Artificial Intelligence for Adaptive Computer Games

Ashwin Ram, Santiago Ontafion, and Manish Mehta
Cognitive Computing Lab (CCL)
College of Computing, Georgia Institute of Technology
Atlanta, Georgia, USA
{ashwin, santi, mehtama1}@cc.gatech.edu

Abstract

Computer games are an increasingly popular applica-
tion for Artificial Intelligence (AI) research, and con-
versely Al is an increasingly popular selling point for
commercial games. Although games are typically asso-
ciated with entertainment, there are many “serious” ap-
plications of gaming, including military, corporate, and
advertising applications. There are also so-called “hu-
mane” gaming applications for medical training, educa-
tional games, and games that reflect social conscious-
ness or advocate for a cause. Game Al is the effort of
going beyond scripted interactions, however complex,
into the arena of truly interactive systems that are re-
sponsive, adaptive, and intelligent. Such systems learn
about the player(s) during game play, adapt their own
behaviors beyond the pre-programmed set provided by
the game author, and interactively develop and provide
aricher experience to the player(s).

The long-term goal of our research is to develop artifi-
cial intelligence techniques that can have a significant
impact in the game industry. In this paper, we present
a list of challenges and research opportunities in devel-
oping techniques that can be used by computer game
developers. We discuss three Case-Based Reasoning
(CBR) (Aamodt & Plaza 1994), (Kolodner 1993) ap-
proaches to achieve adaptability in games: automatic
behavior adaptation for believable characters; drama
management and user modeling for interactive stories;
and strategic behavior planning for real-time strategy
games.

Introduction

Computer games have been classified as the “Human-level
AT’s Killer Application” (Laird & van Lent 2000). State-
of-the-art computer games recreate real-life environments
with a surprising level of detail. These environments are
usually populated with many characters (allies or enemies)
that require human-level intelligence and exhibit believable
behaviors. However, even though there have been enor-
mous advances in computer graphics, animation and audio
for games, most of the games contain very basic artificial
intelligence (AI) techniques. Al programming wisdom se-
ries (Rabin 2002; 2004) provides a good overview of cur-

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

22

rent state of the art Al techniques used in the game industry.
As a result of simplistic approaches for Al, the whole atmo-
sphere created by the game can be broken when the game
and characters situated within it behave in a non-believable
manner. On the other hand, creating richer experiences re-
quires a great deal of engineering effort on the part of game
developers.

The development of Al techniques for computer games
also impacts several areas outside the game industry. Au-
tonomous characters can be used in any anthropomorphic
interface, and have already been employed in a variety of
applications including as instruction agents in training en-
vironments (Lester & Stone 1997), as presentation agents
for giving slide presentations (Lester & Stone 1998), and as
guide agents on websites (Isbister & Doyle 2003). Inter-
active plots (drama management agents) can be employed
in education and training environments (Isbister & Doyle
2001). There is also great interest in applying lessons from
game design to the design of “serious games” for use in mil-
itary and corporate applications (Sawyer 2003).

In recent years, interest in applying Al techniques and in
particular CBR approaches to computer games (Aha, Mo-
lineaux, & Ponsen 2005; Cheng & Thawonmas 2004) has
seen a notable increase. There have also been conferences
and workshops dedicated particularly to Game Al (e.g., Al-
IDE and workshops on game AI at ICCBR 2005 (Aha &
Wilson 2005) and IJCAI 2005 (Aha, Munoz-Avila, & van
Lent 2005)). The vast majority of this work, however, fo-
cuses on small subproblems within a computer game (small
tactical-level problems, coordination, path planning, etc.) or
is not situated within a real game. Although this research
provides interesting solutions and ideas, it cannot be directly
applied by computer game companies. As computer games
are being developed by increasingly large project teams with
increasingly tight timelines, game developers do not have
the necessary cycles needed to try and transition these tech-
niques to their own games. One of the long-term goals of
our work is to reduce the transition effort needed in apply-
ing academic Al techniques in real games. Further, we want
to ease the effort in developing more complex Al for com-
puter games to make them more adaptive and appealing to
the player.

The research described in this paper is a step towards
this objective. This research focuses on the development of

reasoning and learning techniques in the context of current
state-of-the-art computer games. These techniques can al-
low non-Al experts to define behaviors for characters that
can then be adapted to different situations and individual
players, thereby reducing the development effort required
to address all contingencies in a complex game. Specifi-
cally, we are interested in adaptive games, i.e., games that
can adapt themselves to unforeseen situations. For a more
elaborate discussion on adaptivity in computer games see
(Spronck 2005). In our viewpoint, Adaptive games can per-
form the following functions:

e Improve the player experience, since an adaptive game
can adapt to each individual player to better fit his or her
playing style and goals, and

e Reduce the development effort, since if a game is able
to adapt itself, the developers require less effort trying to
foresee all possible situations.

The rest of the paper is organized as follows. First, we
present a brief analysis of the requirements of different game
genres from an Al perspective. Following this, we identify
a set of challenges that computer games present for the Al
community. Next, we discuss three CBR approaches for
adaptive games: automatic behavior adaptation for believ-
able characters, drama management and user modeling for
interactive stories, and strategic behavior planning for real-
time strategy games. We finish with conclusions and future
research directions.

Requirements for Game Al

In previous work, Laird and van Lent (2000) analyzed differ-
ent game genres, and the Al challenges that each presents. In
their report, they considered the following types of games:
action, role playing, adventure, strategy games, god games,
individual and team sports games. In addition to those gen-
res, we would like to consider two additional categories,
namely, interactive drama (Mateas & Stern 2003) and ed-
ucational games (Rieber 1996). Interactive dramas have a
strong plot behind them that the author wants to communi-
cate to the player, but where the player may have a strong in-
fluence on the plot. A key difference with the classical “ad-
venture” genre is that adventures have a scripted plot, while
interactive dramas are more open-ended and adapt to the
player interaction as the story unfolds. Educational games
have an additional rhetorical goal of teaching some particu-
lar content to the player.

By analyzing the range of possible applications of com-
puter game Al to different applications and game genres, we
identify two different levels at which Al can be applied: 1)
individual characters Al, with the goal of producing more
intelligent or believable behaviors, and 2) a global Al that
watches over the game or game-player interaction, influenc-
ing the directions that the game is taking. Thus, we can talk
about character-level Al and game-level Al (the second be-
ing referred in some papers as the Drama Manager (Nelson
et al. 2006) or as the Director (Magerko et al. 2004)).

Different applications and game genres require a different
mix of these two kind of Als. For instance, real-time strat-
egy games rely mainly on a game-level Al that controls all

23

the units, while the individual unit behaviors can be scripted.
Role playing games, on the other hand, require believable
character-level Al to provide an interesting player experi-
ence. Interactive dramas requires a mix of both kinds of Al:
individual characters that are believable and a drama man-
ager that leads the plot by guiding the individual characters
to take actions that can make the drama advance. Educa-
tional applications of gaming also require a game-level Al,
similar to the drama manager, which monitors the interac-
tion of the game as it unfolds, easing or complicating the
tasks according to the learner’s expertise level, thereby mak-
ing sure that educational purpose of the game is being met.

Each game genre presents particular requirements for
character level and game level Al For instance, god games
usually require the game-level Al to solve resource alloca-
tion problems and solve long-term strategy problems, while
interactive drama requires the game-level Al to adapt the
story according to the player interactions in a way that it is
more appealing to the player (thus, the latter requires user
modeling and story planning). Moreover, adventures, in-
teractive dramas and other genres with embodied characters
usually require believability and natural language genera-
tion.

In the following section, we summarize a list of interest-
ing challenges that computer games pose in general to the
Al community.

Challenges in Computer Game Al

Let us briefly describe some of the main issues that arise
when developing artificial intelligence for computer games.
This list is not exhaustive, but is intended to give a flavor of
the kind of problems that real computer games pose to the
Al community.

e Complex decision spaces: Most state-of-the-art com-
puter games involve complex strategic (real-time strat-
egy games) or believable behaviors (interactive dramas).
Both kind of behaviors share the characteristic of having
huge decision spaces, and thus traditional search-based
Al techniques cannot be applied. Learning techniques or
higher level representations are required to deal with such
complex games. Traditionally, computer games use hand-
crafted strategies coded by the game developers, but these
tend to be repetitive, and players easily find holes and ex-
ploit them.

e Knowledge engineering: Even assuming that strategies
or behaviors are handcrafted, authoring these behavior
sets in a game requires a huge human engineering effort.
Game developers have to encode all the knowledge they
have about a domain (either to achieve a strategic behavior
or a believable human behavior) in some sort of behavior
language.

e Authoring support: Hand crafted behaviors are, ulti-
mately, software code in a complex programming lan-
guage, prone to human errors. The behavior errors could
be in the form of program “bugs” or not achieving the de-
sired result. Tools are needed to support story authors,
who are typically not artificial intelligence experts, to au-
thor behaviors in a computer programming language.

e Unanticipated situations: It is not feasible to anticipate all
possible situations and player strategies that can encoun-
tered during game play. This makes it difficult to craft
believable behaviors that react in an appropriate manner
to these unforeseen circumstances and player actions.

o User-specific adaptation: Different players may enjoy
different strategies to fight against (in the case of real-
time strategy games), or different styles of story telling
(in the case of interactive dramas), different types of story
development, different kinds of character behaviors and
interactions, or different educational problems. As game
designers begin to include user modeling capabilities, the
Al strategy and behavior must, in turn, be adaptable based
on the user model.

o Replayability and variability: A player might get bored of
seeing the same strategies and behaviors again and again.
Although simple variability can be achieved through
stochastic selection of behaviors or strategies from a large
repository, this increases the authoring burden. Further-
more, random selection begs the question of true interest-
ingness.

® Rhetorical objectives: 1t is possible, even likely, that
human-engineered behaviors or strategies do not achieve
the game’s objectives adequately, especially in realis-
tic, scaled-up domains or applications. These objectives
could range from entertainment to education, training, etc.
Thus, the game has to realize that the objectives are not
being met on a per-use basis, and adapt accordingly. For
example, a particular user may be getting bored, or not
learning the intended lesson.

A conclusion that can be drawn from the previous list is
that not only can games benefit from better Al techniques,
but Al can also benefit from the challenges that computer
games provide. In the remainder of this paper, we will
present three research projects that contribute to achieving
a subset of these challenges. The three projects have the
same underlying theme of (a) easing the effort involved in
developing computer game Al and (b) making them more
adaptive and appealing to the player.

The first project focuses on a framework for runtime be-
havior adaptation that aims at removing the responsibility of
the authors to foresee all possible situations that can be en-
countered during the game. The second project aims also at
reducing the effort of defining strategic behaviors for real-
time strategy games by extracting behavioral knowledge
from experts using a system that can automatically learn
new behaviors from example of game play sessions. Finally,
the third project aims at making the games more adaptive
to the players by using player modeling. The approach pre-
dicts which sequence of events will be more appealing for
each player and influences the game accordingly through the
drama manager.

Behavior Modification for Believable
Characters Al

In interactive games, embodied characters typically have
their own personalities, affecting the way they act in the

24

game. Authors usually create such characters by writing be-
haviors or scripts that describe the characters’ reaction to all
imaginable circumstances within the game world. This ap-
proach of authoring characters presents several difficulties.
First, when authoring a character’s behavior set, it is hard
to imagine and plan for all possible scenarios it might en-
counter. Given the rich, dynamic nature of game worlds,
this can require extensive programming effort. Second, over
long game sessions, a character’s static behavioral repertoire
may result in repetitive behavior. Such repetition harms the
believability of the characters. Third, when behaviors fail to
achieve their desired purpose, characters are unable to iden-
tify such failures and will continue to exhibit them. Ideally,
we want a self-adapting behavior set for characters, allow-
ing characters to autonomously exhibit their author-specified
personalities in new and unforeseen circumstances, and re-
lieving authors of the burden of writing behaviors for every
possible situation.

To address these issues, we have developed an approach
in which agents keep track of the status of their executing
behaviors, infer from their execution trace what might be
wrong, and perform appropriate revisions to their behav-
iors. This approach to runtime behavior transformation en-
ables characters to autonomously adapt during execution to
changing game situations, taking a first step towards auto-
matic generation of behavior that maintains desired person-
ality characteristics. Our approach is related to plan revi-
sion (Cushing & Kambhampati 2005), with the added com-
plexity that failure detection and behavior modification must
be performed during execution, enabling the game to con-
tinue seamlessly from the player’s perspective. This section
presents an overview of such approach; for more details see
(Zang et al. 2007).

Behavior Transformation System

Our game scenario consists of two embodied characters
named Jack and Jill. They are involved in a game of Tag, im-
plemented in Unreal Tournament (Epic Games 2004), where
they chase the character who is “It” around the game area.
The system (see Figure 1) is composed of a reactive layer
which handles the real-time interactions, and a reasoning
layer responsible for monitoring the character’s state and
making repairs as needed.

We use A Behavior Language (ABL) as the reactive layer.
ABL is explicitly designed to support programming idioms
for the creation of reactive, believable agents (Mateas &
Stern 2002). A character authored in ABL is composed of a
library of behaviors, capturing the various activities the char-
acter can perform in the world. ABL’s fast runtime execution
module makes it suitable for real-time scenarios. The run-
time execution module constantly senses the world, keeps
track of the current game state, initiates and monitors prim-
itive actions in the game world.

The reasoning layer consists of two components. The
first component tracks long-term patterns in the charac-
ter’s behavior execution and detects violations of the author-
specified behavior contract (see below). When a contract
violation is detected, it uses the execution trace to perform
blame assignment, identifying one or more behaviors that

Reactive Agent
Behavior Library

2 : Real time
g i3 Non-deterministic
i Exogenous events

Abstracted
trace

D

‘ Reasoning trace ‘

Figure 1: Architecture of our behavior transformation sys-
tem.

should be changed. The second component applies behavior
modification operators so as to repair the offending behav-
iors identified during blame assignment.

One of the essential requirements of a reasoning system
responsible for runtime behavior modification is to detect
when modification should be carried out. We need a way
for authors to specify contracts about long-term character
behavior; when the contract is violated, the reasoning layer
should modify the behavior library. To accomplish this, we
use a simple emotion model based on Em (Loyall 1997), an
OCC (Bartneck 2002) model of emotion. Emotion values
serve as compact representations of long-term behavior. The
author specifies personality-specific constraints on behavior
by specifying nominal bounds for emotion values. When
an emotion value exceeds the bounds specified by the au-
thor, this tells the reasoning layer that the current behavior
library is creating inappropriate long-term behavior and that
it should seek to assign blame and change its behavior. At
runtime, a character’s emotional state is incremented when
specific behaviors, annotated by the author, succeed or fail.
The emotion increment value per behavior is defined by the
author as part of specifying the character personality.

A second requirement on the reasoning module is to deter-
mine the behavior(s) that should be revised in response to a
violation of the personality contract (in our case, an emotion
value exceeding a bound). This blame assignment process
involves analyzing the past execution trace and identifying
the behavior with the maximal contribution to the out-of-
bound emotion value, amortized over time, as the responsi-
ble behavior.

Once the reasoning module has detected the behavior(s)
that need to be modified, the behaviors are modified using a
set of modification operators. The applicability of a modifi-
cation operator depends on the role the problematic behavior
plays in the execution trace, that is, an explanation of how
the problematic behavior contributed to a contract violation.
Thus, modification operators are categorized according to
failure patterns. The failure patterns provide an abstraction
mechanism over the execution trace to detect the type of fail-

25

ure that is taking place. On an implementation level, these
failure patterns are encoded loosely as finite state machines
that look for patterns in the execution trace.

At runtime, the system detects when the author-provided
behavior contract has been violated. Once blame assignment
has determined the offending behavior, the system uses the
failure patterns to explain the behavior’s role in the contract
violation. This involves matching each of the finite state
machines associated with the failure pattern against the exe-
cution trace. The set of matching failure patterns provide an
associated set of applicable behavior modification operators
to try on the offending behavior. Operators are tried one at
a time until one succeeds (operators can fail if the behav-
ior they are tweaking lacks the structural prerequisites for
the application of the operator). The modified behavior is
compiled and reloaded into the agent, allowing the game to
continue.

Future Work In order to increase the transformational
power of our system, we are adding more behavior modi-
fication operators to the system. Adding additional opera-
tors has several effects. First, as the number of operators in-
creases, the time required to reason about them and find the
applicable set increases. Second, operators for more com-
plex scenarios may have a lower success rate, requiring us
to focus the search through behavior transformation space. It
will become necessary for the reasoning layer to learn which
operators are best applicable in which situations, such that
fewer operators have to be tried. These characteristics of the
problem make a case-based approach, as a form of speedup
learning, very attractive. We are in the process of integrating
a case-based reasoner into our system.

Case-Based Planning for Strategy Games

Al techniques have been successfully applied to several
computer games such as checkers, chess or Othello (Scha-
effer 2001). However, in many computer games traditional
Al techniques fail to play at a human level because of the
characteristics of the vast search spaces this games require.
For that reason, game developers need to invest significant
effort in hand-coding specific strategies that play at a rea-
sonable level for each new game.

For instance, previous research has shown that real-time
strategy games (RTS) such as Wargus (a clone of the popu-
lar commercial game Warcraft IT) have huge decision spaces
(Aha, Molineaux, & Ponsen 2005; Buro 2003). In this sec-
tion we present an architecture that uses case-based planning
(Hammond 1990) to deal with such complex games.

In previous work, we have applied case-based reasoning
(CBR) to RTS games (Sharma et al. 2007a). The idea there
was to define a set of high level actions, and let a CBR sys-
tem learn when each should be applied. In this section, we
discuss a different approach that addresses the complexity
of this domain by extract behavioral knowledge from ex-
pert demonstrations (i.e., an expert plays the game and our
system observes). Then, at performance time, a case-based
planning engine retrieves suitable behaviors observed from
the expert and adapts them to the current game state. Adap-
tation is required since the game state may be different from

Behavior acquisition

Annotation
Tool

Case
Extractor

Annotated
Trace

Execution

state

CBR Y

>
behaviors

Planning
Execution

actiofs sensors

Figure 2: Overview of our case-based behavior acquisition and planning architecture.

the one in which the behavior was originally demonstrated,
with, for example, a new map, different units, or a different
objective.

One of the main contributions of this approach is that it
enables the game developers to specify the Al behavior just
by demonstration, i.e., instead of having to code the behavior
using a programming language, the behavior can be speci-
fied simply by demonstrating it to the system. If the system
shows an incorrect behavior in any particular situation, in-
stead of having to find the bug in the program and fix it, the
game developers can simply demonstrate the correct action
in the particular situation. The system will then incorporate
that information in its case base, thereby improve its behav-
iors in the future.

Case-Based Behavior Learning in Wargus

Figure 2 shows an overview of the process used to learn be-
haviors from expert demonstrations. The process is divided
into two stages:

e Behavior acquisition: Where a set of cases are extracted
from an expert trace.

e Execution: Where the cases extracted are reused to play
the game.

The first step in the process involves an expert providing
a demonstration to the system of how to play the game. As a
result of that demonstration, the system obtains a game trace
consisting of the set of actions executed during the game.
The next step is to annotate the trace. For this process, the
expert uses a simple annotation tool that allows him to spec-
ify which goals he was pursuing with each particular action.

Next, as Figure 2 shows, the annotated trace is processed
by the Case Extractor module, that encodes the strategy of
the expert in this particular trace in a series of cases. A case
stores a sequence of actions that an expert used in a partic-
ular situation to achieve a particular goal. Notice that from
a single trace many cases can be extracted. For instance, if
the expert destroyed multiple towers of the enemy, we can
collect multiple cases on how to destroy a tower.

Once the cases have been extracted from the expert
demonstration, the system is ready to use them in actual
game play. During performance, the interleaved Planning
and Execution (PE) module keeps track of the open goals.
For each open goal, the PE module sends the goal and the
current game state to the CBR module. In response, the CBR

26

module selects a case from the case base that suits the goal
and game state. That case is adapted to match the current
game state (adjusting which units make which actions, and
on what coordinates, since in the new map the stored coor-
dinates in the case might not make sense). Once adaptation
has taken place, the adapted behavior is sent to the PE mod-
ule.

The PE module keeps track of the behaviors that are be-
ing executed for each goal, and ensures that each subgoal
of each behavior is also satisfied by maintaining an execu-
tion tree of goals and subgoals. In addition, by using the
alive conditions of the behaviors, it monitors whether a par-
ticular behavior is still alive, and whether it is worthwhile
to continue executing it. Each time a behavior is finished
(or canceled), the PE module checks whether the goal that
behavior was pursuing has been achieved. If it has not been
achieved, then another behavior must be created by the CBR
module to satisfy the goal.

Future Work We plan to incorporate learning during per-
formance by retaining those adapted behaviors that suc-
ceeded when applied. This will enable the system to learn
with experience. The goal is to use the behaviors extracted
from the expert as the starting point, and slowly improve the
behavior library with experience. At any time, if the game
developers see that the system is unable to succeed in a par-
ticular situation, an expert demonstration for that situation
can be provided.

Drama Management in Interactive Stories

A typical problem in creating compelling story-based
games, such as the interactive drama Facade (Mateas &
Stern 2003), is to provide the player with a sense of agency
during the interaction while simultaneously giving the whole
experience an overall narrative structure. There is a growing
interest in developing Drama Manager (DM) components
that gently guide the player towards a story ending that ex-
hibits a narrative arc. The goal of these components is to
allow the player to have significant impact on what happens
during the interaction, rather than following along with a
pre-written script or being in control at only a few decision
points.

Previous approaches to DM development have used an
author-specified evaluation function to measure interest-
ingness and narrative coherence of a particular story path
(Weyhrauch 1997) and have employed a simulated player

Player
Game __ |Player -
T . Trace Modeling
Engine
Player L\
I Player
Physicall [Story actions
state | (state
— | Drama
Game State Manager

Figure 3: Basic scheme of the three modules that compose a
game in the proposed approach.

model to predict the next player action during the interac-
tion (Nelson et al. 2006). However, in experiential inter-
active systems, the player’s preferences must be taken into
account. This requires player models constructed during ac-
tual game play based on observations of real human players
interacting with the game. In this section we will present
a drama management approach that takes into account the
player by using a case-based user modeling approach, us-
ing the learned models as input to the Drama Manager (for
more details see (Sharma et al. 2007b)). The technique is
implemented with the well-known interactive fiction game
Anchorhead (Gentry 1998).

Integrating User Modeling with Drama
Management

Our approach to drama management consists of three mod-
ules (shown in Figure 3), namely: a Game Engine, respon-
sible for actually running the game and interacting with the
player; a Player Modeling module, responsible for analyz-
ing the actions of the current player and developing a player
model; and a Drama Management module, influencing the
development of the game and making it more appealing to
the player (represented as the player model).

The game engine handles the player input (formalized as
player actions); presents the game state to the user includ-
ing information regarding the kind of actions the player can
perform (via an audiovisual interface); and maintains the
current game state. Specifically, the game state consists of
three parts: The physical state, the story state, and the his-
tory. The physical state stores physical information such as
the location of the characters in the game. The story state
is represented as a set of plot points (Weyhrauch 1997). A
plot point is an event that is relevant to the game story (e.g.,
“the librarian had a car accident”). Plot points are structured
as a directed graph, where each plot point acts as a node in
the graph, and the arcs represent dependencies. Finally, the
history is a record of what has happened in the game since
the start to the current point in time.

The Player Modeling Module (PMM) constructs player
models based on the feedback provided by players at the end
of each game. This feedback contains player opinions on the
game, including the parts they enjoyed and those that were
not interesting from their perspective. The goal is to capture
the interestingness rating for the story elements encountered

27

by the player during the game episode. At the end of each
interaction, the PMM stores this player feedback along with
the corresponding trace of player actions during the game.
In particular, we use a case-based reasoning approach for
this module, with each player experience being stored as a
separate case in a case base.

During a particular game episode, the PMM utilizes this
information to compare the ongoing player trace maintained
by the game engine with player traces collected during pre-
vious interactions with different players. The feedback from
players with the closest matching traces are combined to
form an estimate of the stories that the current player is most
likely to prefer. The underlying assumption behind this ap-
proach is that if the current player’s actions follow a pattern
that closely resembles those of certain players who have pre-
viously played this game, then their interestingness rating
for stories would also closely match. The PMM uses this as-
sumption to estimate the stories the current player is likely to
enjoy. In general the player model stored in the PMM con-
tains information about a player’s ratings for the locations,
plot points, or sequences of plot points in the game.

Once the player module is generated, it is given to the
Drama Manager Module (DMM), whose role is to guide the
development of the story according to both the player model
and the author-specified story guidelines. Specifically, the
DMM selects appropriate drama manager actions (DM ac-
tions) at each point in the game. These actions represent the
things that the drama manager can carry out to influence the
game, e.g., “prevent the player from entering the library by
locking the door” or “hinting to the player that an object is
important by making one of the characters in the game talk
about it.” DM actions are specified by the game author in the
same way that he specifies the player actions that the player
might take at each moment of time in the game. Given the
set of possible directions in which the story might unfold (as
a function of the player’s selected actions), the drama man-
ager plans a set of DM actions to guide the player towards
story directions that are likely to be more appealing to him,
according to the player module and to author specified story
guidelines.

Future Work We plan to perform extensive player eval-
uation to validate the case-based player modeling module
and the drama manager module. We also plan to expand
the player modeling module to generate player action mod-
els that can predict the actions a particular player is likely
to take in given situations. Finally, we plan to move from
the text-based game Anchorhead to real-time 3D systems,
where the complexity of drama manager is increased con-
siderably.

Conclusions

In this paper, we discussed a set of challenges that state-
of-the-art computer games pose to the artificial intelligence
community. Developing Al techniques that can deal with the
complexity of computer games is a big challenge, but has
the potential to have a big impact in several areas including
entertainment, education, and training.

Our main goal is to develop Al techniques that can ease

the effort of incorporating Al in computer games to make
them more adaptive and appealing to the player. We call
such games adaptive games. In this paper, we introduced
three of our current research thrusts aimed at creating adap-
tive games via the application of case-based reasoning tech-
niques.

We share the vision of other computer game Al industry
people (Rabin 2004; Woodcock 2005) that game Al will be
the next revolution in the gaming industry. After the im-
pressive advances in audiovisual presentation and network-
ing capabilities, the next step in computer games is to in-
corporate advanced Al techniques that can achieve the goal
of having truly adaptive games, increasing the level of be-
lievability and immersion. To achieve this goal, the gaming
community needs new techniques, approaches and tools that
allow them to easily specify, develop, and incorporate Al in
their games.

Acknowledgements

The authors would like to thank all the people who con-
tributed to the projects discussed in this paper: Michael
Mateas, author of the ABL language and collaborator on the
behavior modification project, Peng Zang for behavior mod-
ification, Manu Sharma, Michael Holmes, Arya Irani and
Charles Isbell for real-time strategy games, and Mark Nel-
son and David Roberts for their help with the drama man-
agement work. We are grateful to DARPA for their funding
under the Transfer Learning and Integrated Learning pro-
grams.

References

Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and sys-
tem approaches. Artificial Intelligence Communications
7(1):39-59.

Aha, D. W., and Wilson, D. 2005. Computer gaming and
simulation environments: Papers from the ICCBR work-
shop. Technical Report, DePaul University, Chicago, IL.

Aha, D.; Molineaux, M.; and Ponsen, M. 2005. Learn-
ing to win: Case-based plan selection in a real-time strat-
egy game. In ICCBR’2005, number 3620 in LNCS, 5-20.
Springer-Verlag.

Aha, D. W.; Munoz-Avila, H.; and van Lent, M. 2005. Rea-
soning, representation, and learning in computer games:
Papers from the IJCAI workshop. Technical Report
AIC-05-127, Washington DC: Naval Research Laboratory,
Navy Center for Applied Research in Artificial Intelli-
gence.

Bartneck, C. 2002. Integrating the occ model of emo-
tions in embodied characters. In Proceedings of the Work-
shop on Virtual Conversational Characters: Applications,
Methods, and Research Challenges.

Buro, M. 2003. Real-time strategy games: A new Al
research challenge. In IJCAI 2003, 1534-1535. Morgan
Kaufmann.

Cheng, D. C., and Thawonmas, R. 2004. Case-based plan

28

recognition for real-time strategy games. In Proceedings of
the 5th Game-On International Conference, 36 — 40.

Cushing, W., and Kambhampati, S. 2005. Replanning: A
new perspective. In Proceedings of ICAPS.

Epic Games. 2004. Unreal tournament 2004,
http://www.unrealtournament.com.

Gentry, M. S. 1998. Anchorhead. available online at
http://www.wurb.com/if/game/17.html.

Hammond, K. F. 1990. Case based planning: A frame-
work for planning from experience. Cognitive Science
14(3):385-443.

Isbister, K., and Doyle, P. 2001. Toward the holodeck: In-
tegrating graphics, sound, character, and story. In Proceed-
ings of the Fifth International Conference on Autonomous
Agents, 409 — 416.

Isbister, K., and Doyle, P. 2003. Web guide agents: Narra-
tive context with character. In Mateas, M., and Sengers, P.,
eds., Narrative Intelligence, 229-243.

Kolodner, J. 1993. Case-Based Reasoning. San Mateo,
CA: Morgan Kaufmann.

Laird, J. E., and van Lent, M. 2000. Human-level AI’s
killer application: Interactive computer games. In AAAI
2000, 1171-1178.

Lester, J., and Stone, B. 1997. Increasing believability in
animated pedagogical agents. In First International Con-
ference on Autonomous Agents, 16-21.

Lester, J., and Stone, B. 1998. Integrating reactive and
scripted behaviors in a life-like presentation agent. In Pro-
ceedings of the Second International Conference on Au-
tonomous Agents, 261-268.

Loyall, B. 1997. Believable Agents: Building Interactive
Personalities. Ph.D. Dissertation, Carnagie Mellon Univer-
sity.

Magerko, B.; Laird, J.; Assanie, M.; Kerfoot, A.; and
Stokes, D. 2004. Al characters and directors for interactive
computer games. In Proceedings of the 2004 Innovative
Applications of Artificial Intelligence Confercence.

Mateas, M., and Stern, A. 2002. A behavior language
for story-based believable agents. IEEE intelligent systems
and their applications 17(4):39-47.

Mateas, M., and Stern, A. 2003. Integrating plot, character,
and natural language processing in the interactive drama
facade. In Proceedings of the Ist International Confer-
ence on Technologies for Interactive Digical Storytelling
and Entertainment.

Nelson, M.; Roberts, D.; Isbell, C.; and Mateas, M. 2006.
Reinforcement learning for declarative optimization-based
drama management. In AAMAS 2006, 775-782.

Rabin, S. 2002. AI Game Programming Wisdom. Charles
River Media.

Rabin, S. 2004. Al Game Programming Wisdom II. Charles
River Media.

Rieber, L. P. 1996. Seriously considering play: Designing
interactive learning environments based on the blending of

microworlds, simulations, and games. Educational Tech-
nology Research and Development 44(2):43-58.

Sawyer, B. 2003. Serious games: Improving public policy
through game-based learning and simulation. Whitepaper
for the Woodrow Wilson International Center for Scholars.
Schaeffer, J. 2001. A gamut of games. Al Magazine
22(3):29-46.

Sharma, M.; Homes, M.; Santamaria, J.; Irani, A.; Isbell,
C.; and Ram, A. 2007a. Transfer learning in real time strat-
egy games using hybrid CBR/RL. In IJCAI 2007, 1401—
1406.

Sharma, M.; Ontafién, S.; Strong, C.; Mehta, M.; and Ram,
A. 2007b. Towards player preference modeling for drama
management in interactive stories. In FLAIRS 2007.
Spronck, P. 2005. Adaptive game Al. Ph.D. Dissertation,
Maastricht University.

Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D.
Dissertation, Carnagie Mellon University.

Woodcock, S. 2005. Game Al: The
statet of the industry, available online at
http://www.gamasutra.com/features/20001101/.

Zang, P.; Mehta, M.; Mateas, M.; and Ram, A. 2007. To-
wards runtime behavior adaptation for embodied charac-
ters. In IJCAI’2007, 1557-1562.

29

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

