
Towards a Quantitative, Platform-Independent Analysis of Knowledge
Systems†

Noah S. Friedland1, Paul G. Allen1, Michael Witbrock2, Gavin Matthews2, Nancy Salay2,
Pierluigi Miraglia2, Jurgen Angele3, Steffen Staab3, David Israel4, Vinay Chaudhri4,

Bruce Porter5, Ken Barker5, Peter Clark6

1Vulcan Inc., 505 5th Ave S, Seattle, WA 98104

2Cycorp Inc., Suite 100, 3721 Executive Center Drive, Austin, TX 78721
3ontoprise GmbH, Amalienbadstraße 36, 76227 Karlsruhe, Germany

4SRI International, 330 Ravenswood Ave., Menlo Park, CA 94025
5Computer Science, University of Texas at Austin, Austin, TX 78712
6Boeing Phantom Works, The Boeing Company, Seattle, WA 98124

 Abstract

The Halo Pilot, a six-month effort to evaluate the state-of-
the-art in applied Knowledge Representation and
Reasoning (KRR) systems, collaboratively developed a
taxonomy of failures with the goal of creating a common
framework of metrics against which we could measure
inter- and intra- system failure characteristics of each of the
three Halo knowledge applications. This platform
independent taxonomy was designed with the intent of
maximizing its coverage of potential failure types;
providing the necessary granularity and precision to enable
clear categorization of failure types; and providing a
productive framework for short and longer term corrective
action.
Examining the failure analysis and initial empirical use of
the taxonomy provides quantitative insights into the
strengths and weaknesses of individual systems and raises
some issues shared by all three. These results are
particularly interesting when considered against the long
history of assumed reasons for knowledge system failure.
Our study has also uncovered some shortcomings in the
taxonomy itself, implying the need to improve both its
granularity and precision. It is the hope of Project Halo to
eventually produce a failure taxonomy and associated
methodology that will be of general use in the fine-grained
analysis of knowledge systems.

Introduction

Since the first expert systems were first developed forty
years ago, a great many knowledge-representation and
reasoning (KR&R) systems have been fielded. Some –
very few – have been carefully evaluated; these evaluations
have typically yielded data on the systems’ overall
performance, and occasionally have drawn comparisons
with other systems or with the performance of people. Our
goal is to go beyond evaluations of KR&R systems to an

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.
† Full support for this research was provided by Vulcan Inc. as part of
Project Halo

analysis of them. We seek to understand why these
systems fail when they do, the relative frequency of each
type of failure, and the ways these failures might be
avoided or mitigated.
This is a major undertaking, and we have taken only the
initial steps. First, we have designed a taxonomy of
failures that fielded KR&R systems might experience.
This step is necessarily speculative, since we have not
studied a large sample of systems or surveyed their
developers, but it is based on the authors' collective
experience building many systems using a variety of
different technologies. Second, we have built three KR&R
systems using state-of-the-art technologies and carefully
evaluated their performance in a pilot study. Although the
systems did quite well overall, they nevertheless exhibited
many shortcomings, yielding a large corpus of failures.
Third, we analyzed each of these failures and attempted to
place it within the taxonomy. We studied the resulting
data to draw lessons about the taxonomy, the systems, and
(by extrapolation) the current state of KR&R technologies
for building fielded systems.

A Class of Knowledge-based Systems: The
Halo Pilot

This effort to analyze KR&R systems and to better
understand the causes of their failures arises in the context
of Project Halo, a multi-stage effort funded and managed
by Vulcan Inc. to develop a “Digital Aristotle”, an
application that will encompass a substantial amount of
scientific knowledge and be capable of answering
unanticipated questions using advanced problem-solving.
Vulcan sees two primary functions for the Digital
Aristotle: first, as a tutor capable of instructing students in
the sciences; and second, as a research assistant with
broad interdisciplinary skills able to help scientists in their
work.
The data for our study was produced by the pilot phase of
Project Halo. This was a six-month effort to evaluate the
state-of-the-art in fielded KR&R systems performing deep

KR 2004 507

reasoning. Three teams were contracted to participate in
the evaluation: a team led by SRI International with
substantial contributions from Boeing Phantom Works and
the University of Texas at Austin; Cycorp; and Ontoprise.
The objective of the evaluation was to determine whether
current KR&R technologies were capable of correctly
answering novel (previously unseen) questions and of
providing concise, readable answer justifications.
Significant attention was given to domain selection for the
evaluation. It was important, given the limited scope of
this phase of the project, to adapt an existing, well-known
evaluation methodology with easily understood and
objective standards. Several standardized test formats were
examined. A 70-page subset of Advanced Placement (AP)
chemistry was selected because it was reasonably self-
contained and did not require solutions to other hard AI
problems, such as spatial or uncertain reasoning, or
understanding diagrams. Topics included: stoichiometry
calculations with chemical formulas; aqueous reactions
and solution stoichiometry; and chemical equilibrium.
This scope was large enough to produce many novel, and
hence unanticipated, question types. One analysis of the
syllabus identified nearly 100 distinct rules, suggesting
that it was rich enough to require complex inference. It
was also small enough to be represented in four months,
the time allocated to the teams for knowledge formulation.
Each team developed their KR&R systems using their
existing, and very different, technologies. Team SRI’s
implementation was based upon their SHAKEN system,
[1] which uses the frame-based KM language and
inference engine [2]. They employed an existing
component library (CLIB) of representations of reusable,
generic events, entities, roles, and relations to facilitate
rapid development of knowledge [3]. Cycorp built the
OpenHalo chemistry knowledge base upon their public
OpenCyc technology, extended as needed by constructs
from the main Cyc engine. The Cyc system is designed
with the intention of representing the broad range of
knowledge required by a general Artificial Intelligence,
and achieves a partial functional partition into consistent
functional domains using hierarchies of ontologies called
microtheories. The knowledge in all Cyc systems is
represented in CycL, Cycorp’s formal language, which
includes first-order logic and some second-order and
modal constructs [4]. Ontoprise built their OntoNova
system on top of their OntoBroker® technology, [5, 6]
which uses F-Logic [7], a logic-programming language
similar to Prolog but with an object-oriented syntax. This
implementation was constructed without the benefit of any
pre-existing knowledge infrastructure like that represented
by the SRI CLIB or the Cycorp upper ontology. The final
SRI and Ontoprise knowledge bases were on the order of
500 concepts, rules and relations, while Cycorp’s
openHALO included about 15,000 concepts, of which
approximately 14,000 were preexisting general terms from
OpenCyc, and approximately 1000 were added to support
the AP Chemistry task.

The three teams also employed very different approaches
to answer justification. Cycorp used its generative English
capabilities to produce English language explanations
from its proof trees. Meta-reasoning was used to remove
explanation components that would be extremely obvious
to the domain expert or that addressed Cyc’s internal
inference methodology and would not be easily understood
by a domain expert. Ontoprise used a dual inference
process in its question answering. The first process
attempted to derive the answer. If successful, the second
process used the first proof tree along with rule specific
human-authored explanation templates to produce the
explanation. SRI also relied on human-authored
explanation templates associated, in this case, with
chemical “methods” built into their knowledge
representation.
Upon completion of the knowledge formulation, all three
systems were sequestered on identical servers. Then the
challenge exam was released to the teams, who were given
two weeks to encode its questions in their respective
formal languages. The exam consisted of three sections:
50 multiple-choice questions and two sets of 25 multipart
questions. Upon completion of the encoding effort, the
formal question encodings of each team where evaluated
by a program-wide committee to guarantee high fidelity to
the original English. Once the encodings were evaluated,
Vulcan personnel submitted them to the respective
sequestered systems. The evaluations ran in batch mode.
The Ontoprise system completed its processing in two
hours, the SRI system in five hours and the Cycorp system
in a little over 12 hours.
Three chemists were engaged to evaluate the exams.
Adopting an AP-style evaluation methodology, they
graded each question both for correctness and the quality
of its explanation. The exam encompassed 168 distinct
gradable components consisting of questions and question
sub-parts. Each of these received marks—ranging from 0
to 1 point each for correctness and explanation quality for
a maximum high score of 336. All three experts graded all
three exams. The scoring of all three chemistry experts
was aggregated for a maximum high score of 1008. The
graded exams were distributed to the Halo teams to serve
as the basis for their failure analysis. The guidelines for
the analysis included producing written explanations for
every point loss on a question-by-question basis and
association of every point loss to a category in the
taxonomy of types of failures. Details about the Halo Pilot
– including the exam, the systems’ answers and
explanations, and the graders’ scores and comments – are
available at the Project’s Web site:
http://www.projecthalo.com.

A Taxonomy of Types of Failures

Our goal was to design an implementation neutral
taxonomy of failure types, exhibiting these qualities:

508 KR 2004

Coverage: The taxonomy must be broad enough to
account for virtually every type of failure that a fielded
KR&R system might experience.
Precision: The categories in the taxonomy should be
clearly defined so that every failure can be unambiguously
classified into one or more categories.
Granularity: The categories should be defined at a fine
enough level so that they capture distinctions among
interesting classes of problems. If all errors fall into one
category, the categories are too coarse. If each category
has only one instance of a problem, the categories are
probably too fine-grained.
Productivity: The categories should be defined in a way
that they clearly suggest an action that could be taken to
address it. It should also be clear how each type of failure,
if uncorrected, would affect system performance.
To meet the requirement of coverage, we created top-level
categories in the taxonomy for the primary issues in
building a question-answering system for the chosen
subset of AP chemistry – one that receives previously
unseen queries in a formal language and generates
answers and justifications appropriate to the user. These
categories are:
(MOD) Knowledge Modeling: the ability of the
knowledge engineer to model information or write the
needed axioms.
(IMP) Knowledge Implementation/Modeling
Language: the ability of the representation language to
accurately and adequately express the axioms.
(INF) Inference and Reasoning: the ability of the
inference engine to do the reasoning required to compute
correct answers.

(KFL) Knowledge Formation and Learning: the ability
of the system (KB + inference engine) to acquire and
merge knowledge through automated and semi-automated
techniques
(SCL) Scalability: the ability of the KB to scale.
(MGT) Knowledge Management: the ability of the
system to maintain, track changes, test, organize,
document its current state; the ability of the knowledge
engineer to inspect and revise knowledge.
(QMN) Query Management: the ability of the system to
robustly answer queries.
(ANJ) Answer Justification: the ability of the system to
provide justifications for answers in the correct context
and at the appropriate level of detail.
(QMT) Quality Metrics: the ability of the developers to
evaluate the knowledge base throughout its development.
(MTA) Meta Capabilities: the system's ability to employ
meta-reasoning or meta-knowledge.
To meet the precision and granularity requirements, we
refined the top-level categories into 24 more specific ones,
grouped under the ten original ones. For example, for
failures due to the implementation/modeling language
(IMP), we created three sub-categories, including failures
due to the language being insufficiently expressive (B-
IMP-1) or being overly expressive (B-IMP-2). Although
increased expressiveness has obvious benefits for
knowledge engineering, it can, in the limit at least, come
at the expense of tractable inference [8]. Distinguishing
between failures of these two types might enable analysts
to measure the costs and benefits of such enhancements.
See Table 1.

Table 1: A Taxonomy of Types of Failure

Category Type Name and Description
B-MOD-1 Modeling Error Failure. The knowledge engineer fails to model domain knowledge

properly (the act of writing the axiom).
B-MOD-2 Modeling Assumption Failure. Implicit “context” assumptions are not articulated,

making it difficult for knowledge engineers to model/extend/modify information.
Designers working from disparate assumed “context models” introduce conflicts into
the KB. Resolving multiple contexts creates large, unwieldy rule sets.

B-MOD-3 Modeling Primitive Failure. Limitations of the KR language make straightforward
representation difficult resulting in errors or complex representations.

Modeling

B-MOD-4 “Islands of Knowledge” Failure. The knowledge engineer fails to make explicit
connections between the domain model and the existing ontology/KB. The system
cannot take advantage of existing knowledge to achieve the desired reasoning
performance.

B-IMP-1 Under-expressive Language Failure. The KR language is not expressive enough to
model the domain knowledge. The resulting convoluted representations or
approximations give unexpected or undesirable results.

B-IMP-2 Over-expressive Language Failure. The KR language is overly expressive. Certain
representations make inference intractable.

Implementation,
Language

B-IMP-3 External Module Interface Failure. The KR language allows representations that do
not readily translate to the representation states of external modules.

KR 2004 509

Category Type Name and Description
B-MGT-1 Large KB Learning Failure. The knowledge engineer has difficulty learning the

existing ontology/KB due to its size and complexity. Poor search and documentation
tools compound this problem.

B-MGT-2 Large KB Extension Failure. The knowledge engineer has difficulty extending the
existing large, highly interconnected KB. The number of modeling errors (B-MOD-1)
increases with KB magnitude and connection factor.

Management

B-MGT-3 Large Team Failure. The development team fails to communicate modeling
assumptions, track versions, coordinate changes, etc. among team members. The
assumptions, errors or conflicts lead to unpredictable system performance.

B-KFL-1 Information Extraction Failure. Information Extraction techniques over unstructured
data produce insufficiently deep models of domain knowledge. The system is unable to
reason adequately over shallow domain representations.

Formation,
Learning

B-KFL-2 Knowledge Mapping Failure. The knowledge engineer fails to merge structured
knowledge from multiple sources appropriately (either due to merging errors or
irreconcilable representational differences). The system either cannot take advantage of
knowledge from multiple sources or suffers from inconsistencies.

B-INF-1 Inference Engine Conceptualization Failure. The knowledge engineer models
domain knowledge based on faulty understanding of the inference algorithms. The
inference engine produces unexpected results.

B-INF-2 Inference Engine Bug Failure. Errors in the implementation of the inference engine
cause unexpected or undesirable results.

B-INF-3 “Practical Incompleteness” Failure. The resource challenges of deep KBs prevent
exhaustive search. The system fails to return an answer even though the information
exists in the KB. Sensitivity to initial conditions makes search success unpredictable.

B-INF-4 Consistency Failure. Hard contradictions cause deductive reasoning systems to fail.
Large KBs that encompass many topics are susceptible to contradictions.

Inference,
Reasoning

B-INF-5 Numeric Instability Failure. Failure to factor numerical aspects of computation into
query responses leads to incorrect or inappropriate answers.

B-QMN-1 Query Scoping Failure. The query encoding misses implicit assumptions or
incorrectly includes irrelevant information from the query. The missing or extraneous
information prevents the system from answering the query successfully.

Query Management

B-QMN-2 Query Encoding Failure. Sensitivity to the query encoding leads to unexpected or
undesirable results.

B-ANJ-1 Exposition Failure. Answer justifications are overly dependent on idiosyncrasies of
the reasoning steps and/or proof tree. The resulting explanations may contain
irrelevant, redundant or out-of-sequence information, making them unintuitive to a
human reader.

B-ANJ-2 Answer Template Failure. Manually created answer justification templates produce
static justifications at fixed resolution independent of context.

Answer
Justification

B-ANJ-3 Context Justification Failure. The answer justification mechanism is unable to
produce user- and context-appropriate justifications.

Quality Metrics B-QMT-1 Quality Metrics Failure. The KB quality metrics fail to provide needed feedback on
the knowledge engineering process. The knowledge engineers cannot accurately
determine coverage and completeness, resulting in gaps in the KB.

Meta-capabilities B-MTA-1 Meta Capabilities Failure. The KB lacks required meta-knowledge (either due to
omission or KR language insufficiency). The system performs poorly on questions
requiring meta-reasoning.

Other OTHER Failure for reasons other than the above.

To meet the requirement of being productive, we
elaborated the descriptions of each type of failure with the
following attributes:
A list of influences: the high-level influences that
typically contribute to failures of this type

An example: the symptoms (in terms of system behavior)
that this type of failure might cause
Mitigating factors: technologies and methods that might
mitigate failures of this type
Long-term research: research directions that might
reduce or eliminate failures of this type

510 KR 2004

Table 2: Complete Taxonomy Entry for B-MOD-1

Failure Influences Description Example Mitigation Future Research

B-MOD-1 MOD, QMT Modeling Error Failure
The knowledge engineer fails to
capture domain information
properly in their modeling (the
act of writing the axiom).

Classifying chemical
as an acid
independent of the
reaction.

Review processes to validate
that domain-specific information
is captured correctly; SME
testing of the system; SME
involvement throughout

Tools to better facilitate
knowledge modeling by
domain experts; Automated
techniques to vet
completeness and coverage
of KB formation

Table 2 gives the complete entry for the failures of type B-
MOD-1, a prevalent and intriguing type of failure of the
Halo Pilot systems.

Evaluation of the Taxonomy of Failure

In this section we summarize the results of the failure
analysis for the three systems. The numbers against each
slice of the pie charts represent the points lost that could
be attributed of the corresponding category. For example,
in Figure 1.a, Cycorp’s loss of 64.63 points could be
ascribed to B-ANJ-1 in the system’s ability to produce
readable answer expositions appropriate to the context and
user (AP chemistry exams, and their graders,
respectively). The process of ascribing points of failure to
positions in the taxonomy may not have been uniform,
since it was performed by different groups for each system,
working independently. The Cycorp analysis reported
significant problems in 7 categories, and the SRI and
Ontoprise systems reported significant problems in four
categories each. Each of the three teams attributed a
significant number of failures to the “other” category,
meaning that the performance problem could not be
attributed to any of the categories in the taxonomy. In
SRI’s case, most of these points reflected failures due to
gaps in knowledge attributed to lack of implementation
time. Most of Cycorp’s “other” scores were attributed to
points lost on answer justifications for questions that were
not scored as having been answered correctly. Ontoprise
reported a number of reasons for classifying points lost in
the “other” category. Some of these were related to
disputes over the details of question grading and whether
the final questions were within the design scope of the
pilot evaluation1.

1 These disputes were not confined to Ontoprise, and were
surprisingly many in number in light of the standardized
nature of the test. For the purposes of the pilot evaluation,
these were resolved by simply accepting the scoring
produced by the judges.

Figure 1.a: Cycorp Failure Analysis. Most of the points
lost due to failure were the result of a failure to
represent some element of chemistry knowledge (B-
MOD-1), difficulty in producing justifications in the
form expected by domain experts (B-ANJ-1), and a
lack of inference completeness with respect to the
available knowledge (B-INF-3).

Figure 1.b: Ontoprise Failure Analysis. Most of the
points lost due to failure were the result of a failure to
represent some element of chemistry knowledge (B-
MOD-1).

487

5.5

6

7

143

B-MOD-1

B-IMP-1

B-INF-2

B-ANJ-1

OTHER

19.6
46.1

20

29.6

25.1

46.5

61.5
408.5

B-MOD-1

B-MOD-2

B-MOD-3

B-MOD-4

B-MGT-2

B-INF-3

B-ANJ-1

OTHER

KR 2004 511

107

63.5

37.5

26

261

B-MOD-2

B-IMP-1

B-ANJ-3

B-MTA-1

OTHER

Figure 1.c: SRI Failure Analysis. Most of the points lost
due to failure were the result of inappropriate
modeling assumptions (B-MOD-2), difficulty in
modeling knowledge due to the expressiveness of the
KR language (B-IMP-1), and inflexible justification
generation (B-ANJ-3).

Table 3, below, displays the categories used by each of the
three systems. Interestingly, there is no category that was
used in analysing the errors of all three systems, even
though there are several that were used in the analysis of
two of the three systems. In general, modeling problems
affected all three systems. B-MGT-2 and B-INF-3, which
are associated with the size of the knowledge base,
primarily affected the Cyc system. Ontoprise and SRI were
both affected by B-IMP-1, which represents problems due
to lack of expressiveness.

 Cycorp Ontoprise SRI
B-MOD-1 ���� ����
B-MOD-2 ���� ����
B-MOD-3 ����
B-MOD-4 ����
B-MGT-2 ����
B-IMP-1 ���� ����
B-IMF-2 ����
B-IMF-3 ����
B-ANJ-1 ���� ����
B-ANJ-3 ����

B-MTA-1 ����

Table 3: Failure Category Usage

Given the above observations, it is worth reviewing the
original goals of the failure taxonomy to see how well they
were met. Since the taxonomy was designed with the
functional components of early versions of the various
Halo systems in mind, it should have been expected to
display good coverage of forms of failure exhibited by
those systems. The substantial use of the “other” category
and some possible overuse of the B-MOD-1 category
suggest that the proposed taxonomy does not have enough
precision; given a failure, it is not always possible to

clearly and precisely attribute it to a failure category.
Many of these problems could have been remedied
procedurally during the project by establishing a
reconcilliation process to ensure that the taxonomy was
employed correctly and consistently by all reporting teams.
Clearly such a process will need to be tested, and
suggested modifications to the taxonomy will need to be
applied before it is ready for more widespread use.
Nevertheless, the taxonomy did prove to be suggestive in
indicating functional areas of weakness in the three
systems. Our failure analysis suggests three broad lessons
that can be drawn across the board for the three systems:
Modeling: A common theme in the modeling problems
across the systems was that the incorrect knowledge was
represented, or some domain assumption was not
adequately factored in, or the knowledge was not captured
at the right level of abstraction. Addressing these
problems requires us to have direct involvement of the
domain experts in the knowledge engineering process.
The teams involved such experts to different extents, and
at different times during the course of the project. The SRI
team, which involved professional chemists from the
beginning of the project, appeared to benefit substantially.
This presents a research challenge, since it suggests that
the expositions of chemistry in current texts are not
sufficient for building or training knowledge-based
systems. Instead, a high-level domain expert must be
involved in formulating the knowledge appropriately for
system use. Two approaches to ameliorating this problem
that are being pursued by participants are: 1) providing
tools that support direct manipulation and testing of KRR
systems by such experts, and 2) providing the background
knowledge required by a system to make appropriate use
of specialised knowledge as it is presented in texts.
Answer Justification: Explanation, or, more generally,
response interpretability, is fundamental to the acceptence
of a knowledge base system, yet for all three state-of-the-
art systems, it proved to be a substantial challenge. A part
of the reason for this was a failure to fully grasp the vital
role played by the explanation mechanism in a deployed
question-answering system. Since the utility of the system
will be evaluated end-to-end, it is to a large degree
immaterial whether its answers are correct, if they cannot
be understood. Reaching the goals of projects like the
Digital Aristotle will require an investment of
considerably more resources into this aspect of systems to
realize robust gains in their competence. Exactly what
direction this research should take is not clear; deriving
explanations automatically from the system’s proof
strategy is neither straightforward nor particularly
sucessful, especially if that strategy has not been designed
with explanation in mind. On the other hand, designing
explanation templates that are tightly bound to specific
problem types is also likely to engender brittleness when
Halo systems apply their knowledge to a wider, more
heterogeneous set of scientific questions. One approach to
this problem, that is being pursued by all three teams in
different ways, is to develop a meta-reasoning capability

512 KR 2004

that applies to the proof tree to construct a readable
explanation.
Scalability for Speed and Reuse: There has been
substantial work in the literature on the tradeoff between
expressiveness and tractability, yet managing this tradeoff,
or even predicting its effect in the design of fielded
systems over real domains is still not at all
straightforward. To move from a theoretical to an
engineering model of scalability, the KR community
would benefit from a more systematic exploration of this
area driven by the empirical requirements of problems at a
wide range of scales. For example, the three Halo systems,
and more generally, the Halo development and testing
corpora, can provide an excellent test bed to enable KR&R
researchers to pursue experimental research in the tradeoff
between expressiveness and tractability.
In addition to the primary sources of failure experienced
by the system, it is important to note that several types of
failure did not occur, even though they were predicted by
previous research. Davis and King, in their seminal paper
on rule-based systems [9], predicted that systems might
fail because of unforeseen and incorrect rule interactions,
and that the risk of these failures would increase with the
size of the rule base. In our taxonomy this type of failure is
B-MGT-2. Very few of these errors were experienced by
the Halo systems.
The “uncertainty in AI” community predicts that KR&R
systems might fail due to the use of axiomatic rules in
uncertain environments. In general, this prediction might
well be right. However, the Halo pilot systems ignored
uncertainty, used only axiomatic rules, and did not fail
because of it. It is important to note, however, that the
system did not have to deal with raw data from the
environment, which would necessarily introduce an
important source of uncertainty.
Finally, the “commonsense reasoning” community
predicts that KR&R systems might fail if they are unable
to “fall back” on general principles. For example, this
prediction has been an explicit motivation for the Cyc
project [10]. Two of the the Halo Pilot systems (the ones
built by Cycorp and the SRI team) had access to some
degree of commonsense knowledge (i.e. general
knowledge outside the domain of chemistry), but gained
little benefit from it in this domain, and very few failures
were attributed to lack of commonsense knowledge.
Undoubtedly, “hard science” domains, such as AP level
chemistry, largely avoid issues of uncertainty and
commonsense, but we were surprised that these issues
scarcely arose at all. It is important and encouraging for
the Digital Aristotle project that this class of KR&R
systems can be at least somewhat successful in the absence
of immediate solutions for these difficult problems in AI.

Additional Related Work

The cycle of fielding implemented systems, analyzing
their performance, learning from that performance, and
fielding the augmented version reflects the maturity of any

scientific discipline. Not surprisingly, in the software
engineering community, several aspects of system building
have benefited by characterizing the system failures, and
learning from them [11] [12]. Of course, there have been
several efforts at documenting and analyzing the
experience of implemented systems, [13], [14, 15].
DARPA’s recent HPKB and RKF have made a pioneering
effort to analyze and document the performance of the
knowledge base performance [16, 17]. The present paper
improves upon the HPKB and RKF evaluations by being
more thorough and systematic, and by adopting an
evaluation standard, such as an AP test, that is
independent, objective and extensive enough to support a
coherent, long-term development program.

Summary

Although many knowledge-based systems have been
fielded and some have been evaluated, few have been
analyzed to determine why they fail, the relative frequency
of each type of failure, and the ways these failures might
be avoided or mitigated. That is the goal of our work. We
presented a taxonomy of failures that fielded KR&R
systems might experience, and we have used the taxonomy
to analyze failures of three question-answering systems
built using state-of-the-art technologies for the
challenging domain of AP chemistry. This analysis
revealed important shortcomings of the KR&R
technologies, as well as several weaknesses in the
taxonomy itself.

References

1. Clark, P., et al., Knowledge Entry as the Graphical Assembly
of Components, in Proc 1st Int Conf on Knowledge Capture (K-
Cap'01). 2001. p. 22-29.
2. Clark, P. and B. Porter, KM - The Knowledge Machine: Users
Manual. 1999.
3. Barker, K., B. Porter, and P. Clark, A Library of Generic
Concepts for Composing Knowledge Bases, in Proc. 1st Int Conf
on Knowledge Capture (K-Cap'01). 2001. p. 14-21.
4. Guha, R.V. and D.B. Lenat, Cyc: A Mid-term report. AI
Magazine, 1990. 11(3).
5. Angele, J., Operationalisierung des Modells der Expertise mit
KARL, . 1993, DISKI, Infix Verlag.
6. Decker, S., et al., eds. Ontobroker: Ontology-based Access to
Distributed and Semi-Structured Information. Database
Semantics: Semantic Issues in Multi-media Systems, ed. R.
Meersmann. 1999, Kluwer Academics.
7. Kifer, M., G. Lausen, and J. Wu, Logical Foundations of
Object Oriented and Frame Based Languages. Journal of the
ACM, 1995. 42: p. 741--843.
8. Levesque, H.J. and R.J. Brachman, Expressiveness and
Tractability in Knowledge Representation and Reasoning.
Computational Intelligence, 1987. 3(2): p. 78-93.

KR 2004 513

9. Davis, R. and J. King, The Origin of Rule-based Systems in
AI, in Rule-Based Expert Systems: The Mycin Experiments of the
Stanford Heuristic Programming Project, B.G. Buchanon and
E.H. Shortliffe, Editors. 1984, Addison-Wesley: Reading, MA.
10. Lenat, D.B. and R.V. Guha, Building Large Knowledge-
Based Systems: Representation and Inference in the CYC
Project. 1990: p. 336.
11. Young, M. and R.N. Taylor. Rehinking the Taxonomy of
Falult Detection Techniques. in 11th International Conference
on Software Engineering. 1989. Pittsburgh.
12. Perry, D.E., An Empirical Study of Software Interface
Faults, 1985, AT&T Bell Laboratories: Murray Hill.
13. Brachman, R.J., et al., Reducing CLASSIC to ``Practice'':
Knowledge Representation Theory Meets Reality. Artificial
Intelligence Journal, 1999. 114: p. 203-237.
14. Keyes, J., Why Expert Systems Fail? IEEE Expert, 1989. 4:
p. 50-53.
15. Batanov, D. and P. Brezillon, eds. First International
Conference on Successes and Failures of Knowledge-based
Systems in Real World Applications. 1996, Asian Institute of
Technology: Bangkok, Thailand.
16. Cohen, P., et al., The DARPA High Performance
Knowledge Bases Project. AI Magazine, 1998. 19(4): p. 25--49.
17. Cohen, P., et al., Does Prior Knowledge Facilitate the
Development of Knowledge-based Systems, in Proceedings of
the AAAI-99. 1999. p. 221-226.

514 KR 2004

