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Abstract

The performance of anytime algorithms having a non-
deterministic nature can be improved by solving simultane-
ously several instances of the algorithm-problem pairs. These
pairs may include different instances of a problem (like start-
ing from a different initial state), different algorithms (if sev-
eral alternatives exist), or several instances of the same al-
gorithm (for non-deterministic algorithms). A straightfor-
ward parallelization, however, usually results in only a linear
speedup, while more effective parallelization schemes require
knowledge about the problem space and/or the algorithm it-
self.

In this paper we present a general framework for paralleliza-
tion, which uses only minimal information on the algorithm
(namely, its probabilistic behavior, described by a perfor-
mance profile), and obtains a super-linear speedup by optimal
scheduling of different instances of the algorithm-problem
pairs. We show a mathematical model for this framework,
present algorithms for optimal scheduling, and demonstrate
the behavior of optimal schedules for different kinds of any-
time algorithms.

Introduction

Assume that we have two learning systems which need to
learn a concept with a given success rate. One of them
learns fast, but needs some preprocessing at the beginning.
Another works slower, but no preprocessing is required. A
question arises: can we benefit from using both learning sys-
tems to solve one learning task on a single-processor ma-
chine? What should be the order of their application? Does
the situation change if the systems have a certain probability
to fail?

Another example is a PROLOG expert system. Assume
we are required to handle a query of the form @ V Q.
We can parallelize this query and try to solve the subprob-
lems @; and @, independently, maybe on a single proces-
sor. We would like to minimize the average time required
for the query, and, in the case of two processors, the time
consumed by both of them. The question is: is it beneficial
to parallelize the query? If not, which one of the subqueries
should be handled first? If yes, should we solve them simul-
taneously, or should we use some special schedule?
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What is common to the above examples?

e We are trying to benefit from the uncertainty in solving
more than one instance of the algorithm-problem pair. We
can use different algorithms (in the first example) and
different problems (in the second example). For non-
deterministic algorithms, we can also use different in-
stances of the same algorithm.

o Each process is executed with the purpose of satisfying a
given goal predicate. The task is considered accomplished
when one of the instances is solved.

o If the goal predicate is satisfied at time ¢*, then it is also
satisfied at any time ¢ > t*. This property is equiva-
lent to utility monotonicity of anytime algorithms (Dean
& Boddy 1988; Horvitz 1987), while utility is restricted
to Boolean values.

e The goal is to provide a schedule which minimizes the ex-
pected cost, maybe under some constraints (for example,
processes may share resources). Such problem definition
is typical for rational-bounded reasoning (Simon 1982;
Russell & Wefald 1991).

This problem resembles contract algorithms (Russell &
Zilberstein 1991; Zilberstein 1993). For contract algorithms,
the task is to construct the algorithm providing the best pos-
sible solution given a time of execution. In our case, the
task is to construct the (parallel) algorithm providing the best
possible solution given a required utility.

Simple parallelization, with no information exchange be-
tween the processes, may speedup the process due to high
diversity in solution times. For example, Knight (1993)
showed that using many reactive instances of RTA*
search (Korf 1990) is more beneficial than using a single
deliberative RTA* instance. Yokoo & Kitamura (1996)
used several search agents in parallel, with agent rearrange-
ment after pregiven periods of time. Janakiram, Agrawal,
& Mehrotra (1988) showed that for many common distribu-
tions of solution time, simple parallelization leads to at most
linear speedup, while communication between the proces-
sors can result in a superlinear speedup.

A superlinear speedup is usually obtained as a result of
information exchange between the processes (like in the
work of Clearwater, Hogg, & Huberman (1992) devoted to
cryptarithmetic problems) or a result of a pre-given divi-
sion of the search space (like in the works of Kumar and



Rao (1987; 1987; 1992) devoted to parallelizing standard
search algorithms).

Unfortunately, the techniques requiring a pre-given divi-
sion of the search space or online communication between
processes are usually highly domain-dependent. An inter-
esting approach in a domain-independent direction has been
investigated by Huberman, Lukose, & Hogg (1997). The au-
thors proposed to provide the processes (agents) with a dif-
ferent amount of resources (“portfolio” construction), which
enabled to reduce both the expected resource usage and its
variance. Their experiments showed the applicability of this
approach in many hard computational problems. In the field
of anytime algorithms, similar works were mostly concen-
trated on scheduling different anytime algorithms or deci-
sion procedures in order to maximize overall utility (like in
the work of Boddy & Dean (1994)). Their settings, however,
are different from those presented above.

The goal of this research is to develop algorithms that
design an optimal scheduling policy based on the statisti-
cal characteristics of the process(es). We present a formal
framework for scheduling parallel anytime algorithms and
study two cases: shared and non-shared resources. The
framework assumes that we know the probability of the goal
condition to be satisfied as a function of time (a perfor-
mance profile (Simon 1955; Boddy & Dean 1994) restricted
to Boolean quality values). We analyze the properties of
optimal schedules for suspend-resume model and show that
in most cases an extension of the framework to intensity
control does not decrease the optimal cost. For the case of
shared resources (a single-processor model), we show an al-
gorithm for building optimal schedules. Finally, we demon-
strate experimental results for the optimal schedules.

Motivation: a simple example

Before starting the formal discussion, we would like to give
a simple example. Assume that two instances of DFS with
random tie-breaking are applied to a very simple search
space shown in Figure 1. We assume that each process uses
a separate processor. There are two paths to the goal, one of
length 10, and one of length 40. DFS has no guiding heuris-
tic, and therefore its behavior at A’ is not determined. When
one of the instances finds the solution, the task is considered

accomplished.
>

: . 10
A A 40
Figure 1: A simple search task: two instances of DFS search for a
path from A to B. Scheduling the processes may reduce cost.

We have two utility components — the time, which is the
elapsed time required for the system to find a solution, and
the resources, which is total CPU time consumed by both
processes. Assume first that we have control only over the
launch time of the processes. If the two search processes
start together, the expected time usage will be 4+10 x 3/4+
40 x 1/4 = 17.5 units, while the expected resource usage
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will be 20 x 3/44 80 x 1/4 = 35 units. If we apply only one
instance, both time and resource usage will be 10 x 1/2 +
40 x 1/2 = 25 units. If one of the processes will wait for 10
time units, the expected time usage will be 10 x 1/2 + 20 x
1/4 4+ 40 x 1/4 = 20, and the expected resource usage will
be 10 x 1/2+30x 1/4+70 x 1/4 = 30. Intuitively, we can
vary the delay to push the tradeoff towards time or resource
usage as we like.

Assume now that we are allowed to suspend and resume
the two processes after they start. This additional capability
brings further improvement. Indeed, assume that the first
process is active for the first 10 time units, then it stops and
the second process is active for the next 10 time units, and
then the second process stops and the first process continues
the execution!. Both the expected time and resource usage
willbe 10 x 1/2 4 20 x 1/4 4+ 50 x 1/4 = 22.5 units. If
we consider the cost to be a sum of time and resource usage,
it is possible to show that this result better than for any of
delay-based schedules.

A framework for parallelization scheduling

In this section we formalize the intuitive description of par-
allelization scheduling. The first part of this framework
is similar to our framework for monitoring anytime algo-
rithms(Finkelstein & Markovitch 2001).

Let S be a set of states, ¢t be a time variable with non-
negative real values, and .4 be a random process such that
each realization (trajectory) A(t) of .4 represents a mapping
from RT to S. Let G : S — {0,1} be a goal predicate,
where 0 corresponds to False and 1 corresponds to True. Let
A be monotonic over G, i.e. for each trajectory A(t) of A

the function G 4 (t) = G(A(t)) is a non-decreasing function.
Under the above assumptions, (t) is a step function with
at most one discontinuity point, which we denote by tAA,G
(this is the first point after which the goal predicate is true).
If G 4(t) is always 0, we say that 14, is not defined. There-
fore, we can define a random variable { = {4 g, which for
each trajectory A(t) of A with14 ¢ defined, corresponds to
fA’G. The behavior of ¢ can be described by its distribution
function F'(t). At the points where F(t) is differentiable,
we use the probability density f(t) = F'(t).

This scheme resembles the one used in anytime algo-
rithms. The goal predicate can be viewed as a special case
of the quality measurement used in anytime algorithms, and
the requirement for its non-decreasing value is a standard
requirement of these algorithms. The trajectories of A cor-
respond to conditional performance profiles (Zilberstein &
Russell 1992; Zilberstein 1993).

In practice, not every trajectory of .4 leads to goal predi-
cate satisfaction even after infinitely large time. That means
that the set of trajectories where Z\A’G is undefined is not nec-
essarily of medsure zero. That is why we define the proba-
bility of success p as the probability of A(t) with ?A,G de-
fined?.

'In this scenario at each moment only one process is active, so

we can use the same processor.
2 Another way to express the possibility that the process will not



Assume now that we have a system of n random pro-
cesses Ay, ... A, with corresponding distribution functions
Fy, ..., F, and goal predicates G1,...,G,. We define a
schedule of the system as a set of binary functions {6;},
where at each moment ¢, the i-th process is active if 6; (¢) =
1 and idle otherwise. We refer to this scheme as suspend-
resume scheduling.

A possible generalization of this framework is to extend
the suspend/resume control to a more refined mechanism al-
lowing us to determine the intensity with which each process
acts. For software processes that means to vary the fraction
of CPU usage; for tasks like robot navigation this implies
changing the speed of the robots. Mathematically, using in-
tensity control it is equivalent to replacing the binary func-
tions 6;(t) with continuous functions with a range between
0 and 1.

Note that scheduling makes the term time ambiguous.
On one hand, we have the subjective time for each process
which is consumed only when the process is active. This
kind of time corresponds to some resource consumed by the
process. On the other hand, we have an objective time mea-
sured from the point of view of an external observer. The
performance profile of each algorithm is defined over its
subjective time, while the cost function (see below) may use
both kinds of times. Since we are using several processes,
all the formulae in this paper are based on the objective time.

Let us denote by o;(t) the total time that process 7 has
been active before t. By definition,

t
ai(t) :/0 6; (z)dz. (1
In practice o;(t) provides the mapping from the objective
time ¢ to the subjective time of the i-th process. Since §; can
be obtained from o; by differentiation, we often describe
schedules by {o;} instead of {6;}.

The processes {A;} with goal predicates {G;} running
under schedules {o;} result in a new process A, with a goal
predicate G. G is the disjunction of G; (G(t) =V, Gi(t)),
and therefore A is monotonic over G. We denote the distri-
bution function of the corresponding random variable 4,
by Fu(t,01,...,0n), and the corresponding distribution
density by fn(t,01,...,00).

Assume that we are given a monotonic non-decreasing
cost function u(t,t,...,t,), which depends on the objec-
tive time ¢ and the subjective times per process ;. Since the
subjective times can be calculated by ¢; (t), we actually have
u=u(t,o1(t),...,on(t)).

The expected cost of schedule {o;} can be, therefore, ex-
pressed as®

Eu(a'l,...

,o'n):

+oo 2
f u(t,o1,...,00)fn(t,o1,...,00)dt
0

stop at all is to use profiles that approach 1 — p whent — co. We
prefer to use p explicitly because, in order for F' to be a distribution
function, it must satisfy lim; o F(¢) = 1.

3The generalization to the case where the probability of success
p is not 1 is considered at the end of the next section.
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(for the sake of readability, we omit ¢ in o;(t)). Under the
suspend-resume model assumptions, ¢; must be differen-
tiable functions with derivatives 0 or 1 which would ensure
correct values for #;. Under intensity control assumptions,
o; must be differentiable functions with derivatives between
0 and 1.

We consider two alternative setups regarding resource
sharing between the processes:

1. The processes share resources on a mutual exclusion ba-
sis. That means that exactly one process can be active at
each moment, and the processes will be active one after
another until the goal is reached by one of them. In this
case the sum of derivatives of o; is always one *. The case
of shared resources corresponds to the case of several al-
gorithms running on a single processor.

2. The processes are fully independent — there is no addi-
tional constraints on ¢;. This case corresponds to n inde-
pendent algorithms (e.g., running on n processors).

Our goal is to find a schedule which minimizes expected
cost (2) under the corresponding constraints.

Suspend-resume based scheduling

In this section we consider the case of suspend-resume based
control (o; are continuous functions with derivatives 0 or 1).

Claim 1 The expressions for the goal-time distribution

F,(t,01,...,0) and the expected cost Ey (01, . .., 0y) are
as follows:
n
Fu(t,on,...,00) = 1=[[(1 = Fi(es)), 3
i=1
Eu(o1,...,00) =

+o0 n n
/ ( + Zasu;..) (- Foa.
0 1 i=1

=1 %

The proofs in this paper are omitted due to the lack of space.
In this section we assume that the total cost is a lin-

ear combination of the objective time and all the subjective

times, and that the subjective times have the same weight:

u(t,al,...,an)=at+bZa,~(t). )
i=1

This assumption is made to keep the expressions more read-
able. The solution process remains the same for the general
form of u.

In this case our minimization problem is:

Eu((fl,..

-;a'n):

/00 (a + bzn:ag) f_[(l — Fj(o;))dt — min,

i=1 i=1

6)

4This fact is obvious for the case of suspend-resume control,
and for intensity control it is reflected in Lemma 2.



and for the case of shared resources on a mutual exclusion
basis

Eu(o1,...,
(a+1b) / H 1-F

In the rest of this section we show a formal solution (nec-
essary conditions and the algorithm) for the framework with
shared resources. For the sake of clarity, we start with two
processes and present the formulae and the algorithm, and
then generalize the solution for an arbitrary number of pro-
cesses.

)

))dt = min.

Necessary conditions for an optimal solution for
two processes

Let A, and A, be two processes sharing a resource. While
working, one process locks the resource(s), and the other is
necessarily idle. We can show that such dependency yields
a strong constraint on the behavior of the process, which
allows to build an effective algorithm for solving the mini-
mization problem.

Let A, be active in the intervals [tox, t2k+1], and A be
active in the intervals [tax+1,%26+2]). That means that the
processes work alternately switching at time points ¢; (if A,
is active first then ¢; = tg).

Let us denote by £ the total time that A; has been active
before tx, and by 7 the total time that A, has been active
before t;.. We can see that

Eok1 = Eakt2 = tokg1 — ok + E2k—1,
Mok+2 = N2k+3 = toky2 — Lop41 + N2k

We can reduce the number of variables by denoting (ax+1 =
Eak+1, and o = max. Thus, the odd indices of { pertain to
A1, and the even indices to A5. Note also, that

Ck + Ch—1 =tp —to = ti. (8)

Since A; is active in the intervals [tox, tox+1], the functions
o1 and o2 on these intervals have the form

o1(t) =t —tor + o1(tax) =t — Cox,
oa(t) = oa(tar) = Cok.

Similarly, A, is active in the intervals [tox 41, t2k+2]. There-
fore, on these intervals o1 and o5 are defined as

©)

o1(t) = oa(tar+1) = Cort1, (10)
o2(t) =t — top1 + 02(taks1) =t — Cong1.

Substituting these values to (7) we obtain

Eu(Clv'-')Cn) =

o0

(2k+1
(@+b)) [(1 —FZ(CZk))/ (1— Fy(z))dz +

k=0

C2k+2
(1- Fl(czkﬂ))/c (1- Fg(:z:))dm] ~5 min

(11)

(to keep the general form, we assume (_; = 0). The min-
imization problem (11) is equivalent to the original prob-
lem (7), and the dependency between their solutions is de-
scribed by (9) and (10). The only constraint for the new
problem follows from the fact that the processes are alter-
nating for non-negative periods of time:

=0<C<...<Cm<...
{<1<cas T s (12)

By Weierstrass theorem, (11) reaches its optimal values ei-
ther when

du
=0fork=1,. .

G =0 ’
or on the border described by (12). However, for two pro-
cesses we can, without loss of generality, ignore the border
case. Thus, at each step the time spent by the processes
is determined by (13). We can see that ¢; appears in three
subsequent terms of Fy (o1, ...,0,), and by differentiation
of (11) by ¢ax (and by (2x+1), we can prove the following
theorem:

(13)

Theorem 1 (The chain theorem for two processes)
The value for {; 41 fori > 2 can be computed for given (;_1
and (; using the formulae

fa(Cak) Fi(Cons1) — F1(C2k 1) _
T—Falw) [ R)de 2k +1,
(14)
fi(Cors1)  _ Fa(Cokta) — Fz((zk) _
1- F1(<2k+1) f(2k+2 ))d:c =2k +2.
(15)

This theorem allows us to formulate an algorithm for build-
ing an optimal solution.

Optimal solution for two processes: an algorithm’

Assume that A; acts first ({1 > 0). From Theorem | we
can see that the values of {; = 0 and {; determine the set of
possible values for (2, the values of (; and (> determine the
possible values for (3, and so on.

Therefore, a non-zero value for {; provides us with a tree
of possible values of (;. The branching factor of this tree is
determined by the number of roots of (14) and (15). Each
possible sequence (1,2, ... can be evaluated using (11).
The series in that expression must converge, so we stop af-
ter a finite number of points. For each value of {; we can
find the best sequence using one of the standard search algo-
rithms, such as Branch-and-Bound. Let us denote the value
of the best sequence for each (; by F,({1). Performing
global optimization of E,,(¢1) by {1 provides us with an op-
timal solution for the case where A; acts first.

Note, that the value of {; may also be 0 (A3 acts first), so
we need to compare the value obtained by optimization of (3
with the value obtained by optimization of {; with ¢; = 0.

5Due to the lack of space we present only the main idea of the
algorithm.
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Necessary conditions for an optimal solution for an
arbitrary number of processes

Assume now that we have n processes A, ..., A, using
shared resources. As before, lettp = 0 <t; < ... <¢; <
.. . be time points where the processes perform a switch. We
permit also the case of t; = #;1, and this gives us a possibil-
ity to assume (without loss of generality) that the processes
are working in a round-robin manner, such that at ¢4, 4; pro-
cess ¢ becomes idle, and process ¢ + 1 becomes active. Let
#t¢ stands for the index of the process which is active be-
tween t;_; and ¢;, and let {; be the total time spent by pro-
cess #1 before t;. As in the case of two processes, there is a
one-to-one correspondence between {t;} and {¢;}, and the
following equations hold:

Gi—=Ci—n =t —ti-a, (16)
n-1
> Gy =tifori>n. (17)
=0

The first equation corresponds to the fact that the time be-
tween ¢;_1 and ¢; is accumulated to the {; values of the cor-
responding process; while the second equation claims that at
each switch the objective time of the system is equal to the
sum of the subjective times of each process. For the sake of
uniformity we denote also

Conpr=...=C1=C=0.

For future discussion we need to know what is the schedule
of each process in the time interval [t;_;,¢;]. By construc-
tion of {; we can see, that at this interval the subjective time
of the process k has the following form:

<.’°'|"(i—#")’ k:11:"a#i_1,
ok(t) = q t—tic1 +Gion, k=44, (18)
Ch4(imgi)—n> k=#i4+1,... n.

We need to minimize the expression given by (7). The
only constraints are the monotonicity of the sequence of ¢
for each process ¢, and therefore we obtain

(; < (j4n foreach j. (19)

In order to get more compact expressions we denote (x4
by C," (this notation does not imply ! < n). Given the ex-
pressions for o;, we can prove the following lemma:

Lemma 1l For a system of n processes, the expression for
the expected cost (7) can be rewritten as

Eu(C1,.. 1 Cn, .- ) =

o]

n itn-—1 (lk
S T 0= Felcs™) [, (- s

k=0i=1 j=i+1
(20

This lemma makes possible to prove the chain theorem
for an arbitrary number of processes:

Theorem 2 (The chain theorem) The value for {; may ei-
ther be (;_n, or can be computed given the previous 2n — 2
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values of  using the formula

A
At

nil-1 nti—1

IT =P - [ (= Fai(™)

J=i+l j=l+1

-1 nti-1 ¢mH

> I a-Fe / (1= Fya(2))de.
i=l-n+1 j=i+1 ¢

#i#l
2D

Optimal solution for an arbitrary number of
processes: an algorithm

As in the case of two processes, assume that A; acts first.
By Theorem 2, given the values of (y, (1, . ..,{on—3 We can
determine all the possibilities for the value of {3, 2 (either
(n—2 if the process skips its turn, or one of the roots of (21)).
Given the values up to {2, _2, we can determine the values
for {2, -1, and so on.

The idea of the algorithm is similar to the algorithm for
two processes. The first 2n — 2 variables (including (o = 0)
determine the tree of possible values for ;. Optimization
over 2n — 3 first variables, therefore, provides us with an
optimal schedule (as before, we compare the results for the
case where the first k < n variables are 0).

Optimal solution in the case of additional
constraints

Assume now that the problem has additional constraints: the
solution time is limited by T (or each one of the processes
has an upper limit of 7;); and the probability of success of
the i-th agent p; is not necessarily 1. It is possible to show
that all the formulae used in the previous sections are valid
for the current settings, with two differences:

1. We use p; I; instead of F; and p; f; instead of f;.
2. All the integrals are from 0 to T instead of 0 to co.
The first change may be easily incorporated to all the algo-

rithms. The second condition adds a boundary condition for
chain theorems: for n agents, for example, (; may also get

the value
n—1
G=T-> G
=1

This adds one more branch to the Branch and Bound algo-
rithm and can be easily implemented.

Similar changes in the algorithms are performed in the
case of the maximal allowed time 7; per agent. In prac-
tice, we always use this limitation setting 7; such that the
probability for A; to reach the goal after T3, p; (1 — F;(T3)),
becomes negligible.

Process scheduling by intensity control®
Using intensity control is equivalent to replacing the binary
functions 8;(¢) with continuous functions with a range be-

*Due to the lack of space, in this section we sketch only the
main points.



tween 0 and 1. It is easy to see that all the formulae for the
distribution function and the expected cost from Claim 1 are
still valid under intensity control settings.

The expression to minimize (6) remains exactly the same
as in the suspend-resume model. The constraints, however,
are different:

0<oi<1 22)
for the problem with no shared resources, or
n
0<y o<1 (23)
i=1

for the problem with shared resources.
Under the intensity control settings, we can prove an im-
portant theorem:

Theorem 3 If no time cost is taken into account (a = 0),
the model with shared resources and the model with inde-
pendent processes are equivalent. Namely, given a solution
for the model with independent processes, we may recon-
struct a solution of the same cost for the model with shared
resources and vice versa.

It is possible to show that the necessary conditions of
Euler-Lagrange for minimization problem (6) (which are
usually used for solving such type of optimization prob-
lems), yield conditions of the form

fkl (ka) _ fk:z(o'kz)
1- Fkl(akl) T 1- sz(akz)’

(24)

which in most cases are only a false alarm. The functions

hi(t) = D)

=12Fm (25)

play a very important role in intensity control framework.
They are known as hazard functions or conditional failure
density functions.

Since the necessary conditions for weak minimum do not
necessary hold in the inner points, we should look for a solu-
tion on the boundary of the region described by (22) or (23).

We start with the following lemma:

Lemma 2 Let the functions o4, . . ., 0y be an optimal solu-
tion. Then they must satisfy the following constraints:

1. For the case of no shared resources, at each time t there
is at least one process working with full intensity, i.e.,

Vt maxo;(t) = 1.
1

2. For the case of shared resources, at each time t all the
resources are consumed, i.e.,

V> o) =1
i=1

This lemma helps us to prove the following theorem for
the case of shared resources:

54

Theorem 4 Let the set of functions {0} be a solution to the
minimization problem (6) under the constraints (23). Then,
at each point t, where the conditions (24) do not hold and
the hazard functions

__Jrlok(®)
hk(t) 1 —ka]EUk(t))

are continuous, only one process will be active, and it will
consume all the resources. Moreover, this process is the pro-
cess having the maximal value of hy(t) among all the pro-
cesses with non-zero resource consumption in the neighbor-
hood of the point t.

This theorem implies two important corollaries:

Corollary 1 If the hazard function of one of the processes
is greater or equal than the hazard functions of the others at
to and is monotonically increasing by t, this process should
be the only one to be activated.

Corollary 2 If a process becomes active at some point t'
and its hazard function is monotonically increasing by t at
[t', 00), it will remain active until the solution is found.

For the case of no shared resources, the following theorem
can be proved:

Theorem 5 Let the set of functions {o;} be a solution to the
minimization problem (6) under the constraints (22). Then
for each 1 the following condition holds:

oi(t) = 0oroi(t) =1,
at each time t except, maybe, a set of measure zero.

By Theorem 5, for a system with independent processes,
intensity control is redundant. As for a system with shared
resources, by Theorem 4 and Equation (24), intensity con-
trol may only be useful when hazard functions of at least
two processes are equal (it is possible to show, however, that
even in this case the equilibrium is not always stable). Thus,
the extension of the suspend-resume model to intensity con-
trol in many cases does not increase the power of the model.

Experiments

In this section we present the results of the optimal schedul-
ing strategy for algorithms running on the same processor
(the model with shared resources), which means that cost
is equal to objective time spent. The first two experiments
show how it is possible to benefit from the optimal schedule
by using instances of the same non-deterministic algorithm.
The third experiment demonstrates application of the opti-
mal scheduling for two different deterministic algorithms
solving the same problem. We have implemented the al-
gorithm described in this paper and compare its solutions
with two intuitive scheduling policies. The first policy runs
the processes one after another, initiating the second process
when the probability that the first one will find a solution
becomes negligible. The second intuitive strategy runs the
processes simultaneously. The processes are stopped when
the probability that they can still find a solution become less
than 1079,



Optimal strategy for algorithms with a bimodal
density function

Experiments show that running several instances of the same
algorithm with a unimodal distribution function usually cor-
responds to one-after-another strategy. That is why in this
section we consider a less trivial distribution.

Assume that we have a non-deterministic algorithm with
a performance profile expressed by a linear combination of
two normal distributions with the same deviation. Namely,
f(t) = 0.5N(p1,01) + 0.5N(pe, 02), where g = 2,
o1 = o2 = 0.5, and the probability of success is p = 0.8.
Figure 2 shows the average time required to reach the goal as
a function of u, (the results have been averaged over 10000
simulated problems generated per u2 accordingly to f(t)).

The results show, that up to a certain point the optimal
strategy is only slightly better than the one-after-another
strategy, but after that point it becomes better than both intu-
itive strategies. Optimal schedules for this experiment con-
tain a single switch point.
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Figure 2: Bimodal distribution: average time as a function of 2.

Optimal strategy for algorithms with a multimodal
density function

The goal of the second experiment was to demonstrate how
the number of peaks of the density function affects the so-
lution. We consider a case of partial uniform distribution,
where the density is distributed over & identical peaks of
length 1 placed symmetrically in the time interval from 0
to 100 (thus, the density function will be equal to 1/k when
t belongs to one of such peaks, and O otherwise). In this
experiment we have chosen p = 1.

As before, we have generated 10000 examples per k. Fig-
ure 3 shows the dependency of the average time from k.
We can see from the results, that the one-after-another strat-
egy requires approximately 50 time units, which is the av-
erage of the distribution. Simultaneous launch works much
worse in this case, due to the “valleys” in the distribution
function. Optimal strategy returns schedules, where the pro-
cesses switch after each peak, and outperforms both of the
trivial strategies.
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Figure 3: Multimodal distribution: average time as a function of

Optimal strategy for two deterministic algorithms

The first two experiments have generated schedules that are
rather intuitive (although they have been found in an optimal
way). In this experiment we want to demonstrate a very sim-
ple settings, where the resulting schedule will be non-trivial.

Let us consider a simulation of the first example from the
introduction. Assume that we have two learning systems,
both having an exponential-like performance profile which
is typical for such systems. We also assume that one of the
systems requires a delay for preprocessing but works faster.
Thus, we assume that the first system has a distribution den-
sity f1(t) = Aie~*tt, and the second one has a density
f2(t) = Xge=?2(t=t2) such that A\; < Ag (the second is
faster), and t3 > 0 (it also has a delay). Assume that both
learning systems are deterministic over a given set of ex-
amples, and that they may fail to learn the concept with a
probability 1 —py =1 — py = 0.5.

It turns out, that, for example, for the values \; = 3,
A2 = 10, and t; = 5, the optimal schedule would be to apply
the first system for 1.15136 time units, then (if it found no
solution) to apply the second system for 5.77652 time units,
then the first system will run for additional 3.22276 time
units, and finally the second system will run for 0.53572
time units. If at this point no solution has been found, both
systems have failed with a probability of 1 — 10~ each.

Figure 4 shows the dependency of the expected time as a
function of {5 for p = 0.8. As before, the results have been
averaged over 10000 simulated examples. We can see that
in this case running both of the learning systems decreases
the average time even while running on a single processor.

Conclusions and future directions

In this work we present a theoretical framework for opti-
mal scheduling of parallel anytime algorithms. We analyze
the properties of optimal schedules for the suspend-resume
model, show an extension of the framework to intensity con-
trol, and provide an algorithm for building optimal sched-
ules when the processes share resources (e.g., running on
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Figure 4: Learning systems: average time as a function of ¢>.

the same processor). The information required for building
optimal schedules is restricted to performance profiles. Ex-
periments show that using optimal schedules speeds up the
processes (even running on the same processor), thus pro-
viding a super-linear speedup.

Similar schemes can be applied for more elaborated se-
tups:

o Scheduling a system of n anytime algorithms, where the
overall utility of the system is defined as the maximal util-
ity of its components;

e Scheduling with non-zero rescheduling costs;

e Providing dynamic schedule algorithms able to handle
changes in the environment;

o Building effective algorithms for the case of multiproces-
sor systems.

These directions are a subject to an ongoing research.

We believe that using the framework such as above can
be very helpful for developing more effective algorithms
only by statistical analysis and parallelization of the exist-
ing ones.
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