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Abstract 

Data integration is central in Web application development  
because these applications typically deal with a variety of 
information formats. Ontology-driven applications face the 
additional challenge of integrating these multiple formats 
with the information stored in ontologies. A number of 
mappings are required to reconcile the variety of formats to 
produce a coherent overall system. To address these 
mappings we have developed a number of open source tools 
that support transformations between some of the common 
formats encountered when developing an ontology-driven 
Web application. The Semantic Web Rule Language 
(SWRL) is a central building block in these tools. We 
describe these tools and illustrate their use in the 
development of a prototype Web-based application. 

Introduction 
Web-based applications typically deal with a variety of 
information formats. In addition to HTML and its variants, 
relational databases and XML-described information 
sources are common. Developing ontology-driven 
applications presents the additional challenge of dealing 
with yet another format, i.e., the system or domain 
ontologies used in the application itself. These ontologies 
should—in principle at least—represent the core format of 
knowledge in an application so all other formats used in a 
system may have to be mapped to integrate with them. The 
types of mapping required range from low level structural 
or syntactic mappings to transformations that require 
extensive domain knowledge. 
  We have identified four common types of 
transformations or mappings that are required when 
developing a Web-based application. These mappings 
ultimately involve describing the various formats in terms 
of the domain or system ontologies driving the application. 
These mappings are:  
 
Relational Mapping. Relational databases will continue to 
be used in web applications for the foreseeable future, 
particularly if scalability is an important goal. Most web 
applications use a relational back end to store system data, 
which is usually accessed through an ODBC bridge or an 
object-relational layer. To deal with these data in ontology-
based applications, efficient run-time mappings are 
required to deal with these data at the knowledge level.  
 
XML Mapping. Information exchange in web-based 
applications is often described using XML. Indeed, these 
custom XML formats are now central to information 

exchange in many web-based applications and are used 
extensively when integrating with legacy systems. 
Extracting information from XML streams and describing 
it in terms of ontology–defined concepts requires a 
mapping process. 
 
Ontology Mapping. Many ontology-driven applications 
must deal with multiple ontologies so a mapping process to 
integrate the information contained in these ontologies is 
usually required. 
 
Application Data Mapping. The internal data structures 
of application software may also be considered an 
additional information format. The extraction of ontology 
information into these structures also constitutes a mapping 
process. This process is analogous to interacting with 
relational databases in general and requires equivalent tool 
and language support for ontology querying. 
 
We have developed a number of open source tools using 
Semantic Web technologies to perform these mappings. 
These tools use the Web Ontology Language (OWL; 
[OWL, 2004]) and are built using the Protégé-OWL 
[Knublauch et al., 2004] ontology development platform.  
A central driving component of these tools is the Semantic 
Web Rule Language (SWRL; [Horrocks et al., 2004]). 
SWRL was developed as a formal description logic-based 
extension to OWL and provides an expressive language 
that is strongly suited to types of transformations required 
when performing knowledge mapping.  
 We first give some background on Semantic Web rule 
development with SWRL and describe an open source 
environment that we have written to work with SWRL 
rules. We then describe the tools we have produced to 
perform the four types of mappings outlined in this paper. 
Finally, we describe how we have used these tools in the 
development of a prototype Web-based application.  

Background and Previous Work 
The Semantic Web project is a shared research plan that 
aims to provide explicit semantic meaning to data and 
knowledge on the World Wide Web [Lee et al., 2001]. 
Semantic Web applications aim to be able to integrate data 
and knowledge automatically through the use of 
standardized languages that describes the content of Web-
accessible resources.  



OWL and SWRL 
 
OWL and SWRL are core Semantic Web languages. OWL 
was developed as an ontology language for constructing 
ontologies that provide high-level descriptions of Web 
content. These ontologies are created by building 
hierarchies of classes describing concepts in a domain and 
relating the classes to each other using properties. OWL 
can also represent data as instances of OWL classes—
referred to as individuals—and it provides mechanisms for 
reasoning with the data and manipulating it. OWL also 
provides a powerful axiom language for precisely defining 
how to interpret concepts in an ontology.  
 Recent work has concentrated on adding rules to OWL 
to provide an additional layer of expressivity. SWRL is one 
of the results of these activities. SWRL allows users to 
write rules that can be expressed in terms of OWL 
concepts and that can reason about OWL individuals. One 
of SWRL's most powerful features is its ability to support 
built-ins [Horrocks et al., 2004]. Built-ins are user-defined 
predicates that can be used in SWRL rules. A number of 
core built-ins for common mathematical and string 
operations are defined in the SWRL proposal. SWRL 
allows new libraries of built-ins to be defined and used in 
rules. Users can define built-in libraries to perform a wide 
range of tasks. Such tasks could, for example, include 
currency conversion, temporal manipulations, and 
taxonomy searches. In general, the arguments to these 
built-ins should be OWL DL property values—that is, 
literals or individuals. However, class or property built-in 
arguments may also be supported by some built-in 
libraries, though such built-ins should only be used in 
OWL Full ontologies. 

SWRLAPI 
We have developed several open-source tools to work with 
SWRL. One of the primary results is the SWRLAPI1, an 
extension to the widely used Protégé-OWL ontology 
development toolkit [Knublauch et al., 2004]. The 
SWRLAPI provides a set of APIs that support the building 
of tools that work with SWRL rules. It has several software 
components, including: (1) an editor that supports 
interactive creating, editing, reading, and writing of SWRL 
rules; (2) a rule engine bridge that provides the 
infrastructure necessary to interoperate with third-party 
rule engines and reasoners; (3) a built-in bridge that 
provides a mechanism for defining Java implementations 
of SWRL built-ins; and (4) a variety of built-in libraries. 
 
SWRL Editor. The Protégé-OWL SWRL Editor is an 
extension to Protégé-OWL that permits editing of SWRL 
rules. Users can interactively create, edit, and read/write 
SWRL rules. It is tightly integrated with Protégé-OWL and 
is primarily accessible through a tab within it. When 
editing rules, users can directly refer to OWL classes, 

                                                 
                                                

1 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLAPI 

properties, and individuals within an OWL ontology. They 
also have access to all the built-in libraries  provided by the 
SWRLAPI. 
 
Rule Engine Bridge. The SWRL Rule Engine Bridge is a 
subcomponent of the SWRLTab that provides a bridge 
between an OWL model with SWRL rules and a third 
party rule engine or reasoner. Its goal is to provide the 
infrastructure necessary to incorporate rule engines and 
reasoners into Protégé-OWL to execute SWRL rules. A 
bridge to the Jess rule engine is provided together with a 
user interface component [Friedman Hill, 2003]. The Pellet 
reasoner is also supported [Sirin et al, 2005].  
 
Built-In Bridge. The SWRLAPI’s Built-in Bridge2  
provides support for defining built-in implementations 
written in Java and dynamically loading them. Users 
wishing to provide implementations for a library of built-in 
methods can define a Java class that contains definitions 
for all the built-ins in their library. The bridge has a 
dynamic loading mechanism to import these built-in 
definitions and provides an invocation mechanism to 
execute these loaded definitions from rule engines. If 
additional rule engines are integrated into the SWRLAPI 
they can use these existing built-in libraries without 
modifying them.  
 
Built-In Libraries. Using the built-in bridge we have 
developed a set of libraries for common methods required 
by rules3. These include implementations for the core 
SWRL built-ins defined by the SWRL Submission, a 
mathematical library that supports the use of complex 
expressions in rules, a temporal library that supports 
reasoning with temporal information, a library for dealing 
with XML documents, and libraries with ontology TBox 
and ABox operators. Libraries for dealing with spreadsheet 
documents, WSDL, SOAP, and RSS feeds are under 
development.  

 
2 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLBuiltInBridge 
3 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabBuiltInLibraries 



Figure 1. Screenshot of the DataMaster tab in Protégé-OWL. Users can connect to a relational database through ODBC or JDBC and 
import data into an OWL ontology. 

 

Mapping Tools 
Using the SWRLAPI, we developed tools to support the 
four types of mappings described in this paper. These tools 
are: (1) DataMaster4 and Dynamic DataMaster, tools that 
supports mapping of relational data to OWL; (2) 
XMLMapper5, a library that supports the mapping of 
information described in XML documents to and from 
OWL ontologies; (3) a set of SWRL built-in libraries that 
support ontology mapping; and (4) SQWRL, a SWRL-
based query language that supports extraction of 
knowledge from OWL ontologies. SWRL’s built-in 
mechanism provided the extension point for dealing with 
these additional information formats. 

DataMaster 
We have developed a relational-to-OWL mapping tool 
called DataMaster to serve as a relational data access 
mechanism in ontology-driven applications (Figure 1). It 
supports the mapping of data stored in relational databases 

                                                 
4 http://protegewiki.stanford.edu/index.php/DataMaster 
5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabXMLBuiltIns 

to concepts described in OWL. DataMaster has two 
primary components: (1) schema and mapping ontologies 
that describe both the schema of an arbitrary relational 
database and the mapping of data stored in these schemas 
to triples in an OWL ontology; and (2) software to produce 
these ontologies, either automatically or semi-
automatically with user guidance.   
 The OWL schema ontology provides a knowledge-level 
description of a relational schema. It describes schemas in 
a database and associated tables together with the columns 
and column data types contained in each table. It also 
describes primary and foreign key relationships for tables 
in a schema. We have also developed a mapping ontology 
that uses this schema ontology to describe how relational 
tables are to be mapped to OWL concepts. The 
fundamental goal is to specify the mapping of rows in a 
relational table to triples in an RDF model, which will then 
be mapped to OWL classes, properties and individuals. 
This process cannot normally be performed automatically, 
and additional user markup is usually required. 
 DataMaster can be used with any relational database 
with JDBC/ODBC drivers. A user interface is provided 
that supports user-driven configuration of the importation 
process. A user can use this interface to connect to a 
database and select the portions of the database that they 
wish to import. If the user decides on a schema-only 
import the database schema is read and represented in 



OWL using the Relational-OWL [de Laborda et al., 2005] 
ontology. If a content import is requested, the user can 
select a number of mapping options, such as, for example, 
how table and column names are mapped, and how 
relational column types are mapped to XSD Schema types.  

Dynamic DataMaster 
DataMaster also has a dynamic mapping layer that uses the 
schema source and mapping ontologies to map data on 
demand [O’Connor et al., 2007]. Instead of importing all 
database content, it provides a data access layer to 
dynamically translate knowledge-driven data requests to 
queries on a relational database. This layer works with an 
ontology level query engine to allow retrieval from a 
relational database. At run-time, the software uses the 
source and mapping ontologies to transform the data in a 
relational database to OWL entities. We extended our 
existing query engine to interact with this software to 
retrieve these mapped OWL entities. The engine takes 
queries written in terms of OWL classes, properties, and 
individuals and generates requests to the mapping software 
for the OWL entities in a relational database. The mapping 
software then generates SQL queries to retrieve that 
appropriate data from the database identified by the 
schema and mapping ontologies. 

XMLMapper 
We have developed a library called XMLMapper to read 
and write XML streams. This library can be used to read an 
XML document and automatically transform it to an OWL 
ontology that represents the document. This OWL 
representation is described in terms on an OWL XML 
ontology. This ontology has classes that represent standard 
XML constructs, such as document, element, attributes, 
and namespaces. Instances of this ontology are used to 
represent both the structure and content of an imported 
XML document. The reverse transformation from this 
ontology to XML is also supported. 

Mapping Libraries 
Information imported into OWL from other formats is 
generally not in a form that is directly usable with the 
domain ontologies used in an application. Typically, the 
imported information must be transformed or mapped to 
terms or concepts used in these domain ontologies. 
Similarly, third party ontologies that are used in the 
application will often have different representations of 
similar concepts. Or such ontologies may not be 
represented in OWL and may use RDF or other formats. In 
general, custom rule sets are needed to perform mappings 
because it requires domain-specific knowledge.   
 This mapping can be performed using SWRL rules. 
These rules take instance data represented using the source 
formats as imported into OWL and generates new 
instances that are described in terms of the local domain 
ontologies in the application. Irrespective of the source 
formats, there will be a common set of mapping operations 

that are required to reconcile these imported formats with 
application ontologies. When exporting knowledge from 
domain ontologies, a corresponding set of reverse 
mappings will be required. We have developed a suite of 
SWRL built-in libraries6 that contain common operations 
that are typically required when performing these mapping. 
These operations support operations that are common in: 
(1) XML to OWL and OWL to XML mapping; (2) 
relational database mappings; (3) RDF mappings; (4) and 
OWL to OWL mappings.  

Supporting OWL Queries with SQWRL 
SWRL is a rule language, not a query language. However, 
many ontology-based applications require the ability to 
extract information from ontologies in addition to 
reasoning with the information in those ontologies. To 
support this knowledge extraction, we have developed a 
query language called SQWRL7 (Semantic Query-
Enhanced Web Rule Language) that extends SWRL to 
support querying of OWL ontologies. 
 SQWRL is implemented as a built-in library using the 
standard SWRL built-in mechanism. It is syntactically and 
semantically compatible with standard SWRL. The 
SQWRL built-in library contains SQL-influenced built-ins 
that can be used in a rule to construct retrieval 
specifications for information stored in an OWL ontology.  
 For example, the following SQWRL query retrieves all 
persons in an ontology whose age is less than 25, together 
with their ages: 

Person(?p) ^ hasAge(?p,?a) ^ 

swrlb:lessThan(?a,25) -> sqwrl:select(?p,?a) 

This query will return pairs of persons and ages. The sqwrl 
prefix is used to identify SQWRL operators.  
 To list all cars owned by each person, we can write: 

Person(?p) ^ hasCar(?p,?car) -> 

sqwrl:select(?p,?car) 

This query will return pairs of individuals and their cars. 
Assuming a person can have more than one car, multiple 
pairs would be displayed for each person. Basic counting 
is also supported by SQWRL, provided by an operator 
called count. If we wished to, for example, get a count of 
the number of cars owned by individuals in an ontology, 
we could write:   

Person(?p) ^ hasCar(?p, ?c) -> sqwrl:select(?p) ^ 

sqwrl:count(?c) 

This query would return a list of individuals and counts, 
with one row for each individual together with a count of 
the number of cars that they own. Individuals that have no 
cars would not be matched by this query. 

                                                 
6 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabBuiltInLibraries 
7 http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL 



 Basic aggregation is also supported. Four operators 
called min, max, sum, and avg provide this functionality. For 
example, a query to return the average age of persons in an 
ontology (for which an age is known) can be written: 

Person(?p) ^ hasAge(?p, ?age) -> sqwrl:avg(?age) 

SQWRL has access to all available SWRL built-in 
libraries. For example, to retrieve the name of all males in 
an ontology and prepend the title "Mr." to each name, we 
can use core SWRL stringConcat built-in: 

Person(?p) ^ Male(?p) ^ hasName(?p, ?name) ^ 
swrlb:stringConcat(?fullname, "Mr. ", ?name) -> 
sqwrl:select(?fullname) 

The ability to freely use built-ins in a query provides a 
means of continuously expanding the power of the query 
language. Crucially, it provides an interoperation bridge to 
deal with other knowledge formats. SQWRL itself is 
formally based on OWL DL and SQWRL queries can be 
expressed only in terms of core OWL concepts. However, 
the built-in mechanism provides the ability to refer to non 
OWL DL concepts in queries. The TBox built-in library, 
for example, allows direct querying of OWL classes and 
properties, something that would not be possible in OWL 
DL. Similarly, we have developed an RDF built-in library 
that supports querying of RDF ontologies.  
 The SWRLAPI provides a graphical interface called the 
SQWRLQueryTab to execute SQWRL queries. A query 
can be selected from the rule table in the Protege-OWL 
SWRL Editor and executed to display query results. Users 

can navigate to that sub-tab to review the results displayed 
in tabular form. A JDBC-like Java interface is also 
provided to execute SQWRL queries in Java applications. 
Results for a particular query can be retrieved from a 
SWRLAPI rule engine bridge. Rows in a result can be 
iterated through and the contents of each column in a row 
retrieved using accessor methods. In addition to standard 
XML schema datatypes, OWL entities such as classes, 
properties, individuals, class descriptions and axioms can 
also be returned from queries. 

Developing a Web Application 
Using these mapping tools we developed a prototype Web-
based application to advise physicians on HIV drug 
therapies. This application aims to replicate some of the 
functionality of the HIVdb application [Rhee et al., 2006], 
a Web-based utility that allows physicians to explore 
treatment options for HIV positive patients. The HIVdb 
application allows physicians to enter mutation and 
treatment histories for a patient and then presents them 
with treatment recommendations based on its analysis of 
patients with similar profiles stored in its database. The 
application is backed by an extensive curated research 
database that contains time-stamped data on drug 
regimens, HIV reverse transcriptase and protease 
sequences, and HIV viral load collected at local clinics.   
 To drive our prototype, we developed a central domain 
ontology called the HIV Ontology to represents all core 
concepts in the application. This ontology includes a 
Virtual Patient Record (VPR) ontology that holds clinical 

Figure 2. Component view of the Web-based application. Arrow-shaped components represent the various transformations or mappings 
that are performed in the system. 



information for each patient, and a Treatment Ontology 
that contains therapy recommendations.  
  Figure 2 shows a high level component view of the 
application. We wrote a Web-based forms-driven front end 
that allows users to enter patient information. This 
information includes mutation and drug treatment history 
for a single patient. When the user indicates that 
information entry is complete, the information is 
transmitted to the server as a custom XML stream. At the 
server we use the XMLMapper library to transform this 
XML stream to OWL entities representing the content on 
that stream. A set of SWRL mapping rules is then executed 
to transform this information to instances described in 
terms of the HIV Ontology. 
 We used Dynamic DataMaster to describe mappings 
between the VPR and information in the HIVdb database. 
Based on the patient profile entered the application tries to 
find other patients in the database with similar profiles. It 
extracts this information using SQWRL queries written in 
terms of the VPR ontology, which are automatically 
mapped by Dynamic DataMaster to queries on the 
underlying relational database. The application then 
analyses the retrieved information and determines 
treatment recommendations for the patient, which are then 
stored in the Treatment Ontology. A second set of SWRL 
mapping rules is then activated to transform these 
recommendations to instances of the OWL XML ontology, 
which are mapped to an XML stream using the 
XMLMapper. This stream is then returned to the front end 
application, where it is parsed and summarized. 

Conclusions 
Data integration is a core central challenge of the Semantic 
Web. The ability to meet this challenge requires the 
development of a variety of mapping technologies to allow 
interoperation between the various formats that will be 
encountered when developing Semantic Web applications. 
The tools outlined in this paper provide a set of basic 
building blocks that can be used to construct these 
mapping technologies. We have found that SWRL can act 
as a central driving mechanism in these tools. 
 In addition to the prototype web application we have 
described, we have used these mapping tools to help meet 
the data mapping requirements of several ontology-driven 
biomedical applications [Shankar et al., 2008, O’Connor et 
al., 2008].  SWRL is used to help unify the domain-level 
specification of system data with the mapping needs of 
system components. In conjunction with OWL, SWRL 
provides both a formal domain-level description of data in 
the systems that we are developing and mapping 
mechanisms to transform these data between the various 
formats. These software components are open source and 
available in the standard Protégé-OWL distribution.  
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