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 Abstract 

The Halo Pilot, a six-month effort to evaluate the state-of-
the-art in applied Knowledge Representation and 
Reasoning (KRR) systems, collaboratively developed a 
taxonomy of failures with the goal of creating a common 
framework of metrics against which we could measure 
inter- and intra- system failure characteristics of each of the 
three Halo knowledge applications. This platform 
independent taxonomy was designed with the intent of 
maximizing its coverage of potential failure types; 
providing the necessary granularity and precision to enable 
clear categorization of failure types; and providing a 
productive framework for short and longer term corrective 
action. 
Examining the failure analysis and initial empirical use of 
the taxonomy provides quantitative insights into the 
strengths and weaknesses of individual systems and raises 
some issues shared by all three. These results are 
particularly interesting when considered against the long 
history of assumed reasons for knowledge system failure. 
Our study has also uncovered some shortcomings in the 
taxonomy itself, implying the need to improve both its 
granularity and precision. It is the hope of Project Halo to 
eventually produce a failure taxonomy and associated 
methodology that will be of general use in the fine-grained 
analysis of knowledge systems. 

Introduction  

Since the first expert systems were first developed forty 
years ago, a great many knowledge-representation and 
reasoning (KR&R) systems have been fielded. Some – 
very few – have been carefully evaluated; these evaluations 
have typically yielded data on the systems’ overall 
performance, and occasionally have drawn comparisons 
with other systems or with the performance of people. Our 
goal is to go beyond evaluations of KR&R systems to an 
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analysis of them. We seek to understand why these 
systems fail when they do, the relative frequency of each 
type of failure, and the ways these failures might be 
avoided or mitigated. 
This is a major undertaking, and we have taken only the 
initial steps. First, we have designed a taxonomy of 
failures that fielded KR&R systems might experience. 
This step is necessarily speculative, since we have not 
studied a large sample of systems or surveyed their 
developers, but it is based on the authors' collective 
experience building many systems using a variety of 
different technologies. Second, we have built three KR&R 
systems using state-of-the-art technologies and carefully 
evaluated their performance in a pilot study. Although the 
systems did quite well overall, they nevertheless exhibited 
many shortcomings, yielding a large corpus of failures. 
Third, we analyzed each of these failures and attempted to 
place it within the taxonomy. We studied the resulting 
data to draw lessons about the taxonomy, the systems, and 
(by extrapolation) the current state of KR&R technologies 
for building fielded systems. 

A Class of Knowledge-based Systems: The 
Halo Pilot 

This effort to analyze KR&R systems and to better 
understand the causes of their failures arises in the context 
of Project Halo, a multi-stage effort funded and managed 
by Vulcan Inc. to develop a “Digital Aristotle”, an 
application that will encompass a substantial amount of 
scientific knowledge and be capable of answering 
unanticipated questions using advanced problem-solving. 
Vulcan sees two primary functions for the Digital 
Aristotle: first, as a tutor capable of instructing students in 
the sciences; and second, as a research assistant with 
broad interdisciplinary skills able to help scientists in their 
work.  
The data for our study was produced by the pilot phase of 
Project Halo. This was a six-month effort to evaluate the 
state-of-the-art in fielded KR&R systems performing deep 

KR 2004    507



reasoning. Three teams were contracted to participate in 
the evaluation: a team led by SRI International with 
substantial contributions from Boeing Phantom Works and 
the University of Texas at Austin; Cycorp; and Ontoprise. 
The objective of the evaluation was to determine whether 
current KR&R technologies were capable of correctly 
answering novel (previously unseen) questions and of 
providing concise, readable answer justifications.  
Significant attention was given to domain selection for the 
evaluation. It was important, given the limited scope of 
this phase of the project, to adapt an existing, well-known 
evaluation methodology with easily understood and 
objective standards. Several standardized test formats were 
examined. A 70-page subset of Advanced Placement (AP) 
chemistry was selected because it was reasonably self-
contained and did not require solutions to other hard AI 
problems, such as spatial or uncertain reasoning, or 
understanding diagrams. Topics included: stoichiometry 
calculations with chemical formulas; aqueous reactions 
and solution stoichiometry; and chemical equilibrium. 
This scope was large enough to produce many novel, and 
hence unanticipated, question types. One analysis of the 
syllabus identified nearly 100 distinct rules, suggesting 
that it was rich enough to require complex inference. It 
was also small enough to be represented in four months, 
the time allocated to the teams for knowledge formulation. 
Each team developed their KR&R systems using their 
existing, and very different, technologies. Team SRI’s 
implementation was based upon their SHAKEN system, 
[1] which uses the frame-based KM language and 
inference engine [2]. They employed an existing 
component library (CLIB) of representations of reusable, 
generic events, entities, roles, and relations to facilitate 
rapid development of knowledge [3]. Cycorp built the 
OpenHalo chemistry knowledge base upon their public 
OpenCyc technology, extended as needed by constructs 
from the main Cyc engine. The Cyc system is designed 
with the intention of representing the broad range of 
knowledge required by a general Artificial Intelligence, 
and achieves a partial functional partition into consistent 
functional domains using hierarchies of ontologies called 
microtheories. The knowledge in all Cyc systems is 
represented in CycL, Cycorp’s formal language, which 
includes first-order logic and some second-order and 
modal constructs [4]. Ontoprise built their OntoNova 
system on top of their OntoBroker® technology, [5, 6] 
which uses F-Logic [7], a logic-programming language 
similar to Prolog but with an object-oriented syntax. This 
implementation was constructed without the benefit of any 
pre-existing knowledge infrastructure like that represented 
by the SRI CLIB or the Cycorp upper ontology. The final 
SRI and Ontoprise knowledge bases were on the order of 
500 concepts, rules and relations, while Cycorp’s 
openHALO included about 15,000 concepts, of which 
approximately 14,000 were preexisting general terms from 
OpenCyc, and approximately 1000 were added to support 
the AP Chemistry task.  

The three teams also employed very different approaches 
to answer justification. Cycorp used its generative English 
capabilities to produce English language explanations 
from its proof trees. Meta-reasoning was used to remove 
explanation components that would be extremely obvious 
to the domain expert or that addressed Cyc’s internal 
inference methodology and would not be easily understood 
by a domain expert. Ontoprise used a dual inference 
process in its question answering. The first process 
attempted to derive the answer. If successful, the second 
process used the first proof tree along with rule specific 
human-authored explanation templates to produce the 
explanation. SRI also relied on human-authored 
explanation templates associated, in this case, with 
chemical “methods” built into their knowledge 
representation.  
Upon completion of the knowledge formulation, all three 
systems were sequestered on identical servers. Then the 
challenge exam was released to the teams, who were given 
two weeks to encode its questions in their respective 
formal languages. The exam consisted of three sections: 
50 multiple-choice questions and two sets of 25 multipart 
questions. Upon completion of the encoding effort, the 
formal question encodings of each team where evaluated 
by a program-wide committee to guarantee high fidelity to 
the original English. Once the encodings were evaluated, 
Vulcan personnel submitted them to the respective 
sequestered systems. The evaluations ran in batch mode. 
The Ontoprise system completed its processing in two 
hours, the SRI system in five hours and the Cycorp system 
in a little over 12 hours. 
Three chemists were engaged to evaluate the exams. 
Adopting an AP-style evaluation methodology, they 
graded each question both for correctness and the quality 
of its explanation. The exam encompassed 168 distinct 
gradable components consisting of questions and question 
sub-parts. Each of these received marks—ranging from 0 
to 1 point each for correctness and explanation quality for 
a maximum high score of 336. All three experts graded all 
three exams. The scoring of all three chemistry experts 
was aggregated for a maximum high score of 1008. The 
graded exams were distributed to the Halo teams to serve 
as the basis for their failure analysis. The guidelines for 
the analysis included producing written explanations for 
every point loss on a question-by-question basis and 
association of every point loss to a category in the 
taxonomy of types of failures. Details about the Halo Pilot 
– including the exam, the systems’ answers and 
explanations, and the graders’ scores and comments – are 
available at the Project’s Web site: 
http://www.projecthalo.com. 

A Taxonomy of Types of Failures 

Our goal was to design an implementation neutral 
taxonomy of failure types, exhibiting these qualities:  
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Coverage: The taxonomy must be broad enough to 
account for virtually every type of failure that a fielded 
KR&R system might experience. 
Precision: The categories in the taxonomy should be 
clearly defined so that every failure can be unambiguously 
classified into one or more categories.  
Granularity: The categories should be defined at a fine 
enough level so that they capture distinctions among 
interesting classes of problems. If all errors fall into one 
category, the categories are too coarse. If each category 
has only one instance of a problem, the categories are 
probably too fine-grained. 
Productivity: The categories should be defined in a way 
that they clearly suggest an action that could be taken to 
address it. It should also be clear how each type of failure, 
if uncorrected, would affect system performance. 
To meet the requirement of coverage, we created top-level 
categories in the taxonomy for the primary issues in 
building a question-answering system for the chosen 
subset of AP chemistry – one that receives previously 
unseen queries in a formal language and generates 
answers and justifications appropriate to the user. These 
categories are: 
(MOD) Knowledge Modeling: the ability of the 
knowledge engineer to model information or write the 
needed axioms.  
(IMP) Knowledge Implementation/Modeling 
Language: the ability of the representation language to 
accurately and adequately express the axioms. 
(INF) Inference and Reasoning: the ability of the 
inference engine to do the reasoning required to compute 
correct answers. 

(KFL) Knowledge Formation and Learning: the ability 
of the system (KB + inference engine) to acquire and 
merge knowledge through automated and semi-automated 
techniques 
(SCL) Scalability: the ability of the KB to scale. 
(MGT) Knowledge Management: the ability of the 
system to maintain, track changes, test, organize, 
document its current state; the ability of the knowledge 
engineer to inspect and revise knowledge. 
(QMN) Query Management: the ability of the system to 
robustly answer queries.  
(ANJ) Answer Justification: the ability of the system to 
provide justifications for answers in the correct context 
and at the appropriate level of detail.  
(QMT) Quality Metrics: the ability of the developers to 
evaluate the knowledge base throughout its development. 
(MTA) Meta Capabilities: the system's ability to employ 
meta-reasoning or meta-knowledge. 
To meet the precision and granularity requirements, we 
refined the top-level categories into 24 more specific ones, 
grouped under the ten original ones. For example, for 
failures due to the implementation/modeling language 
(IMP), we created three sub-categories, including failures 
due to the language being insufficiently expressive (B-
IMP-1) or being overly expressive (B-IMP-2). Although 
increased expressiveness has obvious benefits for 
knowledge engineering, it can, in the limit at least, come 
at the expense of tractable inference [8]. Distinguishing 
between failures of these two types might enable analysts 
to measure the costs and benefits of such enhancements. 
See Table 1. 

Table 1: A Taxonomy of Types of Failure 

Category Type Name and Description 
B-MOD-1 Modeling Error Failure. The knowledge engineer fails to model domain knowledge 

properly (the act of writing the axiom). 
B-MOD-2 Modeling Assumption Failure. Implicit “context” assumptions are not articulated, 

making it difficult for knowledge engineers to model/extend/modify information. 
Designers working from disparate assumed “context models” introduce conflicts into 
the KB. Resolving multiple contexts creates large, unwieldy rule sets. 

B-MOD-3 Modeling Primitive Failure. Limitations of the KR language make straightforward 
representation difficult resulting in errors or complex representations. 

Modeling 

B-MOD-4 “Islands of Knowledge” Failure. The knowledge engineer fails to make explicit 
connections between the domain model and the existing ontology/KB. The system 
cannot take advantage of existing knowledge to achieve the desired reasoning 
performance. 

B-IMP-1 Under-expressive Language Failure. The KR language is not expressive enough to 
model the domain knowledge. The resulting convoluted representations or 
approximations give unexpected or undesirable results. 

B-IMP-2 Over-expressive Language Failure. The KR language is overly expressive. Certain 
representations make inference intractable. 

Implementation, 
Language 

B-IMP-3 External Module Interface Failure. The KR language allows representations that do 
not readily translate to the representation states of external modules. 
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Category Type Name and Description 
B-MGT-1 Large KB Learning Failure. The knowledge engineer has difficulty learning the 

existing ontology/KB due to its size and complexity. Poor search and documentation 
tools compound this problem. 

B-MGT-2 Large KB Extension Failure. The knowledge engineer has difficulty extending the 
existing large, highly interconnected KB. The number of modeling errors (B-MOD-1) 
increases with KB magnitude and connection factor. 

Management 

B-MGT-3 Large Team Failure. The development team fails to communicate modeling 
assumptions, track versions, coordinate changes, etc. among team members. The 
assumptions, errors or conflicts lead to unpredictable system performance. 

B-KFL-1 Information Extraction Failure. Information Extraction techniques over unstructured 
data produce insufficiently deep models of domain knowledge. The system is unable to 
reason adequately over shallow domain representations. 

Formation, 
Learning 

B-KFL-2 Knowledge Mapping Failure. The knowledge engineer fails to merge structured 
knowledge from multiple sources appropriately (either due to merging errors or 
irreconcilable representational differences). The system either cannot take advantage of 
knowledge from multiple sources or suffers from inconsistencies. 

B-INF-1 Inference Engine Conceptualization Failure. The knowledge engineer models 
domain knowledge based on faulty understanding of the inference algorithms. The 
inference engine produces unexpected results. 

B-INF-2 Inference Engine Bug Failure. Errors in the implementation of the inference engine 
cause unexpected or undesirable results. 

B-INF-3 “Practical Incompleteness” Failure. The resource challenges of deep KBs prevent 
exhaustive search. The system fails to return an answer even though the information 
exists in the KB. Sensitivity to initial conditions makes search success unpredictable. 

B-INF-4 Consistency Failure. Hard contradictions cause deductive reasoning systems to fail. 
Large KBs that encompass many topics are susceptible to contradictions. 

Inference, 
Reasoning 

B-INF-5 Numeric Instability Failure. Failure to factor numerical aspects of computation into 
query responses leads to incorrect or inappropriate answers. 

B-QMN-1 Query Scoping Failure. The query encoding misses implicit assumptions or 
incorrectly includes irrelevant information from the query. The missing or extraneous 
information prevents the system from answering the query successfully. 

Query Management 

B-QMN-2 Query Encoding Failure. Sensitivity to the query encoding leads to unexpected or 
undesirable results. 

B-ANJ-1 Exposition Failure. Answer justifications are overly dependent on idiosyncrasies of 
the reasoning steps and/or proof tree. The resulting explanations may contain 
irrelevant, redundant or out-of-sequence information, making them unintuitive to a 
human reader. 

B-ANJ-2 Answer Template Failure. Manually created answer justification templates produce 
static justifications at fixed resolution independent of context. 

Answer 
Justification 

B-ANJ-3 Context Justification Failure. The answer justification mechanism is unable to 
produce user- and context-appropriate justifications. 

Quality Metrics B-QMT-1 Quality Metrics Failure. The KB quality metrics fail to provide needed feedback on 
the knowledge engineering process. The knowledge engineers cannot accurately 
determine coverage and completeness, resulting in gaps in the KB. 

Meta-capabilities B-MTA-1 Meta Capabilities Failure. The KB lacks required meta-knowledge (either due to 
omission or KR language insufficiency). The system performs poorly on questions 
requiring meta-reasoning. 

Other OTHER Failure for reasons other than the above. 

To meet the requirement of being productive, we 
elaborated the descriptions of each type of failure with the 
following attributes:  
A list of influences: the high-level influences that 
typically contribute to failures of this type 

An example: the symptoms (in terms of system behavior) 
that this type of failure might cause 
Mitigating factors: technologies and methods that might 
mitigate failures of this type 
Long-term research: research directions that might 
reduce or eliminate failures of this type 
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Table 2: Complete Taxonomy Entry for B-MOD-1

Failure Influences Description Example Mitigation Future Research 

B-MOD-1 MOD, QMT Modeling Error Failure 
The knowledge engineer fails to 
capture domain information 
properly in their modeling (the 
act of writing the axiom). 
 

Classifying chemical 
as an acid 
independent of the 
reaction. 
 

Review processes to validate 
that domain-specific information 
is captured correctly; SME 
testing of the system; SME 
involvement throughout 

Tools to better facilitate 
knowledge modeling by 
domain experts; Automated 
techniques to vet 
completeness and coverage 
of KB formation 

Table 2 gives the complete entry for the failures of type B-
MOD-1, a prevalent and intriguing type of failure of the 
Halo Pilot systems. 

Evaluation of the Taxonomy of Failure 

In this section we summarize the results of the failure 
analysis for the three systems. The numbers against each 
slice of the pie charts represent the points lost that could 
be attributed of the corresponding category. For example, 
in Figure 1.a, Cycorp’s loss of 64.63 points could be 
ascribed to B-ANJ-1 in the system’s ability to produce 
readable answer expositions appropriate to the context and 
user (AP chemistry exams, and their graders, 
respectively). The process of ascribing points of failure to 
positions in the taxonomy may not have been uniform, 
since it was performed by different groups for each system, 
working independently. The Cycorp analysis reported 
significant problems in 7 categories, and the SRI and 
Ontoprise systems reported significant problems in four 
categories each. Each of the three teams attributed a 
significant number of failures to the “other” category, 
meaning that the performance problem could not be 
attributed to any of the categories in the taxonomy. In 
SRI’s case, most of these points reflected failures due to 
gaps in knowledge attributed to lack of implementation 
time. Most of Cycorp’s “other” scores were attributed to 
points lost on answer justifications for questions that were 
not scored as having been answered correctly. Ontoprise 
reported a number of reasons for classifying points lost in 
the “other” category. Some of these were related to 
disputes over the details of question grading and whether 
the final questions were within the design scope of the 
pilot evaluation1.  
 
 
                                                
1 These disputes were not confined to Ontoprise, and were 
surprisingly many in number in light of the standardized 
nature of the test. For the purposes of the pilot evaluation, 
these were resolved by simply accepting the scoring 
produced by the judges.  

Figure 1.a: Cycorp Failure Analysis. Most of the points 
lost due to failure were the result of a failure to 
represent some element of chemistry knowledge (B-
MOD-1), difficulty in producing justifications in the 
form expected by domain experts (B-ANJ-1), and a 
lack of inference completeness with respect to the 
available knowledge (B-INF-3). 

Figure 1.b: Ontoprise Failure Analysis. Most of the 
points lost due to failure were the result of a failure to 
represent some element of chemistry knowledge (B-
MOD-1). 
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Figure 1.c: SRI Failure Analysis. Most of the points lost 
due to failure were the result of inappropriate 
modeling assumptions (B-MOD-2), difficulty in 
modeling knowledge due to the expressiveness of the 
KR language (B-IMP-1), and inflexible justification 
generation (B-ANJ-3). 

Table 3, below, displays the categories used by each of the 
three systems. Interestingly, there is no category that was 
used in analysing the errors of all three systems, even 
though there are several that were used in the analysis of 
two of the three systems. In general, modeling problems 
affected all three systems. B-MGT-2 and B-INF-3, which 
are associated with the size of the knowledge base, 
primarily affected the Cyc system. Ontoprise and SRI were 
both affected by B-IMP-1, which represents problems due 
to lack of expressiveness. 
 

 Cycorp Ontoprise SRI 
B-MOD-1 ���� ����  
B-MOD-2 ����  ���� 
B-MOD-3 ����   
B-MOD-4 ����   
B-MGT-2 ����   
B-IMP-1  ���� ���� 
B-IMF-2  ����  
B-IMF-3 ����   
B-ANJ-1 ���� ����  
B-ANJ-3   ���� 

B-MTA-1   ���� 

Table 3: Failure Category Usage 

Given the above observations, it is worth reviewing the 
original goals of the failure taxonomy to see how well they 
were met. Since the taxonomy was designed with the 
functional components of early versions of the various 
Halo systems in mind, it should have been expected to 
display good coverage of forms of failure exhibited by 
those systems. The substantial use of the “other” category 
and some possible overuse of the B-MOD-1 category 
suggest that the proposed taxonomy does not have enough 
precision; given a failure, it is not always possible to 

clearly and precisely attribute it to a failure category. 
Many of these problems could have been remedied 
procedurally during the project by establishing a 
reconcilliation process to ensure that the taxonomy was 
employed correctly and consistently by all reporting teams. 
Clearly such a process will need to be tested, and 
suggested modifications to the taxonomy will need to be 
applied before it is ready for more widespread use. 
Nevertheless, the taxonomy did prove to be suggestive in 
indicating functional areas of weakness in the three 
systems. Our failure analysis suggests three broad lessons 
that can be drawn across the board for the three systems:  
Modeling: A common theme in the modeling problems 
across the systems was that the incorrect knowledge was 
represented, or some domain assumption was not 
adequately factored in, or the knowledge was not captured 
at the right level of abstraction. Addressing these 
problems requires us to have direct involvement of the 
domain experts in the knowledge engineering process. 
The teams involved such experts to different extents, and 
at different times during the course of the project. The SRI 
team, which involved professional chemists from the 
beginning of the project, appeared to benefit substantially. 
This presents a research challenge, since it suggests that 
the expositions of chemistry in current texts are not 
sufficient for building or training knowledge-based 
systems. Instead, a high-level domain expert must be 
involved in formulating the knowledge appropriately for 
system use. Two approaches to ameliorating this problem 
that are being pursued by participants are: 1) providing 
tools that support direct manipulation and testing of KRR 
systems by such experts, and 2) providing the background 
knowledge required by a system to make appropriate use 
of specialised knowledge as it is presented in texts.  
Answer Justification: Explanation, or, more generally, 
response interpretability, is fundamental to the acceptence 
of a knowledge base system, yet for all three state-of-the-
art systems, it proved to be a substantial challenge. A part 
of the reason for this was a failure to fully grasp the vital 
role played by the explanation mechanism in a deployed 
question-answering system. Since the utility of the system 
will be evaluated end-to-end, it is to a large degree 
immaterial whether its answers are correct, if they cannot 
be understood. Reaching the goals of projects like the 
Digital Aristotle will require an investment of 
considerably more resources into this aspect of systems to 
realize robust gains in their competence. Exactly what 
direction this research should take is not clear; deriving 
explanations automatically from the system’s proof 
strategy is neither straightforward nor particularly 
sucessful, especially if that strategy has not been designed 
with explanation in mind. On the other hand, designing 
explanation templates that are tightly bound to specific 
problem types is also likely to engender brittleness when 
Halo systems apply their knowledge to a wider, more 
heterogeneous set of scientific questions. One approach to 
this problem, that is being pursued by all three teams in 
different ways, is to develop a meta-reasoning capability 
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that applies to the proof tree to construct a readable 
explanation. 
Scalability for Speed and Reuse: There has been 
substantial work in the literature on the tradeoff between 
expressiveness and tractability, yet managing this tradeoff, 
or even predicting its effect in the design of fielded 
systems over real domains is still not at all 
straightforward. To move from a theoretical to an 
engineering model of scalability, the KR community 
would benefit from a more systematic exploration of this 
area driven by the empirical requirements of problems at a 
wide range of scales. For example, the three Halo systems, 
and more generally, the Halo development and testing 
corpora, can provide an excellent test bed to enable KR&R 
researchers to pursue experimental research in the tradeoff 
between expressiveness and tractability.  
In addition to the primary sources of failure experienced 
by the system, it is important to note that several types of 
failure did not occur, even though they were predicted by 
previous research. Davis and King, in their seminal paper 
on rule-based systems [9], predicted that systems might 
fail because of unforeseen and incorrect rule interactions, 
and that the risk of these failures would increase with the 
size of the rule base. In our taxonomy this type of failure is 
B-MGT-2. Very few of these errors were experienced by 
the Halo systems. 
The “uncertainty in AI” community predicts that KR&R 
systems might fail due to the use of axiomatic rules in 
uncertain environments. In general, this prediction might 
well be right. However, the Halo pilot systems ignored 
uncertainty, used only axiomatic rules, and did not fail 
because of it. It is important to note, however, that the 
system did not have to deal with raw data from the 
environment, which would necessarily introduce an 
important source of uncertainty. 
Finally, the “commonsense reasoning” community 
predicts that KR&R systems might fail if they are unable 
to “fall back” on general principles. For example, this 
prediction has been an explicit motivation for the Cyc 
project [10]. Two of the the Halo Pilot systems (the ones 
built by Cycorp and the SRI team) had access to some 
degree of commonsense knowledge (i.e. general 
knowledge outside the domain of chemistry), but gained 
little benefit from it in this domain, and very few failures 
were attributed to lack of commonsense knowledge.  
Undoubtedly, “hard science” domains, such as AP level 
chemistry, largely avoid issues of uncertainty and 
commonsense, but we were surprised that these issues 
scarcely arose at all. It is important and encouraging for 
the Digital Aristotle project that this class of KR&R 
systems can be at least somewhat successful in the absence 
of immediate solutions for these difficult problems in AI.  

Additional Related Work 

The cycle of fielding implemented systems, analyzing 
their performance, learning from that performance, and 
fielding the augmented version reflects the maturity of any 

scientific discipline. Not surprisingly, in the software 
engineering community, several aspects of system building 
have benefited by characterizing the system failures, and 
learning from them [11] [12]. Of course, there have been 
several efforts at documenting and analyzing the 
experience of implemented systems, [13], [14, 15]. 
DARPA’s recent HPKB and RKF have made a pioneering 
effort to analyze and document the performance of the 
knowledge base performance [16, 17]. The present paper 
improves upon the HPKB and RKF evaluations by being 
more thorough and systematic, and by adopting an 
evaluation standard, such as an AP test, that is 
independent, objective and extensive enough to support a 
coherent, long-term development program. 

Summary 

Although many knowledge-based systems have been 
fielded and some have been evaluated, few have been 
analyzed to determine why they fail, the relative frequency 
of each type of failure, and the ways these failures might 
be avoided or mitigated. That is the goal of our work. We 
presented a taxonomy of failures that fielded KR&R 
systems might experience, and we have used the taxonomy 
to analyze failures of three question-answering systems 
built using state-of-the-art technologies for the 
challenging domain of AP chemistry. This analysis 
revealed important shortcomings of the KR&R 
technologies, as well as several weaknesses in the 
taxonomy itself.  
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