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Introduction

Model finding technology is highly useful in nearly every
stage of logico-mathematical discovery. In the initial for-
malization of domain knowledge, model finders may be em-
ployed to ensure that formulae intended to capture some real
domain knowledge are not contradictory; in conjecture gen-
eration and verification, the presence or absence of certain
models can indicate whether or not the conjecture is actually
a logical consequence of its premises. The task of a model
finder is straightforward: given a set of formulae in a log-
ical system, the finder seeks a single interpretation which
satisfies every formula. In other words, for every function
symbol, relation symbol, and constant symbol present in the
logical system, the desired result is a mapping of those oth-
erwise semantically meaningless symbols to real functions,
real relations, and real constants ranging over one or more
non-empty sets (or domains).

For example, consider the following two axioms in a stan-
dard first-order logic:
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Here, (1) and (2) are satisfiable — there exists an interpre-
tation on which both are satisfied according to the semantics
of the logic. If (as the language may already suggest) an
interpretation mapped the symbol < to the 1less—than re-
lation over, say, the natural numbers, the above sentences
evaluate to true according to that interpretation (i.e., (1) ev-
ery natural number is less than another natural number, and
(2) the less-than relation is transitive). Of course, that obvi-
ous interpretation is not the only one which models the two
formulae: a domain consisting of every person currently re-
siding in Troy, NY with the < relation symbol mapped to
the “is same person” relation (where x < y only if x and y
are the same person) would also satisfy the given formulae.

Model finders can be employed to evaluate the veracity of
a conjecture, particularly in an attempt to falsify the claim.
If a model can be found which satisfies the premises, but
in which the conjecture is false, then the conjecture is not
logically entailed by the premises. Such an interpretation
is called a counter-model. Suppose we conjectured that the
following sentence follows from (1) and (2) above:

Ve (x<y) — -(y <x) 3)

To falsify this conjecture, we seek a counter-model. Con-
sider the first interpretation for (1) and (2): if < is the
less—than relation, then (3) remains true — this interpre-
tation is not a counter-model for the conjecture. The second
interpretation, however, is a counter-model. If x is the same
person as y, then clearly y is the same person as x; (3) is
false in this interpretation and therefore we know that the
sentence is not logically entailed by (1) and (2).

If the model finder was unable to produce a counter-
model, then, depending on the way in which it failed, the
lack of a model may support that the conjecture is entailed.
Formally, if no interpretation exists in which the premises
are true and the conclusion false, the conclusion is a logi-
cal consequence of the premises. That being said, the non-
existence of a model and the inability of a system to produce
one do not necessarily go hand in hand.

Finitary Model Finding

Several systems have been developed for producing models
from a set of premises. By and large, the current success-
ful systems are based on one of two strategies, one devel-
oped by McCune (1994), the other by Zhang (1995a). The
latter resulted in the SEM system (Zhang & Zhang 1995b;
1996) and employed backtracking search and powerful con-
straint propagation methods to search for interpretations of
the given sentences. The system also used heuristics to
reduce the number of isomorphic models it had to search
through (Claessen & Sorensson 2003). The former ap-
proach yielded the MACE model-finder (McCune 1994),
which first converted the first-order sentences into an propo-
sitional logic clause set assuming a fixed and finite num-
ber of domain elements. Returning to our example in the
previous section, if we temporarily limit our search to only
models containing two elements (call them a and b), we can
construct a set of propositional sentences new propositional
variables assigned to the each possible instantiation of the
existing relation symbols. In other words, if the only objects
are a and b, the following new propositional variables are
introduced: {<qq, <ab, <va; <wb} Where <, is understood
to be the propositional equivalent of the first-order formula
x < y. Instead of the formula V,, : =(z < ), for example,
we would have the clause (= <,q A~ <pp). The premises
and negated conclusion can be rewritten into propositional
clauses accordingly and the resulting problem is then at-



tacked by a SAT solver for propositional logic. The MACE
system repeats this process for incrementally larger domain
sizes until it finds a satisfying model.Building on the MACE
tradition, the Paradox model-finder (Claessen & Sorensson
2003) implements a number of additional heuristics, includ-
ing sort-inference and static symmetry reduction, to gain a
substantial boost in efficiency and has stood up well against
other such systems in the annual CADE ATP System Com-
petition (CASC) for automated theorem provers and model
finders (Sutcliffe & Suttner 2006).

To take a more robust example from the TPTP (Thousands
of Problems for Theorem Provers) Problem Library (Sut-
cliffe & Suttner 1998) (GRA013+1), suppose we are con-
cerned with the domain of Graph Theory and conjecture that
there is no 2-colored complete graph of size 5 that does not
contain a subgraph of size three in which all of the edges
have the same color.! The domain and problem is encoded
in a first-order logical system as follows.
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Formulas (4) and (5) set that there are five vertices and that
an edge connects each vertex to the remaining four. (6) fixes
that every edge must either be green or red, and (7) and (8)
establish that there does not exists any complete subgraph of
size three whose edges are all the same color. An interpre-
tation will specify exactly which edges are red and green.
When fed to Paradox, a model of size 5 is constructed al-
most immediately. The five members of the interpretation’s
domain correspond to the five vertices of the graph, with the
edges and colorings indicated as shown in Figure 1.

Figure 1: The output from Paradox, represented as a visual
diagram.

1Contrary to the standard definition, a 2-coloring, here, is a col-
oring of the edges using only two colors.

Infinitary Model Finding

While such systems are particularly effective on examples
such as the one given, they all share a common problem:
these model finders are only capable of finding finite set-
back models. While these systems could, theoretically, in-
crementally search arbitrarily large domains, they will only
ever search finite domains. It is, however, exceedingly sim-
ple to produce a set of satisfiable formulae for which these
model-finder are completely impotent; e.g.,
Ve :s(z) #a )
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Any interpretation which satisfies (9) and (10) must con-
tain mutually distinct elements for {a, s(a), s(s(a)),...};
(9) and (10) are satisfied only by infinite models.

One such interpretation is the natural numbers, where the
function symbol, s, is interpreted as the “successor” function
and the constant a is the zero. How can we be sure that this
interpretation satisfies the given universally-quantified for-
mulae? When dealing with finite models, such verification
was simple: check that the formula holds for every object in
the domain. When an infinite domain is involved, the task
becomes less straightforward.

When the domain in question is well-founded (as the
above interpretation is), we can use well-founded induction
to prove that each formula would hold no mater what ele-
ment (or number, in this case) we replaced the quantified
variables with.

In this way, it is possible to raise the bar, so to speak, by
building a new model-finder which is able to construct some
infinitary models. Such a system requires automated induc-
tive theorem proving but should be useful for several do-
mains relevant to scientific discovery where reasoning over
infinite domains is a matter of convenience or necessity.
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