
Automatically Discovering Euler’s Identity via Genetic Programming

Konstantine Arkoudas
Rensselaer Polytechnic Institute
Department of Cognitive Science

arkouk@rpi.edu

Abstract

We show that by using machine learning techniques (ge-
netic programming, in particular), Euler’s famous identity
(V −E+F = 2) can be automatically discovered from a lim-
ited amount of data indicating the values of V , E, and F for
a small number of polyhedra—the five platonic solids. This
result suggests that mechanized inductive techniques have an
important role to play in the process of doing creative math-
ematics, and that large amounts of data are not necessary for
the extraction of important regularities. Genetic program-
ming was implemented from scratch in SML-NJ.

Introduction
In this paper we show that, using machine learning tech-
niques, Euler’s identity (V − E + F = 2) can be automat-
ically discovered in a few seconds from a limited amount
of data indicating the values of V , E, and F for certain
types of polyhedra. It should be noted that Euler himself
arrived at the identity inductively, by looking at the numbers
of vertices, edges, and faces of various polyhedra, formu-
lating hypotheses on the basis of those numbers, testing the
hypotheses on new polyhedra, etc.; he did not have a de-
ductive proof when he first announced the identity. The data
table that we use is shown in figure , taken from Pólya (Pólya
1990, p. 36). It depicts the values of V , E, and F for nine
polyhedra. Pólya, stressing the experimental and inductive
aspects of mathematical discovery, writes that the table “is
somewhat similar to the notebook in which the physicist en-
ters the results of his experiments,” and that a mathematician
would examine such a data table in an “attempt at establish-
ing a thoroughgoing regularity.” And he quotes Laplace’s
pronouncement that “even in the mathematical sciences, our
principal instruments to discover the truth are induction and
analogy.”

Exactly how common it is for mathematicians to develop
conjectures by way of induction appears to be an empiri-
cal question of fact, although the issue is not as simple as
it might seem at first glance.1 But the broader question

1In particular, there are difficult philosophical issues concern-
ing the extent of the influence of theory on observation and data
collection. For instance, the data shown in the table of figure 1
could not even be assembled until the theoretical concept of an
edge was available (a conceptual innovation of Euler).

of whether inductive techniques can be profitably used in
the aid of mathematical discovery has an eminently posi-
tive answer. Indeed, our results here indicate that automatic
learning techniques based on symbolic representations (e.g.,
genetic programming, inductive logic programming, etc.)
could have an important role to play in the process of do-
ing creative mathematics. Such techniques are very efficient
in extracting patterns from data and could thus be helpful in
suggesting the type of “thorougoing regularities” that inter-
est mathematicians.2

Remarkably, our program does not even need the nine
entries of figure to discover Euler’s identity. It suffices
to provide the values of V , E, and F for the five regular
polyhedra—the so-called Platonic solids. With either set of
data our program converges to Euler’s identity in a few gen-
erations.

Briefly, the main technical characteristics of our algorithm
are as follows: a maximum of 50 generations, a population
of 4000 abstract syntax trees, a generation size of 3600 pro-
grams (90% of the population size), a maximum tree depth
of 13, ramped half-and-half initialisation, 3 non-terminals
and 12 terminals (three of the latter being the variables V ,
E, and F , the other nine being random ephemeral integer
constants in the 1, . . . , 9 range), and a tournament size of
5. Crossover was the only genetic operation used; mutation
was not necessary. Section provides a brief overview of
genetic programming.

The algorithm was implemented in SML-NJ (Standard
ML of New Jersey). The source code can be downloaded
from www.rpi.edu/˜arkouk/euler/.

Genetic Programming
In genetic programming (GP) the goal is to automatically
construct a computer program that solves a specific problem.
The basic idea is to randomly generate an initial population
of programs (typically a few thousands) and then iteratively
apply selection pressure by mating “fit” programs to produce

2After completing the present paper, we became aware of an
article by Colton and Muggleton (2006) on applications of induc-
tive logic programming (ILP) in mathematics. Like our paper, that
work encourages the use of inductive machine-learning techniques
in the process of doing creative mathematics, but focusing on ILP
in particular. We are not aware of any other applications of genetic
programming in this domain.

Polyhedron F V E

1. Cube 6 8 12
2. Triangular prism 5 6 9
3. Pentagonal prism 7 10 15
4. Square pyramid 5 5 8
5. Triangular pyramid 4 4 6
6. Pentagonal pyramid 6 6 10
7. Octahedron 8 6 12
8. Tower 9 9 16
9. Truncated cube 7 10 15

Figure 1: The numbers of faces, vertices, and edges for nine
polyhedra.

offspring—new programs that become members of the new
generation. This assumes that we have a mechanical way
of measuring a program’s fitness. Typically this is done by
executing the program on a number of inputs and compar-
ing the obtained results to the correct values. The smaller
the deviation, the better the program. Mating is performed
purely syntactically: Viewing two parent programs as ab-
stract syntax trees, a random node is selected in each tree
and the subtrees rooted there are swapped. This operation
is called crossover. Mutation might also be used in order to
maintain genetic diversity. In the rest of this section we will
discuss these ideas in more detail.

Genetic programming can be seen as a particular appli-
cation of a more general scheme known by the collective
name of genetic algorithms (GA). The idea behind GA is to
search a space S of solutions to a given problem, using the
evolutionary principle of natural selection as a guide. For
example, suppose that we are interested in the satisfiability
problem: Given a CNF formula of propositional logic3 over
n atoms (Boolean variables) A1, . . . , An, find an assignment
of truth values to the atoms that makes the formula true. In
this case, a solution can be represented by a string of n bits,
where the ith bit indicates the value assigned to atom Ai

(with 0 standing for false and 1 for true). Accordingly, the
search space S is the set of all bit strings of length n.

We assume we have a fitness function that can assign a nu-
merical score to any element of the search space. If we view
the genetic algorithm as an optimizer, then this is the func-
tion we are trying to optimize. For the satisfiability problem,
a fitness measure for a given assignment σ ∈ S might be the
number of clauses of the formula that come out true under σ.
A score of zero signifies a very unfit solution, while a score
equal to the number of clauses indicates a perfect solution,
i.e., a satisfying assignment.

We also assume that a collection of reproduction oper-
ators are available which can take one or more individual
elements of the search space, combine or modify their ge-

3CNF stands for conjunctive normal form.

netic material, and produce one or more offspring objects.
The two standard genetic operators are crossover and mu-
tation. Crossover takes two individuals (the parents) and
produces one or two new individuals (the children) whose
genetic material is a recombination of the genetic material
of the parents. For instance, if individuals are represented
by bit strings of length n and the two parents are a1 · · · an

and b1 · · · bn, then we might randomly choose a positive in-
teger i < n as the splitting point and produce the bit string
a1 · · · ai bi+1 · · · bn as the offspring. Alternatively, we might
produce two children by swapping bit segments, resulting,
say, in a1 · · · ai bi+1 · · · bn and b1 · · · bi ai+1 · · · an. Muta-
tion takes a single parent and produces a child by randomly
altering the genetic material of the parent at a small num-
ber of points, e.g., by randomly flipping a few bits (typically
only one).

Specifically, the standard genetic algorithm attempts to
evolve a solution to the problem as described below. The al-
gorithm is parameterized over three integer quantities P >
0, 1 ≤ G ≤ P , and N > 0, respectively denoting the pop-
ulation size, the generation size, and the maximum number
of iterations.

1. Set i← 1.
2. Construct an initial random population of P possible so-

lutions, called individuals. This can be regarded as a small
subset of the overall search space S, and a starting point
from which to launch the evolution process. Randomness
is crucial in ensuring that disparate regions of the search
space are represented in the initial population. The sym-
bolic representation of individuals varies depending on
the problem. Oftentimes they are encoded as bit strings
of a fixed length.

3. If i > N then halt.
4. Determine and record the fitness of each individual in the

population. (Other statistics might also be collected at this
stage.) If the fittest individual solves the problem, then
halt and announce the solution.

5. Create a new population as follows:
• Pick P − G individuals and copy them over directly

into the new population.
• Create G new individuals by repeatedly applying

crossover or mutation to randomly selected parents
from the current population.

Note that every time individuals need to be randomly se-
lected from the population, the probability of an indi-
vidual being chosen should be based on its fitness: fit-
ter individuals should be more likely to be selected. At
the end of these two steps we have a new population of
(P − G) + G = P individuals.

6. Set i← i + 1 and go to step 3.
The selection mechanism used in step 5 is left unspecified,

and may be regarded as another parameter of the algorithm.
It is nevertheless vitally important, as it is regulates the ap-
plication of selection pressure. One of the most popular and
efficient ways to choose an individual from a population is
the method of tournament selection: k > 0 individuals are

first randomly picked, and then the fittest of the k is selected.
The number k is called the tournament size. The smaller
its value, the less the selection pressure. Indeed, if k = 1
then there is no selection pressure whatsoever: all individ-
uals have an equally good chance of reproducing, or being
regenerated or mutated. If k = P then the selection pressure
is excessive: Genetic operations will only be applied to the
fittest individual in the whole population. This will imme-
diately result in a complete loss of genetic diversity, which
will almost always cause the algorithm to get stuck in a sub-
optimal solution. The relationship between the parameters
G and P is also noteworthy: If G = P then we have full
population replacement at each step; if G = 1 then we have
a steady-state algorithm. A parameterized implementation
of the above algorithm based on tournament selection and
using SML’s functors will be discussed in the next section.

Genetic programming can now be understood as an in-
stance of the general GA scheme in which the search space
consists of all programs—up to a certain size—generated ac-
cording to some abstract grammar. Individual programs are
represented as abstract syntax trees (ASTs).4 For instance,
the program

if x > 0 then
y := x * x
else
y := z + 1

can be represented by the following AST:
if

����
����

> := :=

�
��

�
��

x 0 y

�
��

�
��
* y

�
�

�
�

�
��

�
��

x x z 1

+
�

�
�
�

As noted previously, the grammar of the language is usually
very simple. Issues such as nested levels of lexical scope
and variable capture rarely ever arise.

Internal nodes of ASTs are called non-terminals; leaves
are termimals. Oftentimes the programs are functional ex-
pressions over a number of input variables and certain func-
tion symbols. In that case every non-terminal is a function
symbol of a certain arity (number of arguments), and every
leaf is either a variable or a constant symbol (which can be
regarded as a function symbol of zero arguments). Such ex-
pressions can be regarded as programs that produce a unique
result once concrete values for the variables are given. Con-
sider, for instance, the “program”

or(not(p), q)

which can be represented by the following AST:

4Also known as parse trees, since they are typically the output
of parsing algorithms.

or
�

�
�

�
not q

p

Executing this program for inputs p �→ false and q �→
false produces the result true.

The first step in formulating a genetic programming prob-
lem is to fix the set of non-terminals and the set of terminals
that can appear in ASTs, which is tantamount to specify-
ing the abstract syntax of the programs. An important re-
quirement is sufficiency: A solution to the problem must
be expressible as a program built from the chosen termi-
nals and non-terminals. Suppose, for instance, that we are
trying to learn a function of four floating-point arguments
x1, x2, y1, y2 that represents the two-dimensional Euclidean
distance between points (x1, y1) and (x2, y2):√

|x2 − x1|2 + |y2 − y1|2.
Then our terminal set must include the four variables
x1, x2, y1, y2, and our non-terminal set must include sym-
bols for the square-root function, the absolute-value func-
tion, binary addition and subtraction, and exponentiation.
The semantics of the programs are given operationally, by
providing a procedure that can execute an arbitrary program
on arbitrary inputs. Typically this procedure will be used to
evaluate the fitness of a program by executing it on a num-
ber of input values and determining the error of the output
values.

In genetic programming crossover on two parent ASTs is
performed by swapping two randomly chosen subtrees, one
from each parent.5 Figure illustrates this operation on two
ASTs representing arithmetical expressions of the sort that
were used in discovering Euler’s identity; T1—T6 stand for
arbitrary subtress. Mutation could also be used to replace a
randomly chosen subtree of a parent with a new randomly
generated tree. However, mutation was not used in this ap-
plication6.

The initial population is built by randomly creating the
required number of ASTs. There are two ways of building
a tree randomly, the “full” method and the “grow” method.
In the former, the produced AST is full, that is, any two
branches of it are of equal length.7 This means that all termi-
nals in the tree are at the same depth. ASTs produced by the
grow method need not obey this constraint. Trees produced
by this method exhibit a greater variety in their shape and
structure. Usually the initial population is generated with a
combination method called ramped half-and-half initialisa-
tion: Half of the trees are built using one method, and the
other half using the other method.

5This always results in two children. Other variations of
crossover are possible, e.g., producing only one child.

6Koza (1992) has argued that crossover usually maintains suffi-
cient levels of diversity and that therefore mutation is not necessary
in most cases, and can indeed decrease performance by introduc-
ing untested genetic material into the population. Although this
is somewhat controversial (Angeline 1997; Chellapilla 1998), in
practice most implementations of GP use little or no mutation.

7A tree branch is any path from the root to a leaf.

Parent 1

T1 T2

�
�

��

�
�

��
·�

Crossover

point 1 �
�

��

�
�

��

+

T3

−

�
�

��

�
�

��

+T4

�
�

��

�
�

��

T5 T6

Parent 2

	

Crossover

point 2

T5 T6

�
�

��

�
�

��
+
�

�
��

�
�

��

+

T3

−

Offspring produced
by recombination

�
�

��

�
�

��

·T4

�
�

��

�
�

��

T1 T2

Figure 2: Illustration of the crossover operation on ASTs.
The subtrees rooted at the crossover points are swapped.
This is intended to simulate the exchange of genetic mate-
rial.

Our formulation of the problem
The problem can be cast as a standard symbolic regres-
sion problem, where we view F as a function of two vari-
ables, E and V , and search the space of all rational (non-
transcedental) functions for a function with maximal fit-
ness. The generated “programs” would be abstract syntax
trees built from four binary operations (addition, subtrac-
tion, multipication, and protected division), along with nu-
meric constants and the two variables V and E. The fitness
function would be implemented in the standard way, by tab-
ulating, for each data point, the difference between the actual
number of edges and the result produced by the program for
given values of V and E. We have built such an implementa-
tion that quickly converges to the solution (for a population
of 7000, generation size of 6300, and tournament size of 6).

In what follows we take an alternative approach, by at-
tempting to discover a mathematical relationship between
V , E, and F that agrees with (“covers”) all the examples of
figure . The relationship also needs to exclude certain possi-
bilities; this is a rather important point that will be discussed
shortly. We consider relationships of the form T1 = T2,
where the terms T1 and T2 can be arbitrary polynomials over
the three variables V , E, and F . More precisely, our search
space will contain all identities I generated by the following
abstract grammar and having depth no more than 13:

I → T1 = T2

T → L | T1 + T2 | T1 − T2 | T1 · T2

L → V | E | F | n

Here L ranges over leaves, where a leaf is either one of the

variables V , E, F , or a positive integer n. Of course our set
of terminals needs to be finite, so we cannot have infinitely
many numerals, one for each positive integer. Instead, we
used the nine numerals 1, . . . , 9. Any other integer, positive
or negative, can be built up from these nine numerals via
the available numeric operators (in fact addition and subtrac-
tion would suffice); zero can be expressed as, say, (V − V).
So our set of terminals is {V,E, F, 1, . . . , 9}. The set of
non-terminals is {+,−, ·}. The identity sign is not, strictly
speaking, one of our non-terminals, since it can only appear
at the root of a parse tree; there are no expressions such as
(2 = V) + 3.8 The relevant SML data types are as follows:
datatype variable = V | E | F;
datatype bin_op = plus | minus | times;
datatype term =
var of variable | const of int |
app of bin_op * term * term;

type ident = {left:term,right:term};

Genetic programming is heavily stochastic and makes ex-
tensive use of randomization. SML-NJ provides a built-
in library module for generating pseudo-random numbers
(structure Rand of the basis library), but it is based on
a rather obsolete class of algorithms, namely, linear con-
gruence generators. We instead used the relatively re-
cent Mersenni Twister pseudorandom generator of Mat-
sumoto and Nishimura (1998), which was implemented in
SML by Michael Neophytos.9 The Mersenni Twister pro-
duces extremely high-quality pseudorandom numbers and
is very efficient. Using the Mersenni Twister, we imple-
mented a function getRandomInt:int -> int such that
getRandomInt(k) returns a random integer in the range
1, . . . , k, for any positive integer k. This is the only ran-
domization function that was necessary in the project. A
particularly useful function that we defined in terms of it is
flipCoin:unit -> bool, which simulates Bernoulli tri-
als:
fun flipCoin() = getRandomInt(2) = 1;

Random leaves and internal nodes can now be generated as
follows:
fun chooseRandomLeaf() =
case (getRandomInt 12) of
10 => var(V)

| 11 => var(E)
| 12 => var(F)
| i => const(i));

fun chooseRandomFunSym() =
case (getRandomInt 3) of

1 => plus
| 2 => minus
| _ => times

8In GP parlance, this means that the non-terminal set
{+,−, ·, =} does not satisfy the closure requirement, which dic-
tates that any term built from the non-terminals and terminals
should be well-typed (i.e., it should denote a valid result in accor-
dance with the evaluation semantics of terms) as long as the arities
are respected. There are various ways of relaxing this constraint,
but in our case the issue did not present a problem, since the three
numeric operators do satisfy closure and the identity sign always
appears at the top.

9The name of the algorithm derives from the fact that its period
is the gargantuan Mersenne prime 219937 − 1.

The following function was used to randomly generate a
term of a given depth d using the full method:
fun makeRandomFullTerm(d) =

if d < 2 then
chooseRandomLeaf()

else app(chooseRandomFunSym(),
makeRandomFullTerm(d-1),
makeRandomFullTerm(d-1))

A similar function makeRandomTermGrow:int -> term
implemented the growing method. The higher-order func-
tion makeRandomTerm takes one of the two functions above
and uses it to generate a term of random depth:
fun makeRandomTerm(method) =
method(chooseRandomDepth())

where chooseRandomDepth returns a random integer in
the 1, . . . , max_depth range. A random identity can now
be generated as follows:
fun makeRandomIdent() =
let fun makeTerm() =
if flipCoin() then
makeRandomTerm(makeRandomTermGrow)

else
makeRandomTerm(makeRandomFullTerm)

in
{left=makeTerm(),right=makeTerm()}

end;

Term mating (crossover) is implemented straightfor-
wardly, with two parent terms always giving rise to two chil-
dren, either of which might be deeper than the maximum
depth. A positional system based on lists of positive inte-
gers is used for subterm navigation. Specifically, given any
term T and position p (where p is a list of positive integers),
we write T/p for the subterm of T located at position p.
This partial function can be defined by structural recursion
as follows:

T/[] = T

f(T1, . . . , Tn)/i :: p = Ti/p

For instance, if T is parent 1 in figure , then T/[1, 2] =
T2. See Baader and Nipkow (section 3.1, 1999) or Courcelle
(1983) for more details on terms, term positions, etc.

To mate two identities S1 = S2 and T1 = T2, we first
choose a random term Si from the first identity and a ran-
dom term Tj from the second identity, i, j ∈ {1, 2}. We
then mate Si and Tj to produce two offspring S′i and T ′j .
If either of these is deeper than allowed, it is discarded and
the original parent (Si or Tj) is used in its place. Two new
identities are produced by replacing Si and Tj in the original
identities by S′i and T ′j , respectively.

The fitness of an identity is measured by evaluating it on
the nine data points of the table in figure . (By a data point
we mean a triple of integers (i1, i2, i3) representing the val-
ues of V , E, and F , respectively, for a given polyhedron.)
The more points it covers, the better. Take, for example, the
identity V = F . This identity holds for the square pyra-
mid, the triangular pyramid, the pentagonal pyramid and the
tower; it fails for the remaining five polyhedra. It thus scores
4 out of 9 points. To determine whether an identity covers a
data point, we need to be able to evaluate an arbitrary term

once we are given values for the variables V , E, and F . By
an environment we will mean a function from variable to
int. Accordingly, what we need is an interpreter

eval:term -> env -> int

that takes a term, followed by an environment, and produces
the appropriate output. This is implemented as follows:
fun eval (var x) env = env x
| eval (const i) _ = i
| eval (app (bop,t1,t2)) env =

(intOp bop) ((eval t1 env),
(eval t2 env))

where intOp returns the SML numeric operation corre-
sponding to an element of the datatype bin_op:
val intOp = fn plus => op+

| minus => op-
| times => op*

An environment is readily constructed from a data point as
follows:
fun makeEnv(v,e,f) =
(fn V => v | E => e | F => f)

We can now determine whether an identity T1 = T2 holds
in a given environment ρ by evaluating T1 in ρ, evaluating
T2 in ρ, and checking to see whether the same result was
obtained in both cases:
fun holds({left,right},env) =
(eval left env) = (eval right env);

In this simple scheme, the minimum score an identity
could attain would be 0 and the greatest would be 9. How-
ever, this fitness function does not take into account the fact
that many trivial identities can achieve perfect scores vac-
uously; consider V = V , 1 = 1, V + E = E + V , and
so on. If we simply allocated points for agreeing with the
data, the search would quickly produce a trivial identity as
the optimal solution. To get around this problem, we intro-
duce negative data points, i.e., data values for which we are
sure that any correct identity must not hold. Such values are
easy to find. For instance, any proposed identity ought to
fail for V = 0, E = 0, and F = 1, as no polyhedron could
possibly have a face without having any vertices or edges.
Accordingly, let ρ− be the environment that maps V and E
to 0, and F to 1. We now only need to observe that a trivial
identity such as V = V holds in every environment, includ-
ing ρ−; while any plausible non-trivial identity will not hold
in ρ−. It is this distinction that will help us to steer clear of
trivial solutions.

Specifically, our scheme for measuring the fitness of an
identity T1 = T2 is the following. For each of the nine
data points, construct an environment ρ1, . . . , ρ9 that cap-
tures the corresponding values of the three variables. If
T1 = T2 holds in ρi, it gains a point. And if it does not
hold for the negative environment ρ−, it gains an additional
nine points. Therefore, the smallest possible score is now 0
and the maximum is 18. We also introduce a small bias in
favor of shorter identities by imposing a penalty of �n/20�
points for an identity of length n. Thus an identity of length
100 would incur a penalty of 5 points, while one of length
less than 20 would not incur any.

For greater modularity, and particularly in order to be able
to run an experiment with different sets of data, we make the
evaluation of an identity a function of an arbitrary list of data
points (triples of integers). This way, we can evaluate an
identity on the data of figure , or on the data for the five pla-
tonic solids, or indeed on any given list of data points. The
scheme is the same: Given a list of n such triples, an iden-
tity scores a single point for every triple that it covers; and
it wins n additional points if it does not cover the negative
data point (0, 0, 1):

val neg_env = makeEnv (0,0,1);

fun evalIdentForGivenPolyhedron
(identity,data_point) =

let val pos_env = makeEnv data_point
in
(if holds(identity,pos_env)

then 1 else 0)
handle _ => 0

end;

fun identFitness(identity,data) =
let val scores =

List.map
(fn data_point =>

evalIdentForGivenPolyhedron
(identity,data_point))

data
val pos_points =
List.foldr op+ 0 scores

val neg_points =
(if not(holds(identity,neg_env))
then List.length(data) else 0)

handle _ => 0
val sum = pos_points + neg_points
val size_penalty =
(identSize identity) div 20

in
sum - size_penalty

end;

Note that if an error such as an overflow occurs during the
evaluation of an identity in a given environment, then no
points are awarded.

A functor-based implementation of genetic algorithms
using tournament selection can be downloaded from
www.rpi.edu/˜arkouk/euler/. It is based on the fol-
lowing two signatures:

signature GA_PARAMS =
sig
type individual

val individualToString:
individual -> string

val makeRandomIndividual:
unit -> individual

val crossOver:
individual * individual ->
individual * individual

val mutate:
(individual -> individual) option

val population_size: int
val generation_size: int

val tournament_size: int
val max_generations: int

end

signature GA =
sig

structure G: GA_PARAMS
type population

val makeInitPopulation:
unit -> population

val selectIndividual:
population -> G.individual

val findFittest:
population -> G.individual * real

val evolve:
population -> population

val solve:
unit -> G.individual option

end

The signature GA_PARAMS captures the parameters of the al-
gorithm that will vary depending on the problem. Most of
the items are self-explanatory. A mutation operator is op-
tional. If one is provided, it is used to produce 10% of each
successive generation; the crossover operator produces the
remaining 90%.

The signature GA specifies the essential aspects of the GA
scheme. Fitness values are real numbers, and optimization
is tantamount to maximization.10 The main component is
solve, which will optionally produce a individual that is
sufficiently fit to be considered a solution (or else fail). Note
that a structure that satisfies this signature will contain a
GA_PARAMS substructure. The idea is that a structure of type
GA will be produced by a functor that will take a structure of
type GA_PARAMS as an argument. Also note that the fitnes
function and goal predicate (which specifies when a given
fitness is good enough) are not part of the parameter struc-
ture, and thus need to be supplied to the said functor sepa-
rately, as values. This decoupling provides an extra degree
of flexibility.

The parameters of the genetic algorithm for this particular
problem are assembled in the following structure:
structure GA_PARAMS =
struct
type individual = ident;
val makeRandomIndividual =
makeRandomIdent;

val individualToString = identToString;
val crossOver = mateIdentities;
val mutate = NONE;

val population_size = 4000;
val generation_size = 3600;

10Any other type of optimization function can be readily recast
in this manner. For instance, if a fitness function

f:individual -> int

produces integer values instead, and if smaller values are better,
then fn x => Real.fromInt(˜(f x)) will be an equiva-
lent fitness function that maximizes real numbers.

val tournament_size = 5;
val max_generations = 50;

end;

Two data lists, one corresponding to the table of figure and
one for the five platonic solids are defined:

val (data_point_1,data_point_2,
data_point_3,data_point_4,
data_point_5,data_point_6,
data_point_7,data_point_8,
data_point_9) = ((8,12,6), (6,9,5),

..., (10,15,7));

val data_table_1 =
[data_point_1,data_point_2,data_point_3,
data_point_4, data_point_5, data_point_6,
data_point_7, data_point_8,data_point_9];

val (tetrahedron_data,
dodecahedron_data,
icosahedron_data) =
((4,6,4),(20,30,12),(12,30,20));

val data_table_2 = [data_point_1,
data_point_7,
tetrahedron_data,
dodecahedron_data,
icosahedron_data];

(* data_table_2 covers only the five
platonic solids *)

A fitness function for the first data set and a corresponding
goal predicate are defined, a genetic algorithm structure S1
is created by applying the functor makeGA to these two val-
ues and the structure GA_PARAMS, and the solve function
of S1 is used to discover an appropriate identity:

fun fitness1
(identity:GA_PARAMS.individual) =

Real.fromInt
(identFitness(identity,data_table_1));

fun goalFitness1(r) =
Real.>=(r,Real.fromInt
(Int.*(2,List.length(data_table_1))));

structure S1 =
makeGA(structure ga_params = GA_PARAMS;

val fitness = fitness1;
val goalFitness = goalFitness1);

val _ = S1.solve();

Likewise for the second data set. In both cases the algorithm
converges to Euler’s identity within 4 to 8 generations.

References
Angeline, P. J. 1997. Subtree crossover: Building block
engine or macromutation? In Koza, J. R.; Deb, K.; Dorigo,
M.; Fogel, D. B.; Garzon, M.; Iba, H.; and Riolo, R. L.,
eds., Genetic Programming 1997: Proceeding of the Sec-
ond Annual Conference. Morgan Kaufmann. 9–17.
Baader, F., and Nipkow, T. 1999. Term Rewriting and All
That. Cambridge University Press.

Chellapilla, K. 1998. A Preliminary Investigation into
Evolving Modular Programs without Subtree Crossover. In
Koza, J. R.; Banzhaf, W.; Chellapilla, K.; Deb, K.; Dorigo,
M.; Fogel, D. B.; Garzon, M.; Goldberg, D. E.; Iba, H.; and
Riolo, R. L., eds., Genetic Programming 1998: Proceeding
of the Third Annual Conference. Morgan Kaufmann. 23–
31.
Courcelle, B. 1983. Fundamental properties of infinite
trees. Theoretical Computer Science 25:95–169.
Koza, J. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press.
Matsumoto, M., and Nishimura, T. 1998. Mersenne
Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS) 8(1):3–30.
Pólya, G. 1990. Mathematics and Plausible Reasoning,
Vol. 1: Induction and Analogy in Mathematics. Princeton.
Twelfth Printing.
S. Colton and S. Muggleton. 2006. Mathematical applica-
tions of inductive logic programming. Machine Learning
64(1–3):25–64.

