
Abstract 

In this work D-HST, a novel, effective indexing 
technique for cases with temporal attributes is pre-
sented. It is shown to be more competent, and effi-
cient than the widely used F-Index approach based 
on a series of experiments using 5 synthetically gen-
erated case-bases. Additional benefits include its 
scalability and its suitability for indexing both tem-
poral and non-temporal attributes alike.  

Introduction   
Case-based reasoning (CBR) has been successfully ap-

plied in a wide variety of domains. Most systems focus on 
time invariant attributes within case knowledge and either 
ignore temporal attributes or oversimplify them [1]. This is 
largely due to the difficulty of handling the CBR processes, 
such as, similarity determination, indexing, adaptation and 
knowledge maintenance satisfactorily with time related 
data. However time is an important and pervasive concept 
in the real world [2] and therefore by default, important to 
many of the domains CBR can be applied to. The growing 
importance of handling temporal data is clearly seen by 
observing the recent increase in the volume of research on 
temporal CBR (T-CBR) systems [3]. 

As most temporally orientated domains will likely have 
a mixture of both temporal and non temporal attributes 
(e.g. a patient profile may include both non temporal at-
tributes such as age, weight and height and temporal attrib-
utes such as ECG and  blood pressure trend) it is important 
that all the CBR processes can handle both types inter-
changeably. As such, in this paper a novel, domain inde-
pendent, indexing scheme, based on a matrix structure, 
called the D-HST (Discretised Highest Similarity Temporal ) is 
proposed, which can effectively index both temporal and 
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non temporal attributes. As most of the research into tem-
poral data has been carried out in the context of temporal 
data mining, we compare the D-HST index with the well 
known F-index approach [4] used widely within the data 
mining community. The F-index technique combines Dis-
crete Fourier Transformation (DFT) [5] as a feature reduc-
tion technique with an R-tree [6] as an index. This trans-
formation addresses the problem of the curse of dimension-
ality in the time domain when the number of samples is 
large i.e. > 25. 

The focus of this paper is to investigate the effective-
ness of the D-HST index with temporal cases. As such, we 
created 5 synthetic case-bases, each with one time series 
attribute generated using the random walk algorithm, to 
serve as a basis for an initial investigation into the effec-
tiveness of the approach. A limitation of R-trees is the 
number of dimensions which can be effectively indexed 
(15-20) [4]. This was the reason that only one temporal 
attribute was synthetically generated as, after DFT, this 
creates at least 10 dimensions for the R-tree. It should be 
noted that an advantage of D-HST, as well as being able to 
index non temporal attributes, is that it can index a number 
of temporal attributes within the one case and is not limited 
to 1 or 2 like R-trees. 

The organization of the rest of the paper is as follows. 
The next section outlines the methodology, which is fol-
lowed by the experimental technique and results of the 
comparison between D-HST and the F-index. Finally a con-
clusion and future work is proposed. 

 
Methodology 

 
The main motivation behind this technique was to 

create a common indexing space for both time variant 
and time invariant attributes in a CBR system. A system 
based on a D-HS indexing structure has previously been 
proposed [7] for indexing cases with time invariant at-
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tributes only and has shown very promising results. 
Here this original concept was extended for handling 
time-series attributes. Temporal attributes were repre-
sented by sample vectors, where each sample was de-
fined as an instantaneous value of an observed process 
at a particular moment in time, t. DFT was applied to 
these attributes to transform them from a time domain 
into a frequency domain. A vector of complex Fourier 
coefficients was obtained as a result of this transforma-
tion. It has been shown that only the first few frequency 
coefficients need to be considered when building an 
index [4], as the energy of most real word signals is 
concentrated within these first few coefficients. These 
complex frequency coefficients were then split into their 
respective real and imaginary components. In presenting 
this methodology, how temporal attributes were indexed 
in the D-HST is initially described, followed by how 
relevant cases were retrieved from the D-HST in re-
sponse to a query. 

 
Indexing 
A case-base D consisted of a set of cases d : 

1{ }N
jD d= , (1) 

where N was the number of cases in the case-base. Each 
case dj consisted of a vector of problem description attrib-
utes and a solution field: 

{ }: [ ], 1,..,j j j id d D d x i K= ∈ = = , (2) 

where elements x1..K-1 were problem description attrib-
utes and xK the solution field. Each of these attributes 
can either be time invariant (numeric or nominal) or 
temporal (time series) in nature. Due to space restric-
tions, only the indexing and retrieval of cases consisting 
of temporal attributes is presented in this work. (How 
time invariant attributes are managed within the D-HS 
framework has been demonstrated elsewhere [7]).  

The D-HST indexing structure M consisted of a vec-
tor of matrices 

ixM as shown in Figure 1 and equation 
3: 

[ ], 1,.., ( 1)
ixM i KΜ = = − , (3) 

where K-1 was the number of matrices in the indexing 
structure (equal to the number of problem description 
attributes in a case dj (2) ). Each matrix 

ixM provided 
an indexing space for a related attribute xi and as now 
described, actually consisted of two components. 

Since the time series attributes were defined as a 
vector of samples, it was not possible to use them di-
rectly in the indexing process. Therefore DFT was used 
[5] as a dimensionality reduction technique, to trans-
form the time series attributes into the frequency do-
main, where the data was represented as a vector of Ω - 
complex Fourier frequency coefficients. 
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Figure 1. D-HST consisting of one matrix per case attrib-

ute 
 

Based on the fact that each coefficient was complex 
(consisting of real and imaginary components), the 
matrix 

ixM (4) was proposed whose schematic view is 
also shown in detail in figure 2:  

[ ], , , ,
i i i i i

R I R I
x x x x xM M M M M mωθ = =   

0,.., , 0,..,ω θ= Ω = Θ  

 
(4) 

where mωθ  was a matrix cell, Θ  the number of inter-
vals into which the normalised value of the real and 
imaginary parts of the Fourier coefficients were split 
and Ω  the number of Fourier coefficients taken into 
consideration. 
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Figure 2. An individual matrix for a transformed time series 

attribute consisting of real and imaginary components 
 

As can be seen each matrix consists of two compo-
nents 

i

R
xM  and 

i

I
xM . The matrix 

i

R
xM  relates to case 

indices constructed based on the real part of the com-
plex Fourier coefficients and 

i

I
xM  relates to case indi-

ces which were constructed based on their imaginary 
part. 

In general the process of creating an index can be 
represented as a projection of the case-base D onto the 
indexing structure M (5): 

DI proj= Μ , (5) 



 

where I is the obtained index. Since the case-base is a 
set of cases di (1) the projection operation (5) becomes: 

{ }: ,
jD j j dproj d d D projΜ = ∀ ∈ Μ , (6) 

where each case is sequentially projected onto M. Ac-
cording to (2), each case is a set of attributes so the case 
projection operation 

jdproj Μ  from (6) becomes: 

{ }: ,
j i id i i j x xproj x x d proj MΜ = ∀ ∈ . (7) 

where each temporal attribute xi, belonging to the case 
dj, was projected onto the relevant matrix

ixM . The 
process of indexing a temporal attribute in the D-HST is 
shown diagrammatically in figure 3. 
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Figure 3. Indexing a temporal attribute  

 
DFT was applied to transform xi into the set of complex 
coefficients ci: 

( )i ic dft x=  (8) 

The number of Fourier coefficients Ω  taken into con-
sideration in this work was 5 based on work by Rafiei 
[4]. However this value could fluctuate depending on 
the data. According to (8) the projection of a time series 
attribute onto the matrix 

ixM  (7) could be rewritten as 

a projection of its frequency coefficients onto 
ixM  (9): 

{ }: ,
j i id i i j c xproj x x d proj MΜ = ∀ ∈  (9) 

The interval index θ  was calculated by the following 
expression:  

1 1
( )

1
iff
iff

ν
θ ν

ν ν
Θ − =

=  Θ <  
, 

(10) 

where v was the real or imaginary part of complex coef-
ficients and the operation νΘ   is the integral value of 

the product of Θ  and v.  
The process of projecting complex coefficients, ob-

tained as a result of DFT transformation, is explained in 
more detail in figure 4. 
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Figure 4. Projecting transformed frequency coefficients 

onto the indexing structure 
Lets suppose that a temporal attribute x1 belonging 

to a case d1 had to be indexed in the matrix 
1x

M . Lets 

suppose that only three frequency coefficients ( 3Ω = ) 
were taken to consideration and the number of intervals 
into which the real and imaginary parts were split was 5 
( 5Θ = ). 

The first coefficient 1ω =  has the value v1= 0.012 
+ j 0.786. Its real part is 0.012 and imaginary part is 
0.786. According to (10), the index for the real part is 
calculated as 0.012*5 0.06 0= =        and for the imagi-

nary part 0.786*5 3.93 3= =       . So, the temporal attrib-
ute x1 of the case d1 is indexed in the matrix element 
m1,0 for the real part of the first frequency coefficient 
and in the matrix element m1,3 for the imaginary part of 
the first frequency coefficient. The second and third 
coefficients are indexed in (m2,2, m2,0) (m3,1, m3,2) the 
same way. 

 
Retrieval 
Having described how cases with time series attrib-

utes were indexed, their retrieval in response to a query 



is now explained. DFT transformation (Figure 5A) was 
applied to the temporal attribute of the target case dt. 
The frequency coefficients obtained were split into real 
and imaginary parts as before. Both parts were then 
used to extract relevant cases from the D-HST (5 B). 
Extraction of relevant cases involved matching individ-
ual frequency coefficients (real and imaginary) from the 
query case with those already in the D-HST. If a query 
case coefficient and an indexed case coefficient fell into 
the same cell of the indexing structure, then they were 
deemed to initially intersect and the case was added to 
what was known as the initial retrieval set (5 C). The 
final retrieval set of case indices Dt was obtained, based 
on a weighted vote of all intersecting coefficients of the 
cases in the initial retrieval set (5 D). A diagrammatic 
representation of extraction can be seen in figure 5 and 
a formal definition of this process is provided in (11): 

t
t

d
D proj I= . (11) 
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Figure 5. Case retrieval from the indexing structure 

 
A worked example of the retrieval process is shown 

in figure 6. 

Lets suppose that after DFT a target case produces 3 
frequency coefficients corresponding to the real Matrix 
elements m1,0, m2,2, m3,3 and the imaginary Matrix ele-
ments m1,3, m2,4, m3,1 as indicated by the cells in bold in 
Figure 6 part A. The set of cases therefore extracted 
(retrieved) for the initial retrieval set (6 B) from the 
matrix 

1

R
xM  consists of d1, d2, d3, d4, d5 and the set of 

cases retrieved from the matrix 
1

I
xM  is d1, d3, d4, d5.  
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Figure 6. An example of retrieval  
 
Similarity determination between a query and the 

cases in the case-base is determined as a product of the 
number of attribute Frequency coefficients that match 
between the query and retrieved cases and the relative 
importance of these matching coefficients. Therefore 
attribute Frequency coefficients were weighted in order 
of their importance (1, 0.5 and 0.25 in Figure 6). This 
ensures that a match between the query case and re-
trieved cases on the first Frequency coefficient of an 
attribute has more influence on similarity determination 
than a match in subsequent coefficients (6 C). Weight-
ing was done in this way, as it is known that the initial 
frequencies have the most importance in reconstructing 



 

the original time series data from the transformed fre-
quency domain. 

Therefore in order to determine similarity in the ex-
ample, for each matching case in the initial retrieval set, 
an overall similarity score must be determined based on 
their matching attribute frequency coefficients and cor-
responding weights (6 D). For example case d1 matches 
on the first 2 frequency components for 

1

R
xM . These cor-

respond to weights of 1 and 0.5 respectively, giving an 
overall similarity score of 1.5 from 

1

R
xM . It matched on 

all 3 frequency components for 
1

I
xM , giving a similarity 

of (1.*1) + (1*0.5) + (1*0.25) = 1.75. The overall simi-
larity score for d1, 3.25, is determined by summing the 
similarity scores for the real and imaginary components. 
When the similarity scores of all cases in the initial re-
trieval set are calculated they are ranked in order of 
similarity (6 E). The N top cases are selected to form 
the final retrieval set (6F). In the example in Figure.6 
N=1. 

 
Experimental Technique and Results 

 
The technique has been tested successfully on both real 

world and synthetic case-bases but due to space limitations 
here we demonstrate the efficacy of the technique based on  
five synthetically generated case-bases of different sizes 
(102, 103, 5*103, 104, 5*104 cases). Each case had one tem-
poral attribute, generated by the random walk algorithm. 
Each temporal attribute contained 100 samples. The case 
bases were split into training (9/10 used to create index) 
and test (1/10) sets. Ten-fold cross validation was carried 
out and the mean absolute distance (MAD) and efficiency 
for D-HST and F-index obtained. For evaluation purposes 
we converted the retrieved case back into the time domain 
and calculated the MAD in the following way. The absolute 
distance (AD) was calculated between the temporal attrib-
ute in the target case and selected case by the following 

expression ( )2

1

[ ] [ ]
L

t s
l

AD x l x l
=

= −∑  , where L was a num-

ber of attribute samples, xt[l] the attribute’s sample l of the 
target case and xs[l] the attribute’s sample l of the selected 
case. In these experiments 10Θ =  and 5Ω =  . 

Figure 7 shows how the MAD varied for both the D-
HST and F-index as the number of cases in the case-base 
was increased from 100 to 50000. Results shown are an 
average for the 5 case-bases investigated. From this it can 
be seen that when there are relatively few cases in the case-
base both techniques perform comparatively producing a 
MAD of around 0.45. When the number of cases is in-
creased to 1000 both techniques improve in competency 
with D-HST providing a more substantial increase (MAE of 
0.27) over the F-index (MAD of 0.33). The addition of 
more cases up to 50000, has little effect on the competency 

of the F-index as it stabilises around a MAD of 0.33, 
whereas the D-HST continues to improve in competency in 
a linear fashion as more cases are added, to provide a MAD 
of 0.19 when the size of the case-base is 50000 (42% more 
competent). 

Additionally from the gradient of the MAD line the 
competency of the D-HST should improve even further with 
the addition of more cases thus showing it to be a scaleable 
technique with can be used with very large case-bases.  

Figure 8 shows the average efficiency of the F-index, 
the D-HST with 10Θ =  and 50Θ =  as the number of cases 
is increased. Recorded efficiencies include the time to cre-
ate the index from the raw data in the case-base and carry 
out retrieval using 10 fold cross validation. 
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Figure 7 Variation in MAD with increasing case-base size 
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Figure 8 Variation in efficiency with increasing case-base size 

 
From this it can be seen that both the F-index and D-

HST(10) are comparable in terms of efficiency when the 
case-base size is less than 10000. As the case-base grows 
from this point, the efficiency of D-HST markedly deterio-
rates in comparison to F-index. The reason for this is sim-
ple. The least efficient part of retrieval is the extraction 
from D-HST of cases for the initial retrieval set. There is a 
linear relationship between the time taken to determine the 
final retrieval set and the number of cases in the initial re-
trieval set. As the case-base grows the computation re-
quired to identify cases for the initial retrieval set increases 
substantially, thus slowing the process down. In order to 



investigate this further an additional experiment was car-
ried out using the 5 case-bases consisting of 50000 cases 
each. In this experiment the number of intervals in D-HST 
Θ was varied between 10 and 100 and the effects on MAD 
and efficiency noted. By increasing the number of intervals 
the density of D-HST cells was reduced, which in turn re-
duced the number of cases in the initial retrieval set thus 
making the process more efficient. Results can be seen in 
Figure 9 where the ratios are shown compared to D-HST 
with 10 intervals (the original experiment) for both MAD 
and efficiency as the number of D-HST intervals increases. 
(Values >1 indicate that D-HST with 10 intervals is supe-
rior). 
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Figure 9 Variation in MAE and efficiency with increasing D-HST 

interval numbers 
 

From this it can be seen that by increasing the number 
of intervals from 10 to 60 improves efficiency by almost 5 
fold. Increasing the number of intervals also has an effect 
on the MAD, where it initially improves with 20 intervals 
but rises steadily from here to a point between 60 and 70 
intervals where the MAD is comparable to 10 intervals. 
After this the MAD is worse than with 10 intervals indicat-
ing that the D-HST cells are becoming too sparsely popu-
lated and relevant cases are not being retrieved in response 
to queries. Therefore it can be seen that there is a trade off 
between efficiency and competency with around 50 inter-
vals providing the optimal number in terms of efficiency 
and competency for the case-bases investigated in this 
study. At 50 intervals D-HST is still producing a much 
more competent indexing and retrieval scheme compared to 
the F-index (43.8% more competent) and at this point it is 
also 18.6% more efficient, as can be seen from Figure 8. 
  

Conclusions 
It is proposed that the D-HST is an ideal approach for 

indexing and retrieving temporal cases. When compared to 
the commonly used approach of F-index it was seen to be 
as competent for small case-bases (100 cases) but up to 
42% more competent for larger case-bases (50000). Its 
efficiency was also seen to be superior for case-bases of 

less than 10000. Efficiency deteriorated after this point due 
to the number of intervals in D-HST being too small (10). 
Once this value was increased the efficiency improved 
greatly to a point at around 50 intervals where efficiency 
improved almost 5 fold for case-bases of 50000 cases. At 
this point it outperformed the F-index competency by a 
factor of 44% and was18.6% more efficient.  

Although here we have only demonstrated the results of 
initial experiments on 1 temporal attribute (due to facilitat-
ing a comparison to F-index) and shown D-HST to be more 
competent, efficient and scalable, we have also found it to 
be similarly effective with cases consisting of numerous 
temporal cases attributes (results not shown due to space). 
Therefore we believe it is more scalable in terms of the 
number of attributes than F-index whose effectiveness dete-
riorates when the dimensionality increases beyond 15-20 
(note 1 temporal attribute = 10 dimensions). Additionally 
another attractive benefit of this approach is that it can be 
used to index and retrieve hybrid cases consisting of tem-
poral and non temporal attributes within the same indexing 
framework. Future work includes investigating, intelli-
gently determining the optimal number of intervals for D-
HST based on the size of the case-base and determining 
optimal weights for the frequency coefficients.  
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