
Considerations for Flexible Autonomy within BDI Intelligent Agent

Architectures

Marcus J. Huber

Intelligent Reasoning Systems
4976 Lassen Drive

Oceanside, California, 92056
marcush@home.com

Abstract
This paper discusses issues related to autonomy within BDI-
based intelligent agent architectures and applications. One
advantage that agent-based applications built upon formal
theories such as BDI (Belief-Desire-Intention) theories have
over standard application implementation paradigms is their
explicit implementation of some of the mentalistic states,
such as goals, that are typically associated with autonomy.
To capture the intuition that autonomy represents
independence from external influences such as other agents,
we define autonomy as the level of separation between these
external influences and an agent’s internal structures,
considering not only goals, but also intentions, beliefs, and
capabilities. Taking an existing BDI architecture (JAM) as
an example, we measure the existing autonomy level for
each of these attributes and then introduce and discuss ideas
related to architectural modifications and programming
practices that support flexible and perhaps dynamic
modification of an agent’s autonomy.

Introduction

To be one's own master is to be the slave of self.
Natalie Clifford Barney (1876-1972)

Autonomy is an intuitive but subtle characteristic of
agency. Our intuition with respect to autonomy is that it is
an attribute that needs to be defined as a relationship
between an agent’s internal structures and external
influences. Autonomy is therefore highly dependent upon
the agent’s internal design (i.e., its architecture). Belief-
Desire-Intention (BDI) theoretic (Bratman 1987)
architectures such as PRS (Georgeff and Lansky 1987) and
IRMA (Bratman, Israel and Pollack 1988) have highly
formalized internal structures that facilitate definition of
autonomy with respect to these constructs. In this paper,
we definite what we mean by both the terms agent and
autonomy and then discuss the factors relevant to
autonomy within BDI agent architectures in particular. We
show how an agent architecture can be concretely
characterized with respect to its level of autonomy and that
it should be possible to design an agent architecture that
facilitates programming agents that exhibit different levels
of autonomy in different situations.

The remainder of the paper has the following structure.
We first define autonomy and agency and discuss our
proposed measure of a BDI agent’s autonomy. We
describe how our definition of autonomy results in four
numeric autonomy-level measures that express how
autonomous a BDI agent is from external influences. We
then formalize the JAM BDI intelligent agent architecture
in order to provide a concrete example of our autonomy
measure and discuss aspects of the architecture that impact
upon the architecture’s autonomy level. Following this, we
then characterize JAM according to the level of autonomy
for each of its major architectural components in the next
section. Finally, we discuss possible modifications to the
architecture and possible programming practices that
provide flexible, dynamically adjustable agent autonomy.

Agency and Autonomy

Agency
A common requirement of agency by most theoretically-

founded intelligent agent architectures is that they must be
goal-directed. That is, an agent must exhibit purposeful
behavior and have an explicit representation of that which
they are working toward (i.e., a goal). BDI-theoretic
agents introduce the additional constructs of beliefs and
intentions to that of desires (the name of goals within BDI
frameworks).

Beliefs are an explicit representation of the declarative
knowledge of the agent. Beliefs are the agent’s view of the
current state of the world and, as such, have an indirect but
significant impact upon the agent’s behavior.

Intentions are a representation of a commitment on the
part of the agent to a particular means (i.e., a plan) of
performing a task or achieving a goal. An agent’s
intentions have a very direct impact upon an agents
behavior.

A pragmatic aspect not considered within formal
definitions of BDI systems is an agent’s capabilities, a
representation of an agent’s functionality, which must
always be specified within a concrete agent framework.
Capabilities models may consist of low-level functionality

From: AAAI Technical Report SS-99-06. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

(e.g., primitive functions) and/or high-level functionality
(e.g., plans). Concrete implementations of BDI agents
such as UMPRS (Huber et al. 1993, Lee et al. 1994) and
JAM (Huber 1998) include such models. Below, when
discussing measures of autonomy, we will distinguish
autonomy for each of beliefs, desires, intentions, and
capabilities.

Autonomy
There is a wide range of definitions of the term

autonomy. We will start by looking at popular definitions
and then look at more research-based technical definitions.
According to the American Heritage Dictionary of the
English Language,

autonomous (adjective): 1. Not controlled by others
or by outside forces; independent: 2. Independent in
mind or judgment; self-directed.

Synonyms of autonomy include: uninfluenced, unforced,
uncompelled, uncommitted, unaffiliated, isolationist,
unsociable, self-sufficient, self-supporting, self-contained,
self-motivated, inner-directed, ungoverned, and masterless.
An antonym that provides additional insight is,

heteronomous (adjective): 1. Subject to external or
foreign laws or domination; not autonomous.

Both definitions refer to some form of external
influence, implying that autonomy is a relation and not a
factor of an individual in and of itself. Most of the
synonyms also imply this feature of autonomy, although
some, such as uncompelled and unforced, may be self-
referential (i.e., “slaves to self” from the quote above). For
this reason, we believe that autonomy must be defined
relative to influences outside of an agent and cannot
therefore be defined simply in terms of a single agent’s
attributes.

The essential aspect of external forces within autonomy
is missed by some researchers, however. Covrigaru and
Lindsay (Covrigaru and Lindsay 1991) claim that an
entity’s level of autonomy can be determined by looking
only at the characteristics of an individual. According to
Covrigaru and Lindsay, an entity is “more likely” to be
autonomous the more of the following features it exhibits:
goal-directed behavior, movement, self-initiated activity,
adaptability and flexibility, robustness, and self-
sufficiency. In their definition, an entity is autonomous if
it has multiple top-level goals, some of which are
homeostatic (i.e., need to be maintained over time rather
than simply achieved and dropped), and it has freedom to
choose between the goals. Covrigaru and Lindsay’s
definition is somewhat appealing as it does capture a
number features that seem desirable for an autonomous
agent to exhibit. Two of their key features, self-initiation
and self-sufficiency, do suggest that they share some
intuition regarding autonomy as isolation from other
agents. However, they explicitly state that it does not
matter whether goals came from internal processing or
received from external sources which is completely

counter to our intuition.
Luck and d’Inverno define an autonomous agent to be

anything that has motivations (Luck and d’Inverno 1995),
where a motivation is defined to be any desire or
preference that can lead to the generation and adoption of
goals. In their formalization therefore, they consider goals
to be a derivative of motivations, which are themselves
non-derivational. In essence, they also view goal-directed
behavior as being an essential feature of agent autonomy.
Luck and d’Inverno’s definition also does not concern
itself with where the agent’s motivations originate; they
imply internally, but this is not required.

In both the definition by Covrigaru and Lindsay and the
definition by Luck and d’Inverno, an agent’s motivations
or goals could be completely dominated by an external
force but would still be considered autonomous! We find
this completely antithetical to the idea of autonomy.

Castelfranchi (Castelfranchi 1995) defines autonomy as
the amount of separation between external influences and
an agent’s goals. Castelfranchi recommends a "double
filter" upon goal autonomy. First, he requires that an agent
perform some form of reasoning about externally derived
information before internalizing it. Second, he requires
external influences must be filtered through beliefs before
an agent’s goals can be modified. His definition of belief
and goal autonomy is quite compatible with our intuition
but we believe it is too narrow for application to BDI-
based agents.

Huhns and Singh define a set of autonomy measures that
are generally compatible with our own but capture
autonomy at a different level of detail. In their recent
summary of the field of intelligent agents (Huhns and
Singh 1998), they distinguish between Absolute autonomy,
Social autonomy, Interface autonomy, Execution
autonomy, and Design autonomy. Absolute autonomy
describes an extreme agent that completely ignores other
agents and does whatever it wants to do. As we will see,
this would be equivalent to an autonomy level of infinity in
all four of the autonomy measures introduced in this paper.
Absolute autonomy is an extreme of Huhns' and Singh's
Social autonomy, which captures the notion of level of
isolation from other agents and correlates well to what
would be a summary measure of the four autonomy
measures we introduce later. Design autonomy relates to
how much freedom an agent’s designer has in terms of
designing the agent and therefore is not relevant here.
Interface autonomy is also a design-related feature and is
also not relevant to this discussion. Their Execution
autonomy measure captures the notion of how much
freedom an agent has in making decisions while executing
its plans. We do not directly address this autonomy
measure but instead let it fall out as a factor of our different
set of autonomy measures.

Because we are interested in defining autonomy with
respect to BDI-based agent architectures, we refine Huhns
and Singh’s Social autonomy measure by extending and
revising Castelfranchi’s idea of levels of isolation from
other agents. To match well with BDI architectures, we

define autonomy measures with respect to each of an
agent’s beliefs, goals, intentions, and capabilities. In this
work, in order to provide an explicit measure of autonomy
with respect to an agent’s beliefs, we remove
Castelfranchi’s requirement that the agent must filter
everything through its beliefs.

Defining autonomy with respect to each of these
constructs seems reasonable to us. For instance, it seems
useful to be able to distinguish between agents whose
beliefs are easily modified by external influences (e.g., an
agent that “believes everything that it reads” (via
perception) or “believes everything that it hears” (via
communication with other agents)) from those that are less
“gullible” because they perform more reasoning to verify
that the information is accurate. Similarly, it seems useful
to distinguish between agents that blindly accept plans
from other agents from those that inspect the plans to make
sure they would not make the agent perform restricted
actions (e.g., reformat the computer’s hard drive).

Within this paper, we define belief, goal, intention, and
capability autonomy to be the number of representations
and reasoning layers intervening between external
influences and the agent’s internal representation of
beliefs, goals, intentions, and plan library, respectively.
We interpret each layer of reasoning as representing an
opportunity for the agent to examine the incoming
information and to accept or reject internalizing the
information. We interpret each representation layer as a
distinctly different semantic form of information that
originates from external influences and is transformed as it
progresses to the agent’s internal structures, becoming less
and less “contaminated” by outside influences at each
transformation.

With respect to representations, we count intervening
layers even if they have the same syntactic form as prior or
subsequent layers. For example, an agent that uses a vision
system may have a long sequence of representations from

the original input image to some final “belief” and all of
which are of the “image” representation. Even though the
representation form stays the same, the image contents
may change from the input image to one with enhanced
edges to one with edges joined to form boundaries to one
with regions and so on. Hence, each level is semantically
distinct and therefore countable in our autonomy level
calculation.

Our definition of goal autonomy is most similar to the
definition of goal autonomy of Castlefranchi (Castlefranchi
1995) and the social autonomy of Huhns and Singh (Huhns
and Singh 1998). We know of no prior research that
considers intention autonomy explicitly. Our definition of
capability autonomy is most similar to the definition of
execution autonomy of Castlefranchi and also of Huhns
and Singh.

In order for an agent to alter its level of autonomy, the
agent would need to add or remove levels of reasoning
and/or representation transformations between its internals
and external influences. Such an idea is depicted in Figure
1, where more or less autonomy could be realized by
changing the separation between the external forces on the
left and the agent’s internals on the right. We discuss ideas
on how to do this in more detail later in the section titled
“Toward Flexible Autonomy”.

First however, we want to provide a concrete example of
our definition of autonomy, so in the next section we
formalize an instance of an implemented BDI agent
architecture called JAM. This provides the basis for the
subsequent section where we calculate the autonomy levels
in the current JAM implementation.

Formalizing JAM

In this section, we formalize the JAM BDI-based agent
architecture (Huber 1999). The JAM architecture is based
strongly upon PRS (Georgeff and Lansky 1986, Georgeff

Physical
Environment

Process

Agent
Agent

External Forces
Agent Internals

Beliefs

Goals

Intentions

Plans

Layers of Reasoning and/or
Representation

Increasing isolation from external influences
(i .e., increased autonomy)

Plans

Intentions

Beliefs

Goals

Figure 1. An agent’s level of autonomy may be characterized by how much isolation, in terms of
representational and reasoning layers, the internal constructs of an agent have from external
influences.

and Lansky 1987), but has also been influenced by the
Structured Circuit Semantics (SCS) research of Lee and
Durfee (Lee 1996) and the Act plan formalism of Wilkins
and Myers (Wilkins and Myers 1995). In our
formalization, we start with low-level JAM representations
and move steadily through intermediate representations
and functions toward the agent’s final high-level
representations of beliefs, intentions and so on, and the
functions that operate on these representations.

In the following definitions, “(“ and “)” group terms, “[“
and “]” enclose optional terms, “*” indicates zero or more
repetitions of a term, “+” indicates one or more repetitions
of a term, “⋅” indicates concatenation of terms, “∨”
indicates disjunction, “::=” indicates the definition of a
representation, “:” indicates the definition of a function,
and “→” indicates a mapping from a function’s domain to
a function’s range. We present our definition first and
follow the definition with a description.

const ::= {χ | χ = number ∨ χ = string ∨
 χ = Java object}

var ::= { ν | value(ν) = const}
varList ::= (var)+

Constants may be numbers or strings, while variables
are dynamic placeholders for constants. The function
value-of(var) returns the constant currently held by
variable var. A variable list is simply a list of one or more
variables.

arg ::= const ∨ var
argList ::= (arg)*

Each argument of a function may be either a constant or
a variable and a function’s argument list may consist of
zero or more arguments.

label ::= string
proposition ::= label ⋅ argList
belief β ::= proposition
worldModel Ψ ::= (β)*

Ψinitial ::= file Ψ

Each individual belief within a JAM agent is a simple
proposition formed by a string label and an argument list.
A JAM agent’s World Model is formed by zero or more
beliefs and is initially specified in a text file that is parsed
by the agent at invocation.

condition ϕ ::= relation ⋅ argList ,
value(eval(ϕ)) = True ∨ False

A condition is a function that when evaluated returns a
Boolean value and is represented by a relational function
and an argument list.

binding ::= { (ν, δ) | v ∈ varList, δ ∈ const,
value(v) = δ }

A variable binding provides a lookup table that maps
variables to the values held by the variables. Variable
bindings are scoped locally to goals and plans.

goal γ ::= (ACHIEVE ∨ PERFORM ∨ MAINTAIN)
⋅ proposition ⋅ argList

⋅ [:utility num]
goalList Γ ::= { γ | γ ∈ ΙntentionStructure ,

 intention-of(γ) = null }
Γinitial ::= file Γ

Goals are represented by a goal type, a proposition, an
argument list, and an optional utility value. A JAM agent
does not actually have an explicit goal list distinct from its
Intention Structure. We provide the notation to distinguish
the set of goals for which an agent has not yet instantiated
plans from the entire set of all goals on the Intention
Structure, some of which do have intentions. The JAM
agent’s Goal List is initially specified in a text file that is
parsed by the agent at invocation.

precondition ::= (ϕ)*

runtimecondition ::= (ϕ)*

body ::= procedure
effects ::= procedure
failure ::= procedure
attributes ::= (attribute, value)*

plan ρ ::= (γ ∨ β) ⋅ precondition ⋅
runtimecondition ⋅ body ⋅
effects ⋅ failure⋅ attributes ⋅
argList

planLibrary Ρ ::=(ρ)*

Ρinitial ::= file Ρ

Plans are a complex composition of components. A plan
can be either goal or belief invoked. Preconditions and
runtime conditions filter where the plan is applicable. The
procedural components of a plan are arbitrarily complex
“programs” comprised of a wide range of constructs (e.g.,
iteration and conditional branching) and primitive actions.
The body component, which is the primary procedural
component, may include subgoaling actions. The effects
component, executed when the body procedure completes
successfully, and the failure component, executed when the
plan fails during execution, may not contain subgoaling
actions. The JAM agent’s plan library is initially specified
in a text file that is parsed by the agent at invocation.

intention ι ::= γ ⋅ ρ ⋅ β ⋅ binding
intentionStack ς ::= γ ∨ (γ ⋅ ι)+ , γ = goal-of(ι)
intentionStructure Ι ::= (ς)+

applicablePlanList α ::= (intention) *

Intentions are plans that are instantiated with their
variables bound to values. An intention stack is either a
“barren” goal that has not yet had an intention selected for
it, or it is a sequence of goals paired with intentions. In the
latter case, the first goal in the sequence is a top-level goal,
the second goal is a subgoal for that top-level goal, and so
on. A JAM agent’s Intention Structure then, is a collection
of intention stacks, which represents all of the competing
tasks the agent is considering at any point in time.

generateAPL: Ψ × Γ × Ρ → α
selectAPLElement: α → ι, ι = highest-utility(α)
intend: Ι × ι → Ι
sortIntentions: Ψ × Ι → Ι

The JAM interpreter reasons over its unintended goals,
available plans, and set of beliefs to create a list of possible
intentions, of which it selects the highest-utility intention
and adds it to the agent’s Intention Structure. Every cycle
through the interpreter, the JAM interpreter sorts the
intentions according to their utilities.

communication κ
percepts ζ

Communication- and perception-based information is
unconstrained by the JAM agent architecture and we
provide symbology for these terms for reference purposes
later. Relevant information incorporated via
communication and perception are at the representational
level of beliefs, goals, plans, and possibly individual
intentions.

executePlan P : κ × ζ × Ψ × Γ →
 Ψ × Γ × Ρ

executeMetalevelPlanΜ : κ × ζ × Ψ × Γ × α →
 Ψ × Γ × Ι × Ρ

Plans permit an agent to reason about communicated
information, perceived information, and its own beliefs and
goals and then arbitrarily modify its beliefs and goals.
Plans actions can also possibly result in the parsing and

incorporation of plans into the agent’s Plan Library.
Metalevel plans are distinguished from “ground-level”
plans by their access and manipulation of an APL and the
selection and intention of one of the intentions within the
APL to the agent’s Intention Structure.

executeObserver Θ : κ × ζ × Ψ × α →
 Ψ × Γ × Ι × Ρ

The JAM architecture executes an optional procedure
called the Observer every cycle through the interpreter.
The Observer procedure can be an ingress point for
perceptual and communicative information and can access
the agent’s World Model and APLs on the agent’s World
Model. The Observer can perform operations on an
agent’s World Model and create top-level goals. Like
metalevel plans, the Observer has access to APLs placed
on the World Model and can intend elements onto the
Intention Structure, although this is not an intended use of
the Observer and is not advised in real applications.

We informally depict the high-level portions of the
formalisms above in Figure 2, below. Figure 2 should
make it easier to visualize and count the JAM
architecture’s representation and functional levels.

JAM Autonomy

In this section, we calculate the level of autonomy λ of
the JAM agent architecture with respect to intentions (λΙ),
capabilities (λΡ), beliefs (λΨ), and goals (λΓ), in that order.

Beliefs

Goals

Plans

generate
APL

Beliefs

Intention

Intention

Intention

APL

intend

Intention
Structure

sort
intentionsexecute

Beliefs

Goals

Intention
Structure

Plans

select
Intention

Intention
Structure

highest
util ity

intention

Beliefs

Goals

Plans

Beliefs

Goals

Intention
Structure

PlansObserver

Figure 2. Processes and representations in the JAM architecture. Ovals represent functions and round-cornered
rectangles represent representations.

Later, we discuss possible modifications to the agent
architecture and possible application-development
paradigms that provide improved flexibility of control over
an agent’s autonomy level.

To calculate each λ, we count the procedural and
representational transformations between external
influences and the agent’s internals for all possible sources
for the attribute in question and take the minimum of these
values. Using the minimum function results in a
conservative measure, as it provides a value that represents
the shortest influence path into an agent’s internals. With
this formulation, a value of zero would indicate that
external influences have a direct path into the agent’s
internal structures and have complete control over the
agent. A value of ∞ (equivalent to Huhns and Singh’s
Absolute autonomy) would indicate that external
influences have no possible way of influencing the agent’s
internal structures and would probably indicate a
completely sociopathic agent. It is easy to see that our
formulation results in autonomy levels that take on
positive, odd values. An internal representation (world
model, intention structure, etc.) is the final state derived
from a final procedure and there can be zero or more
[procedure → representation] pairs preceding this final
representation.

Intention Autonomy
The Intention Structure can be modified, 1) during

default interpreter reasoning, 2) during execution of
metalevel plans, or 3) during Observer procedure
execution. From the preceding section, we see that default
interpreter reasoning results in at least five representational
and functional steps [Ψ × Γ × Ρ → generateAPL() → α →
selectIntention() → ι → intend() → Ι] between initial
inputs and the point where the Intention Structure is
modified (⇒ λΙ = 5). Methods 2 and 3 rely upon an APL as
input and results in the following representational and
functional steps [Ψ × Γ × Ρ → generateAPL() → α →
executeX → Ι] (⇒ λΙ = 3, where executeX stands for
executeMetalevelPlan or executeObserver). JAM
therefore currently has an inherent architectural autonomy
level of λΙ = min(5, 3, 3) = 3 with respect to its Intention
Structure. As mentioned earlier, metalevel plans are the
intended place for manipulation of the Intention Structure.
However, since the Observer can potentially be used for
this purpose too, it represents the shortest influence path.

Capabilities Autonomy
A JAM agent’s plans come from either 1) a file specified

at agent invocation (we consider these to be internally
generated and therefore not subject to evaluation), 2)
during execution of plans, 3) during execution of metalevel
plans, or 4) during Observer procedure execution.
According to our representation in the preceding section,
plans, metalevel plans, and the Observer each result in one
level of functional separation (see the definition of P, Μ,
and Θ, respectively) between external influences and the

agent’s plan library. JAM therefore currently has an
inherent architectural autonomy level of λΡ = min(3, 3, 1)
= 1 with respect to its Plan Library. It might be more
accurate to consider the autonomy level of methods 2 and 3
based upon the full reasoning and representation path for
plan execution (Ψ × Γ × Ρ → generateAPL() → α →
selectIntention() → ι → intend() → Ι → sortIntentions() →
Ι → execute() → Ρ) which yields an λΡ of at least 9 with
respect to these two options. However, even if this less
conservative interpretation is taken, the result is still λΡ =
min(9, 9, 1) = 1 due to the Observer constituting the
shortest influence path.

Note that even an autonomy level of one means that an
agent will not blindly incorporate plans from external
sources (which is Castelfranchi’s idea for belief
autonomy), but that it has at least some insulation between
the external influences and the agent’s internals. In the
case of plans, the low autonomy value of one is a little
misleading. For, even if a plan from an antagonistic source
is added to an agent’s plan library, there is no way that that
particular plan can be guaranteed to be executed. Within
JAM, the plan has to be applicable to a specific pre-
existing goal or conclusion, which may never arise during
normal execution. However, once such a “virus” plan is
executed, it essentially has complete control over the agent
and could therefore force the agent to do anything,
including becoming a “slave” to another agent if the plan
was designed to accomplish this.

Belief Autonomy
A JAM agent’s World Model elements arise from either

1) a file specified at agent invocation (we consider these to
be internally generated), 2) during execution of a plan, 3)
during execution of a metalevel plan, or 4) during Observer
procedure execution. JAM’s autonomy level analysis is
identical to that for its plan autonomy and yields an
inherent architectural autonomy level of λΨ = min(3, 3, 1) =
1 when using the most conservative values (the less
conservative interpretation yields λΨ = min(9, 9, 1) = 1 as
in the case of λΡ).

Goal Autonomy
The JAM architecture constrains goal autonomy in a

manner very similar to its belief and plan autonomy. In the
previous section, we specified that the goals on the JAM
agent’s Goal List arise from either 1) a file specified at
agent invocation (we consider these to be internally
generated), 2) during execution of plans, 3) during
execution of a metalevel plan, or 4) during Observer
procedure execution. JAM therefore currently has an
inherent architectural autonomy level of λΓ = min(3, 3, 1) =
1 when using the most conservative values (the less
conservative interpretation yields λΓ = min(9, 9, 1) = 1 as
in the case of λΡ).

Toward Flexible Autonomy

In this section, we discuss how we can modify the JAM
agent architecture to best support flexible autonomy and
how agent programmers can take advantage of this
flexibility. The goal is to provide flexible autonomy
independently with respect to beliefs, goals, intentions, and
capabilities. The JAM agent architecture currently has an
inherent minimum autonomy level of 1 for each of λΡ, λΨ
and λΓ and a minimum autonomy level of 3 for λΙ.
Maximum flexibility will be realized if the JAM
architecture can be modified so that all autonomy level
measures can be varied between 1 and ∞. We will discuss
architectural modifications aimed at increasing λΡ, λΨ and
λΓ and both increasing and decreasing (from 3 to 1) λΙ.

Flexible Architectural Autonomy
Architectural modifications that result in flexibly

increasable λΡ, λΨ and λΓ implies providing the agent some
mechanism by which to introduce and remove these layers
dynamically, perhaps conditionally upon the current
situation or environment. It also means either adding
reasoning and representation layers between these internal
structures and external influences or removing or
lengthening relevant shortest influence paths.

One obvious architectural modification to provide
increased autonomy with respect to beliefs, plans, and
goals is to remove or disable the Observer and therefore
removing the shortest influence path for these structures.
This results in an immediate increase of λΡ, λΨ and λΓ to 3
(or 9, depending upon whether a conservative or liberal
interpretation is made). Adding a primitive action to JAM
to perform this functionality would be a very simple task
but would have to be used with great care. The Observer
procedure typically contains crucial processing steps that
the agent cannot effectively run without for any extended
length of time.

Lengthening an influence path means introducing
domain-independent and domain-independent reasoning
and representation layers. For example, to increase belief
autonomy, the World Model might perform additional
reasoning to ensure global belief consistency, or might
reason about the credibility (we would have to add this
attribute as an architectural feature) of the source, before
adding a world model entry. As another example, we can
increase goal autonomy by adding a reasoning layer in
front of the agent’s goal list to reason about goal
coherency. To increase plan autonomy, we might
introduce plan inspection to make sure that a plan contains
no “dangerous” actions before adding the plan to the Plan
Library. At some point, however, it is likely that we are
likely to run out of value-added domain-independent layers
of reasoning and adding further such layers simply to
increase the autonomy measures becomes gratuitous
without any real benefit.

Intention autonomy is different from our other measures
it that it is not currently Observer-dominated, as the
metalevel reasoning path provides the same level of

separation as the Observer path. The most direct method
of reducing λΙ to 1 is to implement a means of directly
incorporating externally-generated intentions through the
Observer (resulting in one level of procedural separation
between an external source and the agent’s Intention
Structure). Generating an intention for another agent to
directly incorporate requires a great deal of very accurate,
and very specific information about the other agent. At the
minimum, an external agent would need a specification of
a top-level goal, a viable plan template for that goal, and a
set of variable bindings and world model references that
satisfy the plan’s context. So, pragmatically, even if an
Observer-based means of directly incorporating intentions
were implemented, it would still be very difficult for an
external force to take advantage of.

In order to support flexible autonomy, the JAM agent
architecture would need to support dynamic modification
of the number of representation and procedural layers
shown in Figure 1. It is unclear to us at this point where it
would make sense for the architecture to change autonomy
levels. So beyond making architectural changes to support
flexible autonomy, it seems most reasonable for an agent
programmer to encode domain-specific criterion that takes
advantage of this capability. We discuss programmer-
determined agent autonomy in the following subsection.

Flexible Programmer-determined Autonomy
An agent programmer can realize flexible agent

autonomy in two ways. The first is by taking advantage of
the architectural support and primitive functions for adding
and disabling architectural layers discussed above. The
agent programmer can write plans that reason about the
current situation and intelligently invoke the primitive
functions appropriately. The second is by carefully
designing, structuring, and implementing the agent’s plans
in its Plan Library, particularly with respect to metalevel
plans, the agent designer can interpose layers of metalevel
reasoning about beliefs, goals, plans, and intentions before
concrete-level plans act upon these structures. The first
means is relevant, but a discussion of all of the possible
domain-specific conditions and uses is outside the scope of
this paper. We discuss the second means in more detail
below.

In JAM, plans can be triggered either by goals or by
beliefs. Metalevel plans become applicable whenever a
plan is being considered and the metalevel plan can select
between alternative plans or reject applicable plans as it
sees fit. If the plan space of a JAM agent is partitioned
according to metalevel level (i.e., concrete plans, metalevel
plans, meta-metalevel plans, and so on), the separation
between external influences and the agent’s internal
structures can be conceptually and practically increased
one level for each level of metalevel reasoning. In this
case, each metalevel plan can reason about the
appropriateness of how best to pursue goals, respond to
changes in its world model, and remove potentially
dangerous goals, beliefs, etc. Arbitrary levels of autonomy
can then be realized through engineering and appropriate

implementation of plan and metalevel plan contexts and
preconditions.

Summary

This paper introduces a concrete definition of a measure
of autonomy within BDI systems. We define autonomy as
the number of distinct representation and procedural layers
between external influences and the agent’s internal
structure independently with respect to beliefs, goals,
intentions, and capabilities. We then characterized an
example of an implemented BDI-theoretic architecture’s
autonomy level with respect to each of these internal
structures. Finally, we discussed how we might modify the
JAM agent architecture to support a wider range of
autonomy levels and listed some architectural
modifications and programmer practices that facilitate
flexible, context-sensitive agent autonomy.

Acknowledgements

We would like to thank Dan Damouth for several
interesting discussions related to autonomy and also for
helpful comments on earlier drafts of this paper. We
would also like to thank SSC San Diego for funding that
supported this work.

References

Bratman, M. 1987. Intentions, Plans, and Practical
Reason. Cambridge, Mass.: Harvard University Press.

Bratman, M., Israel, D., and Pollack, M. 1988. Plans and
Resource-bounded Practical Reasoning. Computational
Intelligence 4:349-355.

Castelfranchi, C. Guarantees for Autonomy in Cognitive
Agent Architecture. 1995. In Intelligent Agents –
Theories, Architectures, and Languages, 56-70, Michael
Wooldridge and Nicholas Jennings editors, Springer-
Verlag.

Georgeff M., and Lansky, A. L. 1987. Reactive Reasoning
and Planning. In Proceedings of the Sixth National
Conference on Artificial Intelligence, 677-682, Seattle,
Washington.

Georgeff, M. P., and Lansky, A. L. 1986. Procedural
Knowledge. IEEE Special Issue on Knowledge
Representation, 74(10):1383-1398.

Huhns, M., and Singh, M. 1998. Agents and Multiagent
Systems: Themes, Approaches, and Challenges. Readings
in Agents, 1-23. Michael Huhns and Munindar Singh eds.,
San Francisco, California: Morgan Kaufmann.

Huber, M. J., Lee, J., Kenny, P., and Durfee, E. H. 1993.

UM-PRS Programmer and User Guide. The University of
Michigan, Ann Arbor, MI 48109. [Also available at
http://members.home.net/marcush/IRS]

Huber, M. J. 1999. JAM: A BDI-theoretic Mobile Agent
Architecture. Proceedings of the Third International
Conference on Autonomous Agents. Forthcoming.

Konolige, K., and Pollack, M. 1993. A
Representationalist Theory of Intention. In Proceedings of
the Thirteenth International Joint Conference on Artificial
Intelligence. Chambery, France.

Lee, J. Structured Circuit Semantics. 1996. Ph.D.diss.,
Department of Computer Science, The University of
Michigan.

Lee, J., Huber, M. J., Durfee, E., H., and Kenny, P. G.
1994. UM-PRS: An Implementation of the Procedural
Reasoning System for Multirobot Applications. In
Conference on Intelligent Robotics in Field, Factory,
Service, and Space, 842-849, Houston, Texas.

Michael Luck and Mark d’Inverno. 1995. A Formal
Framework for Agency and Autonomy. In Proceedings of
the First International Conference on Multi-Agent Systems,
254-268. MIT Press.

David E. Wilkins and Karen L. Myers. 1995. A Common
Knowledge Representation for Plan Generation and
Reactive Execution. In Journal of Logic and Computation,
5(6):731-761.

