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Abstract 
In this talk we present the Fluid Concepts cognitive model, 
developed by Douglas Hofstadter and his students over the 
last 30 years.  Models in the Fluid Concepts tradition aim to 
provide a psychologically plausible description of 
perception and analogy-making, incorporating the parallel 
processing of bottom-up, data-driven percepts and top-
down, expectation-driven hypotheses. We discuss these 
models' implications for scientific discovery. 

Introduction 

In this work we discuss the fluid concepts architecture, 
developed by Douglas Hofstadter and his Ph.D. students 
over the last 30 years, and the implications of this work for 
cognitive models of scientific discovery.  
 
At the end of Hofstadter’s book Gödel Escher Bach (1979) 
there is a set of problems Hofstadter considered to be 
incredibly far from the capacities of then-current models of 
artificial intelligence and cognitive science.  They were 
called “Bongard problems”, for the name of their creator, 
the late cybernetics researcher Dr. Michail M. Bongard 
from the Soviet Union.  Each problem displays two sets of 
figures, asking the solver to identify a feature 
distinguishing elements on the left from elements on the 
right.  Figure 1 displays two Bongard problems. 
 
The reader should not have the impression that these 
problems have a trivial solution or that being situated in the 
microdomain of Bongard problems keeps them distant 
from the requirements of cognition.  These problems were 
highly influential in the development of Hofstadter’s 
subsequent microdomains, such as the number sequences 
of Seek Whence or the letter-strings of Copycat (see 
Hofstadter 1985, Hofstadter and FARG 1995).  The 
programs operating in these microdomains include a 
number of features that Hofstadter saw as essential for 
modeling the human mind: 
 

(i) Active symbols: in most symbolic systems of 
traditional AI, symbols are simply data 
manipulated through procedures; in an active 
symbols system, the moment that a symbol 
(say, “triangle”) becomes active, it influences 

the direction of future processing. (It might, 
for instance, attempt to find other triangles, or 
spread activation to related concepts, such as 
“angle”); 

(ii) Top-down (hypothesis-driven) and bottom-up 
(data-driven) computation: both types of 
processes operate simultaneously. It is 
impossible to separate perception from 
concepts; i.e., there can be no perception 
module on a cognitive system; 

(iii) Analogy at the core of cognition: the basic 
idea here is that, for instance, in vision, the 
same set of photons will never reach the 
retina in the exact same way.  Analogy lets us 
handle abstract similarities.  Figure 2 shows 
how analogy plays a crucial part in the game 
of chess (Linhares 2005, Linhares and Brum 
2007). 

 
Figure 1. Bongard problems #91 and #97.  The number of 
potential characteristics to distinguish the groups is 
enormous.  Foundalis (2006), for instance, showed that 
even abstract notions of the real world, such as time, 
motion, gravity, three-dimensionality, etc., may play a part 
in the solution of a Bongard problem. Linhares (2000) 
showed how people could come with inconsistent, 



incompatible interpretations in a given problem, yet feel 
that there was no inconsistency involved (for example, in 
problem #91, people respond “three objects versus four 
objects”, without realizing that, in so doing, they have 
carved the squares on the left as single objects, and the 
square on the right as four independent objects—
“consistent” interpretations would lead to “12 line 
segments versus 4”, or “three squares versus one”.  This 
shows that top-down, contextual pressures, can alter the 
perception of each object.   
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Figure 2. Positions 8 and 20 used in Linhares and Brum 
(2007). White to move. For readers unfamiliar with chess, 
the solutions are:  In position 8, white moves rook to g8 
check, black rook captures white rook, white knight 
captures black pawn at f7 checkmate.  In position 20 white 
moves knight to a6 check (by knight and by queen), black 
king escapes to a8, white moves queen to b8 check, black 
rook captures white queen, white knight returns to c7 
checkmate.  These variations of “Philidor’s mate” display 
high strategic similarity and no similarity at a surface 
appearance level. 

Implications 

Given this brief introduction, what are the implications of 
Hofstadter’s studies to the field of cognitive modeling of 
scientific discovery?  What features should architectures 
that model automated scientific discovery have? We 
suggest that models of human-like scientific discovery 
should incorporate the following ideas: 

(i) A deep intermingling of bottom-up, data-
driven perception processes with top-down, 
expectation-driven hypothesis.  Perhaps here 
lies the greatest contribution from Fluid 
Concepts to automated scientific discovery.  
Take for example, classification sciences 

such as taxonomy (prior to DNA).  
Classification problems are extremely close 
to Bongard problems in their cognitive 
demands. Understanding that sharks and 
dolphins are extremely different requires 
more than bottom-up perception data, which 
may lead to error (in fact, Linnaeus himself 
initially classified dolphins as fish).  It also 
requires that one holds in mind the 
expectations of what constitutes a mammal 
and what constitutes a fish, and hence 
perceiving, in disguised polymorphic forms, a 
mammal in a dolphin. 

(ii) Analogy at the core of knowledge expansion.  
From the model of the atom to the idea of 
superstrings, to viewing DNA as a staircase, 
analogies play a crucial part of scientific 
discovery.  In Hofstadter’s models, there is a 
semantic network called the slipnet. A crucial 
feature of this associative network is that 
concepts are allowed to “slip”, changing their 
distances to other concepts as new ideas are 
brought up.  This type of model facilitates the 
perception of DNA as a zipper (in a cell 
biology scenario), of DNA as a computer 
program (in a cell development scenario), or 
of DNA as a fingerprint (in a crime scene). 
The fact that we can use concepts as 
semantically apart as those to describe and 
understand a molecule tells us a lot about the 
power of analogy-making in scientific 
discovery. 
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