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Abstract
We consider the problem of aggregation for uncertain and
imprecise data. For such data, we define aggregation
operators and use them to provide information on
properties and patterns of data attributes. The aggregates
that we define use the Kullback-Leibler information
divergence between the aggregated probability distribution
and the individual tuple data values. We are thus able to
provide a probability distribution for the domain values of
an attribute or group of attributes using imperfect data.

Information stored in a database is often subject to
uncertainty and imprecision. An extended relational data
model has previously been proposed for such data which
allows us to quantify our uncertainty and imprecision about
attribute values by representing them as a probability
distribution. Our aggregation operators are defined on such
a data model. The provision of such operators is a central
requirement in furnishing a database with the capability to
perform the operations necessary for Knowledge Discovery
in Databases.

Background
Frequently, real life data are uncertain, i.e. we are not
certain about the truth of an attribute value, or imprecise,
i.e. we are not certain about the specific value of an
attribute. Such imprecision might occur naturally as a
result of data being provided at different levels of the
concept hierarchy or from the integration of distributed
databases. It is therefore important that appropriate
functionality is provided for generalised database systems
to provide intelligent ways of handling such imperfect
information. A recent survey of various approaches to
handling imperfect information in Data and Knowledge
Bases has been provided by Parsons (1996).

 A database model which is based on partial values and
partial probabilities (DeMichiel, 1989; Tseng et al., 1993;
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Chen and Tseng, 1996) has been proposed to handle both
imprecise and uncertain data. Partial values may be
thought of as a generalisation of null values: rather than
not knowing anything about a particular attribute value,
we may identify the attribute value as belonging to a set of
possible values. Partial probabilistic values (Chang and
Chen, 1994) further generalise by assigning probabilities
to the partial values. We may thus combine the
imprecision-handling capacity of partial values with the
uncertainty-handling capabilities of probability theory.
This capacity to handle both imprecise and uncertain data
is a major strength of our current approach. The facility to
aggregate such data is a central requirement in providing
a database with the capability to perform the operations
necessary for Knowledge Discovery in Databases, where
we are frequently concerned with identifying interesting
attributes or interesting relationships between attributes.

Data Models for Imprecise
and Uncertain Data

In a generalised Relational Database we consider an
attribute A and tuple t of a relation R which has values
which are imprecise in that in any particular tuple an
attribute value may be a partial value.
Definition 1. A partial value is determined by a set of
possible attribute values of tuple t of attribute A of which
one and only one is the true value. We denote a partial
value η by η = [ a ar s,... ] corresponding to a set of h

possible values {a ar s,... } of the same domain, in which

exactly one of these values is the true value of η. Here, h is
the cardinality of η; { a ar s,... }is a subset of the domain set

{ a a1,... k }of attribute A of relation R and h≤k.

We extend the definition to a partial probability
distribution, where probabilities are assigned to each
partial value.
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Definition 2. A partial probability distribution is a vector
of probabilities ϕ(η) = (p

1
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Example 1: For a partial probability distribution to be
defined on the attribute SMOKING_STATUS, we have a
set of partial values which forms a partition of the domain,
such as ({‘heavy’, ‘light’}, {‘ex-heavy’, ‘ex-light’},
{‘never}). We then define a partial probability distribution
on this partition, e.g.<{‘heavy’, ‘light’}, 0.4>, <{‘ex-
heavy’, ‘ex-light’}, 0.35>, <{‘never’}, 0.25>.

This distribution means, for example, that the probability
of being either a heavy or a light smoker is 0.4.
An extended  relational model in which the tuples consist
of partial values was described in DeMichiel (1989) and
Chen and Tseng (1996). We extend  this data model to an
extended relational database model based on a partial
probability distribution. An equivalent data model, along
with some extended relational operators such as project
and join, has been proposed by Barbará et al. (1992) who
introduced the term probability data model (PDM).

ID SEX SMOKING
STATUS

HYPER
TENSION

HEART
DISEASE

01 <{M},0.0>
<{F},1.0>

<{S},1.0>
<{E},0.0>
<{N},0.0>

<{S,M},1.0>
<{N},0.0>

<{S},0.75>
<{M,N},0.25>

02 <{M},1.0>
<{F},0.0>

<{S},0.0>
<{E},1.0>
<{N},0.0>

<{S,M,N},1.0> <{S},0.75>
<{M},0.2>
<{N},0.05>

03 <{M},0.0>
<{F},1.0>

<{S},0.0>
<{E},0.2>
<{N},0.8>

<{S,M},0.0>
<{N},1.0>

<{S,M},0.0>
<{N},1.0>

04 <{M},1.0>
<{F},0.0>

<{S},0.9>
<{E},0.1>
<{N},0.0>

<{S},1.0>
<{M,N},0.0>

<{S},1.0>
<{M,N},0.0>

05 <{M},0.0>
<{F},1.0>

<{S},0.0>
<{E},1.0>
<{N},0.0>

<{S,M},0.0>
<{N},1.0>

<{S},0.2>
<{M,N},0.8>

06 <{M},1.0>
<{F},0.0>

<{S},1.0>
<{E},0.0>
<{N},0.0>

<{S,M},1.0>
<{N},0.0>

<{S},1.0>
<{M,N},0.0>

07 <{M},1.0>
<{F},0.0>

<{S},0.0>
<{E},0.0>
<{N},1.0>

<{S,M},0.0>
<{N},1.0>

<{S},0.1>
<{M},0.2>
<{N},0.7>

08 <{M},1.0>
<{F},0.0>

<{S},1.0>
<{E},0.0>
<{N},0.0>

<{S},1.0>
<{M,N},0.0>

<{S},0.9>
<{M},0.05>
<{N},0.05>

09 <{M},0.0>
<{F},1.0>

<{S},0.75>
<{E},0.25>
<{N},0.0>

<{S,M},1.0>
<{N},0.0>

<{S},0.0 >
<{M},1.0>
<{N},0.0>

10 <{M},1.0>
<{F},0.0>

<{S},1.0>
<{E},0.0>
<{N},0.0>

<{S,M},0.0>
<{N},1.0>

<{S},0.2>
<{M,N},0.8>

Table 1. A Probability Data Table

Table Legend
SEX:   M - male, F - female;
SMOKING_STATUS:S - smoker, E - ex - smoker, N - never;
HYPERTENSION:S - severe, M - mild, N - no hypertension;
HEART_DISEASE:S - severe, M - mild, N - none.

Definition 3. A probability data model (or table) R is a
relation based on the probability distribution of partial
values for domains D1, D2,...Dn of attributes A1, A2,...An

where R ⊆ P1 x P2 x...Pn  and Pi is the set of all the
probability distributions on the power set of domain Di.
Each element of the table is a probability distribution
specified on a partition of the appropriate domain into
partial values.

An example of a probability data model is presented in
Table 1. This general relational data model allows us to
represent a number of other models as special cases. For
example, the attribute SEX is crisp with no null values,
i.e. a value is M with probability 1 or F with probability 1.
The attribute SMOKING_STATUS consists entirely of
crisp probabilistic values, i.e. in each case we know
probabilities for each of the three possible values - smoker,
ex-smoker or never smoked. The attribute
HYPERTENSION consists of true partial values: here
attribute values are imprecise but not uncertain. The final
attribute, HEART_DISEASE, is a true partial probability
distribution; the values are therefore both imprecise and
uncertain.

Aggregation of Partial Probabilities

In this section we develop an approach which allows us to
aggregate attributes of a partial probability distribution
relation such as that presented in Table 1. Thus this
general aggregation operator (gagg) must include, as
special cases, crisp and certain data (e.g. SEX in Table 1)
and crisp and uncertain data (e.g. SMOKING_STATUS).

Notation: As before, we consider an attribute Aj of a
partial probability relation R with corresponding domain
Dj ={v 1,...vk} which has tuples t1,...tm.. The value of the
rth tuple of Aj is a probability distribution described by
vectors

tr . Aj = ( fr
j

1
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Definition 4: The general aggregate of a number of
probability distribution values on attribute Aj of relation R,
denoted gagg ( R. Aj ), is defined as a vector-valued
function:



gagg ( R. Aj ), = (π1,...πk) in which the πi ’s are computed
from the iterative scheme:

π π π
i i

r
j

=1

g

ir u ur
u

k

r

m  / )) / m 

     
for i = 1,...k.

r
( ) ( )

( ) ( )
( (n n

nf q q= ∑ ∑∑−
−

=
=

1
1

1
1

O

"

" "

Where the data are crisp, i.e. if we are trying to estimate πi

from a singleton partition set Sri
j( )of tuple r, then the

contribution to πi is simply fri
(j). Otherwise we apportion

the probability fri
(j) to the  πb’s where vb∈Sbi

j( ) in the

proportion πi /( πγ
γ ∈

∑
Sbi

j)(
). We illustrate this idea in the

following example.
Example 2: Consider the first two tuples of the attribute
HEART_DISEASE in Table 1.
Here g1 = 2; S11 = {S}; S12={M, N}; f 11=0.75; f12=0.25;
q111=1; q212=1; q312=1;
and g2 = 3; S21 = {S}; S22 = {M}, S23 = {N}; f 21=0.75;
f22=0.2; f23=0.05; q121=1; q222=1; q323=1.
The iteration scheme in Definition 4 is then given by:
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from which we obtain the result that:
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By iteration,  or simply substitution,  we obtain the 
result that  π π π1 2 30 75 0 2 0 05= = =. , . , . .

Our definition of the general aggregate operator
provides a general approach which can aggregate both
imprecise and uncertain data in a consistent manner. The
way the algorithm treats imprecise data is intuitively
appealing since imprecise data values are apportioned to
the appropriate aggregated probabilities according to the
probabilities of their taking each of the possible values.
We now show that the general aggregation algorithm also
has a strong theoretical underpinning.

The Theoretical Framework
The Kullback-Leibler information divergence between two
distributions p =(p1,…pn)  and q =(q1,…qn) is defined as

D p q p p qj( || ) log( / ).  j j
j

= ∑

The iteration equations which define the aggregation in
fact minimise the Kullback-Leibler information
divergence between the aggregated probability distribution
{ πi} and the data {frs}. This is equivalent to maximising

the likelihood of the model given the data. Minimising the
Kullback-Leibler information divergence, or equivalently
maximising the log-likelihood, becomes:
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Vardi and Lee (1993) have shown that this problem
belongs to a general class which they term Linear Inverse
Problems (LININPOS). For such problems they develop
an algorithm which converges monotonically to the
solution of the minimum information divergence equation.
In our case this algorithm is equivalent to Definition 4,
and is an example of the EM (expectation-maximisation)
algorithm (Dempster et al, 1977), which is widely used for
the solution of incomplete data problems. For example,
such an approach is used by Scotney and McClean (1998)
to integrate distributed data over attribute domain
partitions. In general terms our problem may be regarded
as one of graphical modelling, as described by Cox and
Wermuth (1996), in this case subject to statistical
incompleteness.

Vardi and Lee (1993) have shown that the iterative
scheme always converges, but where there is an
identifiability problem the solution may not be unique.
However, they show that a sufficient condition for
uniqueness is that the rows of the matrix Q = { qi" } are

linearly independent. They also show that a necessary and
sufficient condition for uniqueness is that the equation F =
π.Q  does not have multiple solutions, where Q = { qi" }

and π = {πi}. The vector F consists of elements which are
the sums of the probabilities frs aggregated over the set Srs.
The vector is then normalised so that the elements sum to
1. In our case, since it is likely that we will have a large
proportion of the data which is crisp, this condition will
normally be satisfied.

In general, convergence of the EM algorithm may be
slow (Wu, 1983). However, if most values are crisp, it is
likely that the rate of convergence will not be a problem.
Our simulation results support this claim. However, if
speed of convergence becomes a problem, then there are a
number of recent papers which suggest ways in which
convergence can be accelerated, e.g. Jamshidian and
Jennrich (1997), Molenberghs and Goetghebeur (1997).

In our simulations we have used the scaled cardinalities
of all the crisp data as an initial value for the general
aggregation operator. This is the answer we would get if
we applied the simple aggregation operator and ignored
all imprecise data. Such a starting value should therefore
prove reasonably close to the final answer and therefore
lead to fast convergence.



We now illustrate the approach by applying the
algorithm to the attribute HEART_DISEASE in Table 1.
Example 3: In this case the matrix Q is given by

Q =
0
1
0

1 0 0
0 0 1
0 1 1









 ,

corresponding to {S}, {M}, {N}, and {M, N}
respectively, i.e. we have permuted the rows and columns
to reflect a logical ordering of the subsets and have deleted
repeated columns. The vector F ,defined earlier, is then
given by:

F = (0.49,  0.145,  0.18,  0.185) .
The iterative scheme for this data is thus:
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from which we obtained the result that:

  
in one iteration (to 3 decimal places),  using a 
start value of (0.601,  0.178,  0.221)

Aggregation involving Several Attributes
In the previous section we illustrated the use of a general
aggregation operator for imprecise and uncertain data in a
single attribute. However, it is often of more interest to
derive the joint probabilities of several attributes’ values
occurring simultaneously, and our methodology may be
extended to cover this situation. Hence we consider the
cross product of attributes A1,…An with domains D1,…Dn.
We define the cross product $ = A1x…x An with domain

' = D1x…x Dn. Let the values of domain Dj be given by

{v 1
(j)

,……, vk
j

j

( ) }. Then the values of ' are of the form

{ va
1

1
( ) x…x va

n
n

( ) } where ai ∈{1,…ki} for i =1,...n.

The partial probability distribution then assigns
probabilities {frs} to partitions {Srs} of ' for each tuple.

The algorithm proceeds as in Definition 4. In Example 4
we illustrate this approach by deriving the joint
distribution of the attributes SMOKING_STATUS and
HEART_DISEASE in Table 1.
Example 4: The possible singleton values of the domain
' = SMOKING_STATUS x HEART_DISEASE are: {S,

S}, {S, M}, {S, N}, {E, S}, {E, M}, {E, N},{N, S}, {N,
M}, {N, N} with corresponding probabilities π1,.... π9. The
subsets of ' which are represented in the data are:{S,

S}, {S, M}, {S, N}, {E, S}, {E, M}, {E, N},{N, S}, {N,
M}, {N, N},{S,{M, N}},{{E,{M, N}}, and for which the
vector F is

F={0.375, 0.08, 0.005, 0.105, 0.045, 0.025, 0.01, 0.02,
0.15, 0.105, 0.08}.

The iterative scheme for this data is given by:
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from which we obtain the result that:
    
  

   where convergence 
occurred in one iteration

Knowledge Discovery
In order to discover knowledge from databases we are
often concerned with inducing rules from database tuples
(Anand et al., 1997). Rules are often based on sets of
attribute values partitioned into an antecedent and a
consequent. A typical “if then” rule of the form “if
antecedent = true, then consequent = true” is given by “if
an individual smokes and is hypertensive, then he or she
is very likely to suffer from heart disease”.  Support for
such a rule is based on the proportion of tuples in the
database that have the specified attribute values in both
the antecedent and the consequent. Therefore the
evaluation of such an association rule often requires only
standard database functionality, and may be implemented
using embedded SQL (Anand et al., 1997).

Using the approach described in previous sections we
may use the general aggregation operator to derive joint
probabilities and then compute conditional probabilities.
Thus, for example, using the data in Table 1 we obtain:

probability(smokes and severe heart disease) = 0.375
probability (smokes) = 0.565.

Therefore, the conditional probability of having severe
heart disease given that an individual smokes is given by:

probability (severe heart disease | smokes)
= 0.375/0.565 = 0.664.

However, the unconditional probability (severe heart
disease) = 0.49, which is smaller. We may therefore
possibly induce the rule “smoking increases the chances of
heart disease”, subject to thresholding parameters.

We may therefore use the general aggregation operator to
assess rule validity. Thus, in general, if we wish to
examine the rule:



A1,...Ar → B1,...Bs ,

where A1...Ar, B1,...Bs are all attributes of a relation R,
then we compute the joint probabilities:

Prob(A1...Ar, B1,...Bs) and Prob(A1...Ar),

from which we may assess the validity of the rule by
calculating the conditional probability:

Prob(B1,...,Bs | A1...Ar) = Prob(A1...Ar, B1,...Bs) /
Prob(A1...Ar).

We may thus determine the strength and support for
various rules under consideration. Thresholding then takes
place to decide if the candidate rules are sufficiently likely
to merit the user being informed. A probabilistic
approach, such as that described, may then be used to
represent rules as linguistic summaries (McClean and
Scotney, 1997) in order to facilitate a user interface to the
KDD process.

Summary and Further Work
We have considered an extended relational data model
which handles both imprecise and uncertain data. We
have also developed general aggregation operator which
allows us to determine a probability distribution for
attribute values either for a single attribute or for the
cross-product of a number of attributes. Such functionality
has potential for knowledge discovery in databases where
we may use it to assess the validity of association rules.
Further work will focus on including domain knowledge,
such as that held as integrity constraints, into the model,
and on techniques for accelerating the algorithm.
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