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In this paper, we propose an extension of Fischer’s 
algorithm to compute the optimal discretization of a 
continuous variable in the context of supervised learn- 
ing. Our algorithm is extremely performant since its 
only depends on the number of runs and not directly 
on the number of points of the sample data set. We 
propose an empirical comparison between the optimal 
algorithm and two hill climbing heuristics. 

In the next section, we present a formulation of the 
problem of discretization, then we describe an exten- 
sion of Lechevallier’s algorithm to find the optimal dis- 
cretisation and we insist on the use of runs instead of 
the points of the sample data set. After, we introduce 
two hill-climbing strategies. Finaly, we present experi- 
ments and empirical studies of the performances of the 
various presented stategies. 

Introduction Formulation 
Rule induction from examples, such as the well known 
induction trees (Breiman et al. 1984)) usually use cate- 
gorial variables. Hence, to manipulate continuous vari- 
ables, it is necessary to transform them to be com- 
patible with the learning strategy. The processus of 
splitting the continuous domain of an attribute into a 
set of disjoints intervals is called discretization. In this 
paper, we focus on supervised learning where we take 
into account a class Y(.) to predict. 

Let be Dx the domain of definition of a continuous at- 
tribute X( .). The discretization of X( .) consist in split- 
ting DX into k intervals 1j, j = 1,. . . , k with k 2 1. 
We note Ij = [dj-1, dj [ with dj’s be the discretization 
points. 

Border points 

Lechevallier (Lechevallier 1990) has described an ap- 
proach, based on Fischer’s works (Fischer 1958), to de- 
termine the optimal partition in K intervals among all 
the ordered partitions in O(n2). Thus, we can consider 
the discretization problem to be algorithmically solved 
since we can fastly compute the optimal discretization 
with Lechevallier’s algorithm. However, the found so- 
lution is generaly specific to a finite learning set, so that 
another sample set on the same problem can lead to a 
different optimal discretization. Hence, in the context 
of supervised learning, the quality of the discretization 
must be measured by the quality of the prediction it 
implies on a test set. In this case, we wonder whether 
or not the optimal discretization performs really better 
than hill-climbing heuristics such as Fusinter (Zighed, 
Rakotomalala & Rabaseda 1996) or MDLPC (Fayyad 
& Irani 1993) whose complexities are lower. 

Let be X(Q) = (21,. . . , xj, xj+l,. . . , za} the ordered 
set of the values of X(.) over the set R, 21 < . . . < xn. 
Let us denote by fij the set of the examples whose 
image by X(.) is sj. Assume dj is situated between 
xj and ~j+l, such that dj = p X ZT~ + (1 - p) X xj+l 
(0 5 p 5 1). dj is called a border point if and only if 
the classes of the elements of Rj are not all the same 
than those of the elements of !2j+l. 

U is the set of border points and we have u = 
Card(U). Fayyad and Irani (Fayyad & Irani 1993) 
have proved that the discretization points dj can only 
be border points. Thus U is the set of possible points 
for discretization. Finding the optimal discretization 
is then equivalent to extract the subset U* (U” C U) 
which induces an optimal split for the used criterion. 

Runs 
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Intelligence (www.aaai.org). All rights reserved. 

A run is a set of points placed between two border 
points. A run is represented by a vector which describe, 
for each class, its number of observations (the number 
of points of the run which belong to this class). We 
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can then represent the sample set by an array T as the 
IT-II---L--. 
Iollowlllg: 

It is clear that the number of runs is equal to the 
number of border points plus one: T = u -t 1. 

dl 4 4 d4 ds % 
0 0 0 

x x 000 X X x x xx 0 
-v -o--!z---e--s-a--)- 

R, R, RX R4 Rs % R7 

Figure 1: The runs Ri and the border points dj for a 
sample set composed of two classes “x” and “0”. The 
sequences can be homogeneous: (RI, R2, RG, R7) or not 
(izs, &, iis j. in the first case, all points have the same 
value for Y(.) and in the last case, all points have the 
same value for X (.). 

Optimal discretization 
Measuring the quaiity of a partition 
The problem consists in finding the split from which 
we can predict the class Y(.) at best. Every subset 
Ui C U of border points leads to a partition perfectly 
described by an array Ti whose structure is similar to 
T. 

We necessarily have to compare partitions contain- 
ing different numbers of intervals. The quality mea- 
sure, we shall use, must take into account the in- 
crease in complexity induces by an excessive parti- 
tionning. There are several ways to introduce com- 
plexity bias to avoid excessive partitionning. We can 
quote measures based on Minimum description length 
principle (Fayyad & Irani 1993)) measures of the type 
X2 (Tschuprow, Cramer), or measures using informa- 
tional gain taking into account sample size (Zighed, 
Rakotomaiaia & Rabaseda i996j. These measures can 
possibly be guided by resubstitution error rate (Liu & 
Setiono 1995). 

From now on, we use Zighed’s measure denoted ‘p( .). 
We have carried out several experiments which con- 
clude that these different measures have the same be- 
1. c--f ..- A.-- ---, I- A.^ PIrl ^_^__ -1, &I., .-... __-." rr* 
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which one verifies: cp(T*) = mini[(p(Ti)]. 

An algorithm for finding optimal 
discretization 
Finding optimal discretization in k classes with a set 
of n points could be done by testing all the possible 
partitions. In this case, the algorithm has a very high 
mwnnlPvit,r fu,J+11 R11t. T.prhmmllim IT,nrhmmllier t,"rrr~L"nr"J " \' Y YY”, Y”v~~~...w&--“~ \ ---**.,. ---I- 

1990) has proposed’an algorithm based on Fischer’s 

works (Fischer 1958) for finding optimal discretization, 
m.L,,.- . . ..--l^-..r-.- A(-21 
WU"bt: c"lup'eTuby 15 "(7‘ ). 

This algorithm use two fundamental hypothesis 
which are: 

l ordering elements property : over the set 
X(i-2) = {Xl)...) x,} a partition in k intervals is or- 
&& if 5c-d QI?iV if fnr PVPrV fyc eiPmen.~s T’i SlTIrl V: J -- --- -‘---J -7 ---- -2 
of X (0) which belong to the same interval 4, every 
element situated between xi and zj belongs to the 
same interval; 

l Additivity of the quality measure: if a partition 
(+%...,xi), 12, ***, 4) in k intervals is optimal, then 
the partition (12 , . . . . Ik) is an optimal partition in 
k - 1 intervals of the set (IC;+~, . . . . zcn). 

The first property is not restrictive since X (0) C 
lR the element are necessarily ordered. But, the second 
property requires the additivity of the choozen mea- 
sure. It has been proved by Lechevallier (Lechevallier 
1990) for the measure based on a x2, and by Zighed & 
al. (Zighed, Rakotomalala & Rabaseda 1996) for the 
previous cp(.) measure. 

An extension of Fischer’s algorithm 
Fischer’s algorithm is a dynamic programming proce- 
dure. The main idea is to find some relations between 
the optimal partition in k intervals of the inital data 
set and the optimal partitions in k - 1 intervals of sub- 
sets of the data set. It uses the order to restrict the 
number of possible partitions. The additivity of the 
cp measure is then used to obtain a recurrent equa- 
tion between optimal partitions. We present here an 
extention of Fischer’s and Lechevallier’s algorithms by 
considering the partitionning of a set of runs instead of 
points. This is a consequence of the work of (Fayyad 
& Irani 1993) who have proved than a run can never 
be split in an optimal discretization. 

Let us consider a set of runs (Ri, 1 5 i 2 r). We 
search an ordered partition which is optimal for the 
‘p measure. We denote by Pi this partition with k 
the number of intervals and 1 the first run taken into 
account. We then have: 

Since cp is additive, the value of cp 
partition ’ 

oc”g, Fr{ R,P_:FTY , Rj< >> where r;c 
given by 
= 0 and 

jh = r for the sake of simplicity. This additivity of cp 
implies that 
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is an optimal partition in Ic - 1 intervals of the set 
of runs {Ri, jl + 1 < i 5 T}. Hence, there are connec- 
tions between the optimal partition in ir, intervals and 
those in Ic - 1 intervals. The problem is then to find 
the first cutting point jr. This point is one of the in- 
tegers interval [l, r - k + 11. The optimal partition Pi 
can then be obtained through a minimization process: 

‘P(P,~) = I<jl~~k+l{~(IR1,...,R31)) +P (?:I-:‘)} - - 
The previous relation introduce a relation of recur- 

rence between Pi and ‘PC-‘. If we can compute the 
various partitions Pk-r , jl” then by using the minimiza- 
tion procedure we deduce Pk. To compute the parti- 
tions ‘$y, it is possible to use again the relation of 
recurrence. 

We obtain the following algorithm: 

Computing the partitions Pi for 1 5 2 < T 

For all p, 2 5 p 5 k, compute the partitions Pz for 
each Q of the interval [l, T - p + l] 

l Compute the summations v({R,, . . . ,R,}) + 
p (Piml) for q 5 0 I T 

l cp (‘Pj) is the minimum value of the previous ones 
l At step Ic of this algorithm, the optimal partition 

Pi is determined when q = 1. 

The partition P* which is optimal among all the 
previous optimal partition, is given by: cp (P*) = 
minjr,r ‘p (Pj’) 

Two hill-climbing heuristics 
Bottom-Up (BU) and Top-Down (TD) 
strategies 
Beside Fischer’s strategy whose complexity is 0(r2), it 
is possible to use less complexity [O(T)] methods but 
which are not optimal. They are used in most of the 
contextual discretization algorithms published in the 
litterature. These methods are based upon two hill- 
climbing heuristics: 

l the first one, called “top-down”, uses the “divide and 
conquer” principle. It recursively computes a binary 
partitionning of each previously computed sets until 
a stopping rule is verified (Catlett 1991). The set U* 
is iteratively built by adding discretization points. 

l the second one, called “bottom-up” uses an opposite 
principle. Its starts from an initial partition defined 
by U, the set of border points. Then, it iteratively 
tries to aggregate adjacents intervals until the par- 
tition optimizes the measure (Zighed, Rakotomalala 

& Rabaseda 1996) or until no aggregation is reliable 
(Kerber 1991). In the last case, the set U* is built 
by deleting points of the partition. 

Theses two strategies run very fast but they have the 
disadvantage of being irrevocable. Each added point 
in U* with the “top-down” strategy cannot be deleted; 
each deleted point in U* cannot be reintroduced in the 
last strategy. 

A previous studies (Zighed, Rakotomalala & 
Rabaseda 1996) have showed that MDLPC (Fayyad 
& Irani 1993) and Fusinter are very close, so we only 
use this last algorithm here. 

Is an optimal discretization algorithm 
useful1 or useless ? 
We are now confronted to a simple choice: on one side 
we have a very fast algorithm, on the other side an 
algorithm, with a higher cost, but which provides a 
global optimization. Is it interesting to use one of these 
instead of the other one ? 

In the context of supervised learning, one of our 
main goals is to build a model having the minimum 
error rate in prediction, which could be estimated by 
applying the model on a sample set not used for learn- 
ing, called test set. It is generally supposed that a 
model which optimizes a criterion having good prop- 
erties, especially the resistance to overfitting on noisy 
data, will perform better in prediction. Hence, the 
problem of learning is often reduced to an optimiza- 
tion problem. In this paper, we verify this hypothesis 
by confronting the hill-climbing heuristics with our im- 
provement of Fischer’s algorithm. 

Experiments 
Comparison method 
We compare the Fusinter method with Fischer’s strat- 
egy using the Breiman’s waves dataset (Breiman et 
aZ. 1984). To do so, we have generated 11 learning 
samples of 300 points each and a test sample of 5000 
points. For any w taken from the learning sample and 
the test sample, we dispose of a 21 components vectors 
noted (Xr (w), . . . , Xj(w), . . . ,X21(w)) and of a label 
Y(w). For each attribute Xj, we determine the best 
discretization obtained on the learning sample and we 
consider it like a decision tree with one depth level. 
Then, we measure the quality of the discretization on 
the test sample by the accuracy rate. 

The two methods (Fusinter, Fischer) are compared 
using a t-test for dependent samples. Critical value of 
the test is to.975 = 1.96 for a 5% significance level, and 
we found t* = 1.735. So, we conclude that Fischer’s 
strategy is not significantly better than Fusinter. 
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Table 1: Comparison Fusinter vs Fischer 

Results and discussion 
Three main results draw our attention: 

in our experiments, Fusinter almost always found the 
right number of intervals; 

but nearly never find the optimal partition (29 times 
over 231 trials); 

this disadvantage does not significantly modify its 
performance towards those of Fischer’s strategy if 
we consider the error rate in prediction. Indeed, over 
the 231 files, Fusinter is better than Fischer 73 times 
and has similar performances 47 times. Using the 
test procedure described above, the difference is not 
significant for a 5% risk (table 1). 

The doubts of several authors (Breiman et al. 1984) 
on the usefullness of optimization in induction process 
are confirmed in this paper. Our goal is to obtain the 
lowest error rate in prediction with the simplest model 
following Occam’s razor principle. Then, it is probably 
not very interesting to use complex learning strategies. 
We can get better results (in our experiments, for a 
10% risk, we can conclude to the superiority of Fis- 
cher’s strategy) but they are not significant. Hence, 
the choice of a method is more dependent on the fac- 
ulty of understanding the model, on its simplicity or 
its running time. 

Moreover, we wonder whether an optimization pro- 
cedure, which only uses the contingency tables infor- 
mation, is reliable. In fact, in this case, we neglect the 
distribution of the samples. Let us consider a sample 
belonging to a class Yr which is surrounded by elements 
of a class Ya, then we can suppose that this point has 
the wrong label or that this point is aberrant. There 
c._^ ----^-^ 1 --l..L:--- .A^ Ll.2, ,..,I.,,, T4. :n ..finn:l.1- +r\ dlx several S”lUbl”llD b” c111s pJ’“u’~M. Lb 13 y”D”1u’cT IJ” 
mix supervised and unsupervised methods (Dougherty, 
Kohavi & Sahmi 1995) by introducing, for instance, a 
measure which takes into account the relative distri- 
bution of the intervals in lR, by using the inertia (de 
Merckt 1993) or the variance (Lechevallier 1990). 

Conclusion 
In this paper, we have established that the use of op- 
timal discretization using a partition quality measure 
has no significant improvement on the error rate in 
prediction beside a simple hill-climbing heuristic. 

Nevertheless, we have to qualify this conclusion. 
Some works have proved that the loose of informations 
introduced by discretization can hide the relations be- 
tween the variables (Celeux & Robert 1993). Thus, 
it would interesting to complete this study by trying 
t0 chacterize the problems and the data (distribution, 
noise level...) for which it is necessary to use optimal 
discretization. It would be also interesting to study 
the behaviour of different induction processes in rela- 
tion with the various discretization methods. 
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