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Introduction
Research in hybrid logic systems and, later, description log-
ics, has revealed a tradeoff between the expressivity of a log-
ical formalism, and the complexity of reasoning within that
formalism. This is why, for instance, tractable inference pro-
cedures are known for certain classes of description logics
and for (some) formalisms underlying knowledge represen-
tation on the Semantic Web.

Some traditions within artificial intelligence and knowl-
edge representation have focused on more expressive knowl-
edge representations. For some expressive representations,
such as first-order logic, sound and complete proof calculi,
such as the sequent calculus, have been developed. How-
ever, for the purposes of automated theorem proving, not all
proof calculi are created equal. Engineering effective proof
search strategies for some proof calculi is difficult, but other
proof calculi, e.g., those based on resolution, do lend them-
selves to efficient proof search.

Recognizing the diversity of knowledge representation
systems currently in existence, the different properties of
proof calculi which may be employed over these systems,
and the growing need to combine inferences made under
multiple logical systems, we propose the development of
formalisms to govern these interactions, and call this the
study of combined logics.

Preliminaries
We review a few necessary preliminaries, and define the
terms heterogeneous and homogeneous with respect to logi-
cal systems coupled with proof calculi.

Logical Systems

We use the common notion of logical system: a pair, 〈L,�〉,
where L is a logical language, and � is a proof calculus.

A language L defines the syntax of expressions within the
system, specifying, perhaps, for first-order languages, a set
of boolean connectives, predicate and function symbols, and
quantifiers, or, for description logic languages, set of con-
cept, role, and individual names, and concept and role con-
structors. L must also define the semantic interpretation of
expressions within the system.

A proof calculus � specifies the inference rules and syntax
of proofs, and a notion of validity. A proof calculus may or
may not possess soundness and completeness.

Logical Genera

A number of relationships may hold between two logical
systems, L1 = 〈L1,�1〉, and L2 = 〈L2,�2〉. Several are
likely to be of interest, and we here define some relevant
descriptive terms. Firstly, if the languages L1 and L2 are
the same, then the logical systems are said to be homoglot-
tal. If the two systems are not homoglottal, then they are
heteroglottal.

In the case that L1 and L2 are homoglottal, any distinc-
tion between them originates in differences in �1 and �2.
One important property by which calculi are distinguished
is the deductive closures they yield for a set of formulae, Φ.
If their respective deductive closures are the same for any
set Φ, then the logical systems L1 and L2 are said to be ho-
moglottal homogeneous systems. A trivial result is that all
logical systems produced by coupling a language L with any
sound and complete proof calculus are homoglottal and ho-
mogeneous. If two logical systems are not homogeneous,
then they are heterogeneous.

Other formal relationships between the calculi of ho-
moglottal systems can also be envisioned. For instance, we
might define a relationship that holds between �1 and �2 if
and only if for every set of formulae Φ, the deductive clo-
sure under �1 is a subset of the deductive closure under �2.
This would be the case, for instance, with inference algo-
rithms for fragments of first-order logic that correspond to
description logics and sound and complete calculi for first-
order logic.

In the case that L1 and L2 are heteroglottal, then the com-
parison of �1 and �2 is more complicated. For instance, it
could be the case that one of L1 and L2 is a sub-language
of the other, in which case homogeneity and heterogeneity
could be defined in a manner similar to the one present above
(with some provision for the fact that not every set Φ of for-
mulae under one language is a actually a set of formulae
under the other). More likely, however, is that the precise
relationship of the systems will require knowledge of the
particular semantics of the two systems. We make no claim
to have fully formalized any such notions at this time.

Example

We consider two logical systems. The first is a description
logic-based system of familial relationships. We do not elab-



orate on the proof calculus associated with this system. De-
cision procedures are known for certain classes of descrip-
tion logics, and we assert that the description logic of this
system has such a decision procedure and associated cal-
culus. A portion of the knowledgebase associated with the
system follows.

Parent � ∃hasChild .Person (1)
Mother ≡ Parent � Woman (2)

The second logical system has a traditional first-order
syntax, semantics, and proof calculus. It is a formaliza-
tion of a portion of tax code. The intention of the expres-
sion [Dependant ,Son,Daughter ] (x, y) is that x has y as
a [Dependant ,Son,Daughter ]. Eligible(x) indicates that
x is eligible for a particular deduction. As with the first
system, we will not examine the proof calculus of this sys-
tem, except to say that it is sound and complete, and is in
the natural deduction style. A portion of the knowledgebase
that governs whether individuals are eligible for a deduction,
based on whether they have a dependant, follows.

∀x ∃y Dependant(x, y) ⇒ Eligible(x) (3)
∀x,y (Son(x, y) ∨ Daughter(x, y)) ⇒

Dependant(x, y) (4)

Within the description logic based system, it can be ob-
served that since Mother is the intersection of the concepts
Parent and Woman , and Parent is subsumed by the re-
striction of hasChild to Person , Mother must be subsumed
by the same restriction. The decision procedures for various
classes of description logics can confirm this observation,
and so this result if provable within the first logical system.
Lemma 1. The concept Mother is subsumed by the restric-
tion of the role hasChild to the class Person . Symbolically,
Mother � ∃ hasChild .Person .

Within the second logical system, which is based on first-
order logic and a natural deduction style proof calculus,
an inference begins with the introduction of a new, unused
name, say, a, in a new scope. The inference continues with
the assumption of a disjunction, that either there exists a y
that is the daughter of a, or that there exists a y that is the
son of a. Then, as a proof by cases, it can be determined
that a must have some dependent, and so a is eligible for the
deduction. Exiting the scope of a yields a universal general-
ization, resulting in Lemma 2.
Lemma 2. For any individual x, if there is an an-
other individual y, such that x has y as a depen-
dant, then x is eligible for the deduction. Symbolically,
∀x [∃ySon(x, y) ∧ ∃yDaughter(x, y)] ⇒ Eligible(x).

Combining Results

We now have two lemmas, Lemma 1 and Lemma 2. The
description logic of the first system is equivalent to a frag-
ment of first-order logic, and we may recognize an equiv-
alence between Lemma 1 and the following sentence in a
traditional first-order syntax.

∀xMother(x) ⇒ ∃y [Person(x) ∧ hasChild(x, y)] (5)

In this form, it seems that (5) is semantically related to
Lemma 2, although the two sentences are expressed in dif-
ferent languages, but those languages share a common (gen-
eral) syntax and semantics. We can leverage our prior work
in provability-based semantic interoperability (Taylor, Shill-
iday, and Bringsjord 2007; Shilliday, Taylor, and Bringsjord
2007), in mapping the first-order language with the vocabu-
lary of the description logic system to the language of the of
second system is not a particularly difficult task.

Once such a mapping has been accomplished, it is not
difficult to infer (6), stating that mothers are eligible for the
deduction in question.

∀x Mother(x) ⇒ Eligible(x) (6)

Remarks

In this example, we have explored how different logical lan-
guages and proof calculi might be used in conjunction to ob-
tain results which neither system could produce alone. We
selected systems whose logical languages differ, but whose
underlying semantics were very similar. This enabled us
to gloss over translation from a description logic to a first-
order logic. After the relevant information had been placed
into systems using different vocabularies, but similar seman-
tics, our existing work in provability-based semantic inter-
operability enabled us to perform inferences using multiple
knowledge sources.

The choice of systems was not made in order to make this
process easy, but rather to present a situation which is diffi-
cult, but probably achievable today, and so an ideal start-
ing point for research in combined logics, particularly as
they apply to wide-scale knowledge representation systems
today. Future work would necessarily include examining:
what types of relationships between logical systems can be
exploited to make information sharing between systems that
do not have such similar semantics feasible; what kinds of
inference can be performed on shared knowledge; and plan-
ning methods to determine what inferences might be per-
formed within single systems, and what inferences require
information obtained from multiple systems.
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