
Developing a Web-Based Application using OWL and SWRL

Martin J. O’Connor, Ravi Shankar, Csongor Nyulas, Samson Tu, Amar Das
Stanford Medical Informatics,

Stanford University, Stanford, CA 94305-5479
{martin.oconnor, ravi.shankar, csongor.nyulas, swt, das}@stanford.edu

Abstract

Data integration is central in Web application development
because these applications typically deal with a variety of
information formats. Ontology-driven applications face the
additional challenge of integrating these multiple formats
with the information stored in ontologies. A number of
mappings are required to reconcile the variety of formats to
produce a coherent overall system. To address these
mappings we have developed a number of open source tools
that support transformations between some of the common
formats encountered when developing an ontology-driven
Web application. The Semantic Web Rule Language
(SWRL) is a central building block in these tools. We
describe these tools and illustrate their use in the
development of a prototype Web-based application.

Introduction
Web-based applications typically deal with a variety of
information formats. In addition to HTML and its variants,
relational databases and XML-described information
sources are common. Developing ontology-driven
applications presents the additional challenge of dealing
with yet another format, i.e., the system or domain
ontologies used in the application itself. These ontologies
should—in principle at least—represent the core format of
knowledge in an application so all other formats used in a
system may have to be mapped to integrate with them. The
types of mapping required range from low level structural
or syntactic mappings to transformations that require
extensive domain knowledge.
 We have identified four common types of
transformations or mappings that are required when
developing a Web-based application. These mappings
ultimately involve describing the various formats in terms
of the domain or system ontologies driving the application.
These mappings are:

Relational Mapping. Relational databases will continue to
be used in web applications for the foreseeable future,
particularly if scalability is an important goal. Most web
applications use a relational back end to store system data,
which is usually accessed through an ODBC bridge or an
object-relational layer. To deal with these data in ontology-
based applications, efficient run-time mappings are
required to deal with these data at the knowledge level.

XML Mapping. Information exchange in web-based
applications is often described using XML. Indeed, these
custom XML formats are now central to information

exchange in many web-based applications and are used
extensively when integrating with legacy systems.
Extracting information from XML streams and describing
it in terms of ontology–defined concepts requires a
mapping process.

Ontology Mapping. Many ontology-driven applications
must deal with multiple ontologies so a mapping process to
integrate the information contained in these ontologies is
usually required.

Application Data Mapping. The internal data structures
of application software may also be considered an
additional information format. The extraction of ontology
information into these structures also constitutes a mapping
process. This process is analogous to interacting with
relational databases in general and requires equivalent tool
and language support for ontology querying.

We have developed a number of open source tools using
Semantic Web technologies to perform these mappings.
These tools use the Web Ontology Language (OWL;
[OWL, 2004]) and are built using the Protégé-OWL
[Knublauch et al., 2004] ontology development platform.
A central driving component of these tools is the Semantic
Web Rule Language (SWRL; [Horrocks et al., 2004]).
SWRL was developed as a formal description logic-based
extension to OWL and provides an expressive language
that is strongly suited to types of transformations required
when performing knowledge mapping.
 We first give some background on Semantic Web rule
development with SWRL and describe an open source
environment that we have written to work with SWRL
rules. We then describe the tools we have produced to
perform the four types of mappings outlined in this paper.
Finally, we describe how we have used these tools in the
development of a prototype Web-based application.

Background and Previous Work
The Semantic Web project is a shared research plan that
aims to provide explicit semantic meaning to data and
knowledge on the World Wide Web [Lee et al., 2001].
Semantic Web applications aim to be able to integrate data
and knowledge automatically through the use of
standardized languages that describes the content of Web-
accessible resources.

OWL and SWRL

OWL and SWRL are core Semantic Web languages. OWL
was developed as an ontology language for constructing
ontologies that provide high-level descriptions of Web
content. These ontologies are created by building
hierarchies of classes describing concepts in a domain and
relating the classes to each other using properties. OWL
can also represent data as instances of OWL classes—
referred to as individuals—and it provides mechanisms for
reasoning with the data and manipulating it. OWL also
provides a powerful axiom language for precisely defining
how to interpret concepts in an ontology.
 Recent work has concentrated on adding rules to OWL
to provide an additional layer of expressivity. SWRL is one
of the results of these activities. SWRL allows users to
write rules that can be expressed in terms of OWL
concepts and that can reason about OWL individuals. One
of SWRL's most powerful features is its ability to support
built-ins [Horrocks et al., 2004]. Built-ins are user-defined
predicates that can be used in SWRL rules. A number of
core built-ins for common mathematical and string
operations are defined in the SWRL proposal. SWRL
allows new libraries of built-ins to be defined and used in
rules. Users can define built-in libraries to perform a wide
range of tasks. Such tasks could, for example, include
currency conversion, temporal manipulations, and
taxonomy searches. In general, the arguments to these
built-ins should be OWL DL property values—that is,
literals or individuals. However, class or property built-in
arguments may also be supported by some built-in
libraries, though such built-ins should only be used in
OWL Full ontologies.

SWRLAPI
We have developed several open-source tools to work with
SWRL. One of the primary results is the SWRLAPI1, an
extension to the widely used Protégé-OWL ontology
development toolkit [Knublauch et al., 2004]. The
SWRLAPI provides a set of APIs that support the building
of tools that work with SWRL rules. It has several software
components, including: (1) an editor that supports
interactive creating, editing, reading, and writing of SWRL
rules; (2) a rule engine bridge that provides the
infrastructure necessary to interoperate with third-party
rule engines and reasoners; (3) a built-in bridge that
provides a mechanism for defining Java implementations
of SWRL built-ins; and (4) a variety of built-in libraries.

SWRL Editor. The Protégé-OWL SWRL Editor is an
extension to Protégé-OWL that permits editing of SWRL
rules. Users can interactively create, edit, and read/write
SWRL rules. It is tightly integrated with Protégé-OWL and
is primarily accessible through a tab within it. When
editing rules, users can directly refer to OWL classes,

1 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLAPI

properties, and individuals within an OWL ontology. They
also have access to all the built-in libraries provided by the
SWRLAPI.

Rule Engine Bridge. The SWRL Rule Engine Bridge is a
subcomponent of the SWRLTab that provides a bridge
between an OWL model with SWRL rules and a third
party rule engine or reasoner. Its goal is to provide the
infrastructure necessary to incorporate rule engines and
reasoners into Protégé-OWL to execute SWRL rules. A
bridge to the Jess rule engine is provided together with a
user interface component [Friedman Hill, 2003]. The Pellet
reasoner is also supported [Sirin et al, 2005].

Built-In Bridge. The SWRLAPI’s Built-in Bridge2
provides support for defining built-in implementations
written in Java and dynamically loading them. Users
wishing to provide implementations for a library of built-in
methods can define a Java class that contains definitions
for all the built-ins in their library. The bridge has a
dynamic loading mechanism to import these built-in
definitions and provides an invocation mechanism to
execute these loaded definitions from rule engines. If
additional rule engines are integrated into the SWRLAPI
they can use these existing built-in libraries without
modifying them.

Built-In Libraries. Using the built-in bridge we have
developed a set of libraries for common methods required
by rules3. These include implementations for the core
SWRL built-ins defined by the SWRL Submission, a
mathematical library that supports the use of complex
expressions in rules, a temporal library that supports
reasoning with temporal information, a library for dealing
with XML documents, and libraries with ontology TBox
and ABox operators. Libraries for dealing with spreadsheet
documents, WSDL, SOAP, and RSS feeds are under
development.

2 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLBuiltInBridge
3 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabBuiltInLibraries

Figure 1. Screenshot of the DataMaster tab in Protégé-OWL. Users can connect to a relational database through ODBC or JDBC and
import data into an OWL ontology.

Mapping Tools
Using the SWRLAPI, we developed tools to support the
four types of mappings described in this paper. These tools
are: (1) DataMaster4 and Dynamic DataMaster, tools that
supports mapping of relational data to OWL; (2)
XMLMapper5, a library that supports the mapping of
information described in XML documents to and from
OWL ontologies; (3) a set of SWRL built-in libraries that
support ontology mapping; and (4) SQWRL, a SWRL-
based query language that supports extraction of
knowledge from OWL ontologies. SWRL’s built-in
mechanism provided the extension point for dealing with
these additional information formats.

DataMaster
We have developed a relational-to-OWL mapping tool
called DataMaster to serve as a relational data access
mechanism in ontology-driven applications (Figure 1). It
supports the mapping of data stored in relational databases

4 http://protegewiki.stanford.edu/index.php/DataMaster
5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabXMLBuiltIns

to concepts described in OWL. DataMaster has two
primary components: (1) schema and mapping ontologies
that describe both the schema of an arbitrary relational
database and the mapping of data stored in these schemas
to triples in an OWL ontology; and (2) software to produce
these ontologies, either automatically or semi-
automatically with user guidance.
 The OWL schema ontology provides a knowledge-level
description of a relational schema. It describes schemas in
a database and associated tables together with the columns
and column data types contained in each table. It also
describes primary and foreign key relationships for tables
in a schema. We have also developed a mapping ontology
that uses this schema ontology to describe how relational
tables are to be mapped to OWL concepts. The
fundamental goal is to specify the mapping of rows in a
relational table to triples in an RDF model, which will then
be mapped to OWL classes, properties and individuals.
This process cannot normally be performed automatically,
and additional user markup is usually required.
 DataMaster can be used with any relational database
with JDBC/ODBC drivers. A user interface is provided
that supports user-driven configuration of the importation
process. A user can use this interface to connect to a
database and select the portions of the database that they
wish to import. If the user decides on a schema-only
import the database schema is read and represented in

OWL using the Relational-OWL [de Laborda et al., 2005]
ontology. If a content import is requested, the user can
select a number of mapping options, such as, for example,
how table and column names are mapped, and how
relational column types are mapped to XSD Schema types.

Dynamic DataMaster
DataMaster also has a dynamic mapping layer that uses the
schema source and mapping ontologies to map data on
demand [O’Connor et al., 2007]. Instead of importing all
database content, it provides a data access layer to
dynamically translate knowledge-driven data requests to
queries on a relational database. This layer works with an
ontology level query engine to allow retrieval from a
relational database. At run-time, the software uses the
source and mapping ontologies to transform the data in a
relational database to OWL entities. We extended our
existing query engine to interact with this software to
retrieve these mapped OWL entities. The engine takes
queries written in terms of OWL classes, properties, and
individuals and generates requests to the mapping software
for the OWL entities in a relational database. The mapping
software then generates SQL queries to retrieve that
appropriate data from the database identified by the
schema and mapping ontologies.

XMLMapper
We have developed a library called XMLMapper to read
and write XML streams. This library can be used to read an
XML document and automatically transform it to an OWL
ontology that represents the document. This OWL
representation is described in terms on an OWL XML
ontology. This ontology has classes that represent standard
XML constructs, such as document, element, attributes,
and namespaces. Instances of this ontology are used to
represent both the structure and content of an imported
XML document. The reverse transformation from this
ontology to XML is also supported.

Mapping Libraries
Information imported into OWL from other formats is
generally not in a form that is directly usable with the
domain ontologies used in an application. Typically, the
imported information must be transformed or mapped to
terms or concepts used in these domain ontologies.
Similarly, third party ontologies that are used in the
application will often have different representations of
similar concepts. Or such ontologies may not be
represented in OWL and may use RDF or other formats. In
general, custom rule sets are needed to perform mappings
because it requires domain-specific knowledge.
 This mapping can be performed using SWRL rules.
These rules take instance data represented using the source
formats as imported into OWL and generates new
instances that are described in terms of the local domain
ontologies in the application. Irrespective of the source
formats, there will be a common set of mapping operations

that are required to reconcile these imported formats with
application ontologies. When exporting knowledge from
domain ontologies, a corresponding set of reverse
mappings will be required. We have developed a suite of
SWRL built-in libraries6 that contain common operations
that are typically required when performing these mapping.
These operations support operations that are common in:
(1) XML to OWL and OWL to XML mapping; (2)
relational database mappings; (3) RDF mappings; (4) and
OWL to OWL mappings.

Supporting OWL Queries with SQWRL
SWRL is a rule language, not a query language. However,
many ontology-based applications require the ability to
extract information from ontologies in addition to
reasoning with the information in those ontologies. To
support this knowledge extraction, we have developed a
query language called SQWRL7 (Semantic Query-
Enhanced Web Rule Language) that extends SWRL to
support querying of OWL ontologies.
 SQWRL is implemented as a built-in library using the
standard SWRL built-in mechanism. It is syntactically and
semantically compatible with standard SWRL. The
SQWRL built-in library contains SQL-influenced built-ins
that can be used in a rule to construct retrieval
specifications for information stored in an OWL ontology.
 For example, the following SQWRL query retrieves all
persons in an ontology whose age is less than 25, together
with their ages:

Person(?p) ^ hasAge(?p,?a) ^

swrlb:lessThan(?a,25) -> sqwrl:select(?p,?a)

This query will return pairs of persons and ages. The sqwrl
prefix is used to identify SQWRL operators.
 To list all cars owned by each person, we can write:

Person(?p) ^ hasCar(?p,?car) ->

sqwrl:select(?p,?car)

This query will return pairs of individuals and their cars.
Assuming a person can have more than one car, multiple
pairs would be displayed for each person. Basic counting
is also supported by SQWRL, provided by an operator
called count. If we wished to, for example, get a count of
the number of cars owned by individuals in an ontology,
we could write:

Person(?p) ^ hasCar(?p, ?c) -> sqwrl:select(?p) ^

sqwrl:count(?c)

This query would return a list of individuals and counts,
with one row for each individual together with a count of
the number of cars that they own. Individuals that have no
cars would not be matched by this query.

6 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabBuiltInLibraries
7 http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL

 Basic aggregation is also supported. Four operators
called min, max, sum, and avg provide this functionality. For
example, a query to return the average age of persons in an
ontology (for which an age is known) can be written:

Person(?p) ^ hasAge(?p, ?age) -> sqwrl:avg(?age)

SQWRL has access to all available SWRL built-in
libraries. For example, to retrieve the name of all males in
an ontology and prepend the title "Mr." to each name, we
can use core SWRL stringConcat built-in:

Person(?p) ^ Male(?p) ^ hasName(?p, ?name) ^
swrlb:stringConcat(?fullname, "Mr. ", ?name) ->
sqwrl:select(?fullname)

The ability to freely use built-ins in a query provides a
means of continuously expanding the power of the query
language. Crucially, it provides an interoperation bridge to
deal with other knowledge formats. SQWRL itself is
formally based on OWL DL and SQWRL queries can be
expressed only in terms of core OWL concepts. However,
the built-in mechanism provides the ability to refer to non
OWL DL concepts in queries. The TBox built-in library,
for example, allows direct querying of OWL classes and
properties, something that would not be possible in OWL
DL. Similarly, we have developed an RDF built-in library
that supports querying of RDF ontologies.
 The SWRLAPI provides a graphical interface called the
SQWRLQueryTab to execute SQWRL queries. A query
can be selected from the rule table in the Protege-OWL
SWRL Editor and executed to display query results. Users

can navigate to that sub-tab to review the results displayed
in tabular form. A JDBC-like Java interface is also
provided to execute SQWRL queries in Java applications.
Results for a particular query can be retrieved from a
SWRLAPI rule engine bridge. Rows in a result can be
iterated through and the contents of each column in a row
retrieved using accessor methods. In addition to standard
XML schema datatypes, OWL entities such as classes,
properties, individuals, class descriptions and axioms can
also be returned from queries.

Developing a Web Application
Using these mapping tools we developed a prototype Web-
based application to advise physicians on HIV drug
therapies. This application aims to replicate some of the
functionality of the HIVdb application [Rhee et al., 2006],
a Web-based utility that allows physicians to explore
treatment options for HIV positive patients. The HIVdb
application allows physicians to enter mutation and
treatment histories for a patient and then presents them
with treatment recommendations based on its analysis of
patients with similar profiles stored in its database. The
application is backed by an extensive curated research
database that contains time-stamped data on drug
regimens, HIV reverse transcriptase and protease
sequences, and HIV viral load collected at local clinics.
 To drive our prototype, we developed a central domain
ontology called the HIV Ontology to represents all core
concepts in the application. This ontology includes a
Virtual Patient Record (VPR) ontology that holds clinical

Figure 2. Component view of the Web-based application. Arrow-shaped components represent the various transformations or mappings
that are performed in the system.

information for each patient, and a Treatment Ontology
that contains therapy recommendations.
 Figure 2 shows a high level component view of the
application. We wrote a Web-based forms-driven front end
that allows users to enter patient information. This
information includes mutation and drug treatment history
for a single patient. When the user indicates that
information entry is complete, the information is
transmitted to the server as a custom XML stream. At the
server we use the XMLMapper library to transform this
XML stream to OWL entities representing the content on
that stream. A set of SWRL mapping rules is then executed
to transform this information to instances described in
terms of the HIV Ontology.
 We used Dynamic DataMaster to describe mappings
between the VPR and information in the HIVdb database.
Based on the patient profile entered the application tries to
find other patients in the database with similar profiles. It
extracts this information using SQWRL queries written in
terms of the VPR ontology, which are automatically
mapped by Dynamic DataMaster to queries on the
underlying relational database. The application then
analyses the retrieved information and determines
treatment recommendations for the patient, which are then
stored in the Treatment Ontology. A second set of SWRL
mapping rules is then activated to transform these
recommendations to instances of the OWL XML ontology,
which are mapped to an XML stream using the
XMLMapper. This stream is then returned to the front end
application, where it is parsed and summarized.

Conclusions
Data integration is a core central challenge of the Semantic
Web. The ability to meet this challenge requires the
development of a variety of mapping technologies to allow
interoperation between the various formats that will be
encountered when developing Semantic Web applications.
The tools outlined in this paper provide a set of basic
building blocks that can be used to construct these
mapping technologies. We have found that SWRL can act
as a central driving mechanism in these tools.
 In addition to the prototype web application we have
described, we have used these mapping tools to help meet
the data mapping requirements of several ontology-driven
biomedical applications [Shankar et al., 2008, O’Connor et
al., 2008]. SWRL is used to help unify the domain-level
specification of system data with the mapping needs of
system components. In conjunction with OWL, SWRL
provides both a formal domain-level description of data in
the systems that we are developing and mapping
mechanisms to transform these data between the various
formats. These software components are open source and
available in the standard Protégé-OWL distribution.

Acknowledgements
This work was supported in part by the Immune Tolerance
Network, which is funded by the National Institutes of
Health under Grant NO1-AI-15416, and also by the
Centers for Disease Control and Prevention under grant
number SPO-34603. We thank Valerie Natale for her
editorial comments

References
Berners-Lee T, Lassila O, and Hendler J. The Semantic
Web. Scientfic American, May 2001.

Freidman-Hill E. Jess in Action. Manning, 2003.

Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof
B, Dean M. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML. W3C, May 21, 2004.

Knublauch H, Fergerson RW, Noy NF, and Musen MA.
The Protégé-OWL Plugin: an open development
environment for Semantic Web applications. 3rd
International Semantic Web Conference, Japan, 2004.

de Laborda CP, Conrad S. RelationalOWL - a data and
schema representation format based on OWL. Conceptual
Modelling, 43:89-96, 2005.

O'Connor MJ, Shankar RD, Tu SW, Nyulas C, Parrish DB,
Musen, MA, Das AK. Using Semantic Web Technologies
for Knowledge-Driven Querying of Biomedical Data. 11th
Conference on Artificial Intelligence in Medicine (AIME
07), Amsterdam, Netherlands, 2007.

O’Connor MJ, Shankar, RD, Parrish DB, and Das AK.
Knowledge-Level Querying of Temporal Patterns in
Clinical Research Systems. International Journal of
Medical Informatics, in press, 2008.

OWL Web Ontology Language Reference.
www.w3.org/TR/owl-ref, 2004.

Rhee SY, Fessel WJ, Zolopa AR, et al., 2005. HIV-1
protease and reverse-transcriptase mutations:
Correlations with antiretroviral therapy in subtype B
isolates and implications for drug-resistance surveillance.
Journal of Infectious Diseases 192: 456-465.

Shankar RD, Martins SB, O’Connor MJ, and Das AK. An
ontological approach to representing and reasoning with
temporal constraints in clinical trial protocols.
International Conference on Health Informatics, Madeira,
Portugal, 2008.

Sirin E, Parsia E, Grau BC, Kalyanpur A, and Katz Y.
Pellet: A practical OWL-DL reasoner. UMIACS Technical
Report, 2005-68, 2005.

