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Abstract 
More than one third (13 million) of adults aged 65 and 
above fall each year in the United States. Developing 
automated systems that detect falls is an important goal for 
those working in the field of eldercare technology. We 
developed an acoustic fall detection system (FADE) that 
automatically recognizes falls using purely acoustic (sound) 
information. The main challenge of building a fall detection 
system is providing testing data, since, no matter how 
realistic the falls for training the system are, they can not 
fully replicate the real elder falls. To address this challenge, 
we developed a knowledge based system rather than a data 
driven one. The system uses fuzzy rules based on 
knowledge of the specific frequency fingerprint of a fall and 
on the height of the origin of the sound. The rules were 
implemented in a Mamdani fuzzy rule system. We tested 
our system in a pilot study that consisted of a set of 23 falls 
performed by a stunt actor during six sessions of about 15 
minutes each (1.3 hours in total). We compared the results 
of the fuzzy rule system to the results obtained using a K-
nearest neighbor (KNN) approach with cepstral features. 
While the fuzzy rule system did not perform as well as the 
KNN one in the low false alarm region, it had the advantage 
that it reached 100% detection rate.  

Introduction 
More than one third (13 million) of adults aged 65 and 
above fall each year in the United States (CDC 2006). In 
spite of extensive fall prevention programs (CDC 2006), in 
2006 there were about 400,000 fall related hospitalizations 
with an estimated direct cost of about $19 billion (Stevens 
et al. 2006). About 30% of people who fall suffer severe 
injuries such as fractures and head trauma (CDC 2006) that 
can render them unable to raise themselves or to ask for 
help. If the person lives alone in the apartment, a fall might 
result in a prolong period of laying on the floor which can 
cause hypothermia, dehydration, pressure sores or 
rhabdomyolosis (destruction of skeletal muscle) (Ratclife 
et al. 1984). Moreover, the delay in hospitalization can 
increase the mortality risk in some clinical conditions 
(Gurley et al. 1996). For example, a one day delay in hip 
fracture surgery may increase the 30 day mortality risk 
from 7.3% to 8.7% (Moran et al. 2005). Hence, it is 
imperative that the falls are detected and the necessary help 
is provided as soon as possible.  
 The fall detection methods found in the literature (Noury 
et al. 2007) are based on two types of devices: wearable 

and non-wearable. The wearable devices tend to be easier 
to deploy while the non-wearable ones tend to be less 
obtrusive. The wearable devices are in general rejected by 
older, more frail, people (Noury et al. 2006). Among the 
wearable devices we cite accelerometers, gyroscopes, 
mercury tilt switches and velocity sensors. Among the non-
wearable fall detection devices we mention floor vibration 
sensors (Alwan et al. 2006), video cameras (Rougier et al. 
2007; Anderson et al. 2008), infrared cameras (Sixsmith et 
al. 2005), and smart carpets. The floor vibration sensor 
(Alwan et al. 2006) was proposed to be deployed in a 
motion sensor network that helped reduce the false alarm 
rate if motion is sensed in a given time window after the 
fall signal (Dalal et al. 2005). In our experience, the floor 
vibration sensors do not perform well on the floors made of 
concrete covered by carpet that are typical for the nursing 
homes currently built in the United States. The use of 
video cameras is promising, although the computational 
requirements for processing represent a challenge. The 
infrared cameras and the smart carpet technologies are still 
under development.  
 Any fall detection system faces two challenges. The first 
challenge is represented by the false alarms which may 
lead to its rejection by the user (Noury et al. 2006). The 
second challenge is the lack of adequate training data 
which can lead to falls not being detected. An ideal fall 
detection system will have a demonstrable detection rate of 
100%. In this context, a knowledge based system has two 
advantages over a data-driven system: it is less dependent 
on training data and it has a transparent decision process 
where the reasons for classifying or not classifying a sound 
as a fall can be clearly understood. 
 In (Popescu et al. 2008) we introduced a dedicated 
acoustic fall detection system (FADE) based on an array of 
acoustic sensors. The system is inexpensive and built from 
off-the-shelf components. In that system, we used a data 
driven approach to fall detection based on cepstral features 
and K-nearest neighbor algorithm. In this paper, we are 
investigating a knowledge based approach to fall 
recognition by implementing a fuzzy rule system in the 
FADE system. 
 Acoustic sensors have been previously used in habitat 
monitoring (Castelli et al. 2003; Vacher et al. 2003; Istrate 
et al. 2006; Ladyrus et al. 2007; Schmandt and Vallejo 
2003). In (Istrate et al. 2006) a set of acoustic sensors was 
used to differentiate between several sound classes such as 
breaking glass, screams, steps, door sound and human 



sound. A microphone was placed in each room of the 
apartment to identify the location of the sound. The 
acoustic sensor used in the ListenIn system (Schmandt and 
Vallejo 2003) was designed for activity monitoring (baby 
noise or loud noise). The alarm, together with the 
encrypted sound, was send to a mobile device held by a 
caregiver. Human falls were not included in the sound 
classes detected in any of the above acoustic systems. 
 In speech recognition, knowledge based systems were 
designed to address variation in environment (acoustic 
variability) and speaker (within-speaker and across speaker 
variablity) (Zue 1985). As in the case of fall detection, one 
can not train a speech recognition system for all possible 
speech conditions and accents. Many features in the speech 
knowledge systems were based on the link between the 
speech sound spectrogram (the distribution of the energy 
across frequency) and the speech phonetics. The most 
relevant phonetic features for speech (Alexin et al. 1997), 
the fundamental frequencies (called formants), can not be 
used for fall detection since the fall sound it is not 
produced by a specialized instrument such as the human 
vocal tract. Other possible sound features are (Zue 1985) 
the zero crossing rate and total energy in a given frequency 
band. 
 We found two previous attempts using fuzzy rule 
systems (FRS) in speech recognition. Awais and Rehman 
(2003) used the average energy in two different frequency 
bands as inputs of a FRS for classification of Arabic 
phonemes. Hsieh et al. (1997) used the value of the first 
formant and the zero crossing rate as inputs of a FRS 
designed to perform Chinese speech segmentation. 
 In the next section we describe the architecture of the 
acoustic fall detection system used in this paper. 

FADE System Architecture 
The architecture of the FADE system used in this paper is 
shown in Figure 1.  

Figure 1. The architecture of the FADE acoustic fall detection system. 

The fall detector consists of a linear array of electret 
condenser acoustic sensors (two shown: Mic 1 and Mic 2) 
mounted on pre-amplifier boards Cana Kit CK495 (about 
$20 each). The acoustic sensor array was mounted 
vertically (along z-axis) in order to be able to capture 

information about the height of the origin of the sound. 
The working hypothesis for FADE is that the person is 
alone in the apartment. In order to preserve the privacy of 
the patient, the sound will be internally processed on a 
microprocessor board and only an external fall signal 
(email or pager) will be sent to the caregiver. In this work, 
we were mainly interested in the nature of the algorithm 
employed to detect the falls. For this reason, we only used 
a laptop computer to perform the signal processing instead 
of a microprocessor board. 
 The sound was recorded on a laptop computer using a 
National Instruments data acquisition card NI 9162 with 8 
differential analog inputs. The recorded sound was later 
processed using Matlab (http://www.mathworks.com). In 
the experiments presented here we used 2 sound sensors 
(Mic 1 and Mic 2) mounted vertically, 4 feet apart. 

Data Set Used in the Experiment 
The falls used in this experiment were performed by a stunt 
actor (Rantz et al. 2008). The actor was instructed by our 
nursing collaborators to fall as an elderly person would 
fall. There were 5 types of falls: forward (Figure 2.a), 
backward, toward-left (Figure 2.b), toward-right and fall 
from a chair. 

a. Forward fall       b. Left-side fall 
Figure 2. Stunt actor performing falls 

A typical fall session was about 10-15 minutes long and it 
contained 3-5 falls one of each type mentioned above. A 
nurse directed the actor during the fall session, instructing 
her when and how to fall and when to get up. Additionally, 
various other sounds such as moving chairs, table knocks, 
feet stomping were produced by the actor and by the team 
members. We recorded 6 fall sessions with a total of 23 
falls and a total recording time of 1.3 hours. A special 20 
minute long session with 17 falls and noises was recorded 
and used for training. From this training session, 17 fall 
files and 30 false alarm files (1 second long) were 
extracted and used in the feature defining process and in 
the KNN algorithm. The sound was sampled at fs=1000
Hz. During the feature selection process it was obvious that 
fs=1000 Hz was not sufficient to capture the subtle sounds 
involved in falls. In the future, we intend to increase the 
sampling frequency to 10 kHz. 
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Algorithm description 
In this section we will first present the sound features used 
to build the fuzzy rule system, then we describe the rules 
and, in the end, we briefly describe the data driven 
procedure (Popescu et al. 2008) that we used for 
comparison. 
Sound feature selection 
Energy in the 0-200 Frequency Band  
 Based on laboratory testing and on inspecting the 
available fall data we concluded that the majority of the 
fall energy is concentrated in the frequency interval 0-200 
Hz. This can be seen in Figure 3. While the non-falls have 
a somewhat even energy distribution across all frequencies, 
the falls have the energy concentrated in the 0-200 Hz 
range.  

Figure 3. The typical fall frequency signature (above) and the typical 
non-fall frequency signature (below). 

However, note that this energy concentration seems to be 
characteristic not only to a body fall but also to any object 
dropping on the floor.  In the fuzzy rule system we used as 
an input the energy density in the 300-500 Hz band 
calculated as: 
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fall signal, and w is a window (of size 1000 in our case). 
The signal will be classified as a fall if Ed,300-500 is low. 

Z
 The ZCR was calculated
in a given widow divided by the length of the window. 
Although ZCR was mentioned in the literature (Zue 1985) 
as a reasonable feature to use in speech recognition 
application, we did not find it very useful for fall detection.  
We plotted in Figure 4 the energy density and ZCR for the 
17 falls and 30 non-falls available in our training data. 
While the non-falls seem to have a mostly low ZCR, the 

falls do not exhibit any trend. However, experiments on 
our test data did not show ZCR to be a useful feature.
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Figure 4. The 17 falls (circles) and 30 non-falls (stars) plotted in the 
ZCR-Ed,300-500 space. 
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4 The Height of the Sound 
3

 The height of the sound is computed using the 
correlation between the sound recorded by the two sound 
sensors. The signal correlation was computed using the 
whitened spectrum cross-correlation (rather than common 
time domain cross-correlation) (Valin et al. 2003), that is: 
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where Si(n) is the Fourier transform of the signal si(n) 
received by the ith, i�{1,2}, sound sensor and t�[-N,N]. 
Then, we computed the delay, �12, between the signals 
received by two sensors as: 
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To make the search more efficient the maximum of R12
was searched in the t� [-10, 10] interval. The signal in a 
window will be classified as a fall if the delay, �12, is low 
(that is, the signal reached sensor 1 faster than sensor 2, 
which means that the sound is coming from somewhere 
lower than 2ft). We used the delay as the second input to 
our FRS. 

The fuzzy rule system architecture 
 The Mamdani fuzzy rule system used in this paper had 
the following four rules: 

IF Ed,300-500 is LOW  AND � 2 is LOW  THEN “fall” E 1 �
IF Ed,300-500 is HIGH  AND �1  is LOW� THEN “no-fall” E 2
IF Ed,300-500 is LOW  AND � 2 is HIGH  THEN “no-fall” E 1 �
IF Ed,300-500 is HIGHE AND �12 is HIGH� THEN “no-fall” 

The above membership functions (LOW and HIGH) are 
shown in Figure 5. 
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Figure 5. The memberships for the two input variables (�12 or HEIGHT – 
above and Ed,300-500 – below) for the FSR used in paper. 

The Cepstral Features Approach 
 We used the mel frequency cepstral coefficients (mffc) 
as features. The number of coefficients (features) used was 
C=7. The features were extracted using the Matlab 
function, mfcc, from (Slaney 2008). To make the system 
less dependent on the distance to the sound source, we did 
not use the first cepstral coefficient (proportional to the 
signal average) in the recognition procedure. The 
recognition was performed using the K-nearest neighbor 
(KNN) procedure with K=3. The "fall" and "no fall" 
training samples used in KNN were extracted from a fall 
session recorded by the same stunt actor but different from 
the six test sessions (see next section). A window was 
evaluated only if its energy Ew was greater than a threshold 
ETHR (=0.2 in our case). The energy is calculated as: 
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where N is the number of samples in the window. The 
considered window was 1 second of speech signal 
(N=1000 samples for a sampling frequency fs=1000 Hz) 
with a 50% overlap between consecutive windows. A 
summary of for both algorithms (“CEPSTRAL” and 
“FRS”) is given in algorithm 1. The low sampling 
frequency chosen (fs=1000 Hz) was, in fact, due to an 
erroneous setting of the data acquisition software. The 
intended value was 10KHz. Preliminary results with a 20 
KHz sampling frequency and using two new energy ratio 
subband features, ERSB (Liu et al. 1998), in the subbands 
0-300 Hz and 300 Hz -2000 Hz, are significantly better. 

Results
 To describe the performance of the algorithm for all the 
fall sessions we used ROC curves. For the cepstral 
approach we varied the lag threshold LTHR={-10,…,10}
and we obtained pairs of {detection rate, false alarm rate}. 
The detection rate for each threshold was computed as (# 
of falls detected)/23 and the false alarm rate as (#false 

alarm/minute). To get a ROC curve for the FRS we varied 
a threshold value in the interval [0,1], so at a given point 
say 0.7 all outputs above 0.7 were classified as a fall and 
all below 0.7 were classified as not being a fall. The two 
ROCs are shown in Figure 6. From Figure 6 we see that 
the cepstral approach is slightly better than the FRS in the 
low false alarm area. 

Algorithm 1. Overview of Fall Detection Algorithms.

FOR each window (k) 
 -Compute energy E(k) given by (4) 
 -IF E(k)> ETHR

  --Compute �12 between channel 1 and 2 using (2)&(3)  
         IF “CEPSTRAL” 
  --IF �12 <LTHR(sound height is ‘Low’) 
    Extract mfcc features from signal in channel 1 
    Do KNN to detect a fall: out(k)=1 if “fall”, =0 else. 
  --ELSE (sound height is 'High') 
   "no fall", out(k)=0 
  --END 
         ELSE “FRS” 
   -- compute the energy density Ed,300-500

           --out(k)=FRS(Ed,300-500 , �12 ) ; 
          END
 -ELSE (sound energy is low) 
  "no fall", out(k)=0 
 -END 
END FOR
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Figure 6. Comparison between the KNN-cepstral and the FRS  
algorithms. 

The problem of the cepstral approach is that it only reaches 
80% detection rate which comes from the insufficient 
training samples used in our experiment (which will 
always be the case, as we mentioned in the Section 1). On 
the other hand, the FRS approach achieves a 100% 
detection rate, albeit at a high false alarm rate.  We 
mention that in this paper we were not concerned with 
reducing the false alarm rate but only with comparing the 
two approaches. The false alarm rate can be reduced once 
we can make sure we detect all the falls. 

Conclusions
 We presented a prototype of an acoustic fall detection 
system that uses a fuzzy rule system to detect the falls.  
The major problem with such systems is the lack of 



adequate training data to train automated systems on. This 
lack of training data led us to investigate several acoustic 
features that could be used in a knowledge based system. 
We identified the energy density in the 300-500 Hz band 
and the height of the origin of the sound as promising 
features. However, more features have to be identified to 
reduce the currently high false alarm rate. 
 In future work we intend to fuse the data from the 
acoustic sensor with data from a motion detector with a 
view to further reducing the false alarm rate. Such a system 
would only trigger an alarm should a fall be detected 
acoustically and little motion be sensed after the event. A 
motion detector could also be used to help the system learn 
new noises online by maintaining a false alarm library. 
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