSE specifications: abstract data
types and specifications of state transition systems. Ab-
stract data types are defined using full first-order logic.
For the specification of state transition systems a specifi-
cation language close to TLA (Abadi and Lamport 1991;
Lamport 1994; Abadi and Lamport 1995) is used. These
specifications depend on abstract datatypes for the definition
of the states. In addition to the theory of compositional de-
velopment presented in (Abadi and Lamport 1995), which
covers the composition of systems using input and output
variables, shared variables are supported by the structuring
operators in VSE II.

The most important operators provided by VSE II to
structure state-based specifications is the combine operator.
It models the concurrent execution of components. Concur-
rency is modeled by considering all possible #lterleavings
of actions of the combined systems. Basically, a behavior
which represents a sequence of states of the specified sys-
tem is a behavior of the combined system if and only if it is
a behavior of every component of the system. In (Abadi and
Lamport 1995) environment steps are modeled by stutter-
ing. This technique only works for communication by input-
output variables, not in connection with shared variables. A
more general approach (Rock, Stephan, and Wolpers 1999;
Hutter et al. 1999) is to associate a "color" with each com-
ponent and to mark each step in a behavior with the color of
the component that performed the step.

Structuring specifications as described above supports
readability and facilitates editing specifications. However,
the system exploits structure beyond this purely syntactical
level. Components of a combined system can be viewed as
systems in their own right where certain parts can be ob-
served from outside while most of the inner structure in-
cluding the flow of control and local program variables are
hidden.

In particular we can prove properties of a combined sys-
tem in a modular way. This means that we attach local
lemma bases to components where local proofs are con-
ducted and stored. Exchange of information between lemma
bases is on demand. This approach has two main advan-
tages: First, the given structure of the specification is used
to reduce the search space in the sense that large parts of the
overall system are not visible and second, storing of proofs
local to certain lemma bases and making the export and im-
port of information (between lemma bases) explicit supports
the revision process.

Hybrid Automata
Hybrid Systems (Alur and Dill 1994) are real-time systems
that are embedded in analog environments. They contain
discrete and continuous components and interact with the
physical world through sensors and actuators. Since they
typically operate in safety-critical situations, the develop-
ment of rigorous analysis techniques is of high importance.

A common model for hybrid systems can be found in
hybrid automataI. Briefly, such hybrid automata are finite
graphs whose nodes correspond to global states. Such global
states represent some sort of general observational situa-
tions, as, for instance, "the heater is on" or "the heater is
off". During these global states some continuous activity
takes place. For example, coming back to the heater from
above, depending on the global states, the temperature rises
or falls continuously according to a dynamical law until a
transition from one node to another one occurs.

These transitions are usually guarded with some con-
straint formula that is required to hold if the transition is
supposed to be taken. Similarly, nodes have some attached
constraint formula that describes an invariant for this very
node, i.e., some property that has to be true while the sys-
tem resides within this node. The dynamics of the system’s
behavior, on the other hand, is given by a description of how
the data that interests us changes with time.

Additionally, transitions are annotated with some kind of
general assignment that is responsible for the discrete action
to be performed by taking the transition.

In order to save space we omit the formal definitions of
syntax and semantics of the hybrid automata used in this
work. Exact definitions can be found in (Nonnengart, Rock,
and Stephan 2001). Furthermore we assume a property
specification language PSL (Nonnengart, Rock, and Stephan
2001) for hybrid automata. In its current version PSL merely
allows us to write safety formulas. The extension to liveness
is mentioned in the future work. PSL was given a linear time
semantics which fits best to the semantics of VSE-II specifi-
cations.

In what follows we present the general scenario in which
we want to use hybrid automata within VSE-II specifica-
tions. But before we concentrate on that, we first describe
a more special scenario which will later be extended to the
general one.

Expressing Realtime Properties using Hybrid
Automata

In the previous section we have given short introductions to
VSE-II and to (linear) hybrid automata. In the following
we present how hybrid automata can be used in the formal
software development in VSE-II.

Integrating hybrid automata into VSE-II certainly is a
challenging task and one might ask the question what such
an integration is good for. Or, in other words, what does
it help a formal software engineer if he has such an inte-
grated tool in which he could use both techniques in an inter-
leaved way? It is well known that formal software, we would

1Throughout this paper we use the notions hybrid system and
hybrid automaton interchangeably.
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rather say formal system development, is a non-trivial task.
Working on industrial sized systems using formal methods
often results in complicated specifications with complicated
proofs of the guarantees the system has to provide. Further-
more in specifying systems in which realtime constraints oc-
cur, things do not become easier. We think that some level
of complication is in general inevitable. But we could place
a tool at the formal software engineers disposal which helps
to control this complexity. Until now he could use the VSE-
II system which supports the whole formal software devel-
opment process. But what we want to improve is the sup-
port for specifying realtime systems and to give the user a
tool at hand where he can choose a simple and maybe even
automatic procedure to solve a problem. The first part of
the methodology of such a tool is illustrated in Figure 1.
Starting point is the specification of the behavior of a real-
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Figure 1: Scenario: VSE - Hybrid Automata

time system using a hybrid automaton Hybrid-AutSpec
as depicted in Figure 1. Properties that should be satisfied by
this automaton are specified in Hybrid- PropSpec which
is a PSL formula. The idea is to translate (Tr represents
the translation function) the hybrid automaton specification
into a VSE-SL specification. From this translated specifi-
cation, we want to prove that the properties described in
VSE-PropSpec hold. A part of these properties is cre-
ated by translating the properties in Hybrid-PropSpec
into VSE-SL properties. The proof of these properties could
be done in the VSE-II tool. The proof could equally be done
with a tool supporting hybrid automata.

Some of the advantages of such a method are that we have
a more adequate choice of means to specify and verify sys-
tems, better support for the specification and verification of
realtime systems, and properties and integration of a fully
automatic technique in the VSE-II system.

Figure 2: Extended Scenario: VSE- Hybrid Automata
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Until now we have discussed all the preliminaries needed
to have a closer look at the more general scenario shown
in Figure 2. The starting point in the extended scenario is a
VSE-II specification (VS E- Sys g emSpoc) which describes
the behavior of a system in terms of VSE-SL. The realtime
properties of this system are expressed by a linear hybrid
automaton2. The hybrid automaton Hybrid-kugSpec
has to be translated to a VSE-II specification. After that
a satisfies-link between VSE-Systemgpec and VSE-
AutSpec indicates that a proof obligation is generated
which has to be proven to show that VSE-SystemSpec
has the properties expressed by VSE-AutSpec that results
from the translation procedure ¢r mentioned before. If we are
able to prove this, we have established the semProp map-
ping which says that the VSE-II system specification fulfills
the hybrid automaton wrt. the translation function rr.

TLSPEC gasburner

USING definition
DATA OUT x, y, t : nat

OUT state : state_t
ACTIONS
A1 ::= (state = leaking AND

state’ = non_leaking AND
x’ = 0 OR
state = non_leaking AND
state’ = leaking AND
x >= 30"c AND x’ <= c AND
x’ = 0) AND UNCHANGED(y,t)

A2 ::= state = leaking AND
state’ = non-leaking AND
NOT x+l <= c AND
x’ = 0 AND
UNCHANGED(y,t)

A3 ::= state = leaking AND
state’ = leaking AND
x+l <= c AND y’ = y+l AND

x’ = x+l AND t’ = t+l OR
state = non_leaking AND
state’ = non-leaking AND
x’ = x+l AND y’ = y+l AND
UNCHANGED(t)

SPEC INITIAL x=0 AND y=0 AND
t=0 AND state=leaking
TRANSITIONS [AI, A2, A3]{x,y,t,state}

SATISFIES gasprop
TLSPECEND

Figure 3: Gasburner as VSE-II specification

The main advantage of our approach to be stressed in this
paper is that we are able to combine formal specifications
of technical scenarios with the abstract global view of hy-
brid systems which in this context are considered as compre-
hensive descriptions of the desired temporal behavior. The
technical scenario contains the abstract specification of the
actual software system which can be refined to a running
program as one of its components.

21t is clear that the specification of this automaton has to obey
some restrictions wrt. to the system specification and to the expres-
sivity of hybrid automata.



Figure 4: VSE-II Development Graph

As an example case we consider a scenario that consists of
the controller, the enviromne,t, and a clock (see Figure 4).
All three are modeled by concurrent components in VSE.
The combined system then is the gasburner (scenario).

The specification of the co,troller which is made up of a
single action is shown in Figure 5. In one execution cycle
the controller reads the current input values to correspond-
ing internal variables and sets output values depending on
the previously stored inputs. This can be thought of as a
simplified abstract model for the cyclic computation of pro-
grammable controllers.

In our simple scenario, which is still far from being a
real system, we have as inputs a leak sensor and a whip
for switching the gasburner on and off from outside. The
only output is an actuator that opens or blocks the flow of
gas. Apart from the variables needed to store the input val-
ues there is an i, ternal state which can be on or off and
an additional tbner variable. The environment sets the in-
put lines read by the controller having access to the current
time provided by the clock and the value of the gas actu-
ator. There are several restrictions for the behavior of the
environment which model assumptions about the physical
world. So for example, we can have leak = true only if
gasflow = open. The clock component provides the global
time of the scenario by a variable now. The value of this
variable is increased by one when the clock ticks. Since not
all intermediate states between two ticks can be regarded as
representing physical situations of the scenario an external
observer should notice a change of (the value of ) a visible
variable only if the clock ticks. In the VSE model of the
storm surge barrier presented in (Rock, Stephan, and Brod-
ski 2000) there was an explicit update of the visible variables
upon each tick of the clock. Of course the clock component
needs access to all data exchanged by the components.

TLSPEC Controller
USING natural; boolean; Definitions
DATA INTERNAL leak_sensor_i : bool

INTERNAL now_i,timer : nat
INTERNAL whip_i,cstate : OnOff_t
OUT gasflow : gas_t

IN leak_sensor : bool
IN now : nat
IN whip : OnOff_t

ACTIONS
AI::=

whip_i’ = whip AND now_i’ = now AND

leak_sensor_i’ = leak_sensor AND
(cstate = on AND whip_i = off AND

leak_sensor_i=F AND cstate’=off AND
gasflow’ = blocked AND

UNCHANGED(timer,now_i,
leak_sensor_i,whip_i) OR

cstate = on AND whip_i = off AND

leak_sensor_i=T AND cstate’=off AND
gasflow’=blocked AND timer’=now AND

UNCHANGED(now_i,leak_sensor_i,
whip_i) OR

cstate= on AND whip_i = on AND

leak_sensor_i = F AND
UNCHANGED(cstate, timer, gasflow,

now_i,leak_sensor_i,whip_i)
OR cstate= on AND whip_i = on AND

leak_sensor_i=T AND cstate’=off AND
gasflow’=blocked AND timer’=now AND

UNCHANGED(now_i,leak_sensor_i,
whip_i) OR

cstate = off AND whip_i = on AND

now_i > timer + (30 * c) AND
cstate’=on AND gasflow’=open AND

UNCHANGED(timer,now_i,
leak_sensor_i,whip_i) OR

cstate= off AND whip_i = on AND

NOT now_i > timer + (30 * c) AND
UNCHANGED(cstate,gasflow timer,
now_i,leak_sensor_i,whip_i) OR
cstate= off AND whip_i = off AND
UNCHANGED(cstate,gasflow timer,

now_i,leak_sensor i,whip_i))
SPEC INITIAL gasflow=0 AND cstate=on

AND timer=0 AND
leak_sensor_i=TAND
now_i=0 AND whip_i=on

TRANSITIONS [AI]
{gasflow, timer,cstate}

TLSPECEND

Figure 5: Controller as Temporal Specification
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Our aim is to interpret this technical scenario as a poten-
tial model of the hybrid automaton shown in Figure 6 which
is translated to the VSE-II specification shown in Figure 3.
This is done by recomputing the values mentioned in the def-
inition of the automaton upon each tick of the clock taking
the data provided by the scenario as inputs. Among oth-

" ~"~0
Leak true [ x := 0 Non-Leak

x>30lx:=0

Figure 6: Gasburner as Hybrid Automaton

ers the clock would contain as (disjunctively related) sub-
actions state’ = leaking A leaking = true, state’ =
nonleaking A leaking = false, and y’ = now. In the au-
tomaton shown in Figure 6 t is intended to count the time the
gasburner is leaking. The interpretation of this in our sce-
nario is given by the subactions t’ = t + 1 A leaking = true
and t’ = 0 A leaking = false.

To model time constraints we need a scheduling strat-
egy for the three components of the scenario. Technically
scheduling is realized by activating enabling or disabling
components3. Let us assume that the controller is a syn-
chronous device and the (fixed) time for one cycle is n. Then
after being enabled for one step the controller component
has to be blocked for at least n ticks of the clock. It has,
however, to be unblocked before 2n ticks. In order to satisfy
the timing behavior given by the automaton we need con-
straints for n and e. The general technique which could be
considered as a refinement of fairness has been described in
(Rock, Stephan, and Brodski 2000).

Conclusion and Future Work
We have presented a methodology to use hybrid automata
in the VSE-II formal system development. Hybrid automata
are suited to express realtime behavior and VSE-II is suited
to formally develop industrial sized systems. Exploiting the
advantages of both formalisms we get an adequate means
to specify realtime properties of complex systems. We have
illustrated the use of this methodology with the simple gas-
burner example.

Our future work in this field is relatively widespread.
In integrating hybrid automata into VSE-II we have devel-
oped a translation function zr which performs an exact dis-
cretization of continuous behaviors (Nonnengart, Rock, and
Stephan 2001). This is done for safety properties and has to
be extended to liveness properties.

A further point is the exploitation of component based hy-
brid automata specifications which are synchronized by so
called synchronization labels. It is an interesting question

3For sake of readability this part has been omitted from the
specification of the controller.

644 FLAIRS-2001

how this structure could be translated to VSE-II specifica-
tions and whether an assumption-commitment specification
style has to be used in the VSE-II specification.

At the end of our work there stands an integrated tool con-
sisting mainly of the VSE-II system as it is now, but with
an additional component that allows us to utilize hybrid au-
tomata directly or as a specification utility. With this we will
have a more adequate means to specify and verify systems
with respect to realtime related developments.
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