
Safelog: Supporting Web Search and Mining by
Differentially-Private Query Logs

Sicong Zhang, Hui Yang, Lisa Singh
Department of Computer Science

Georgetown University
{sz303,gh243,lisa.singh}@georgetown.edu

Li Xiong
Department of Mathematics & CS

Emory University
lxiong@emory.edu

Abstract

Query logs can be very useful for advancing web search
and web mining research. Since these web query logs con-
tain private, possibly sensitive data, they need to be effec-
tively anonymized before they can be released for research
use. Anonymization of query logs differs from that of struc-
tured data since they are generated based on natural language
and the vocabulary (domain) is infinite. This unstructured,
unbounded data set poses different challenges for produc-
ing privacy-preserving query logs. To mitigate these chal-
lenges, we propose using a differential privacy framework
called Safelog to generate anonymized query logs that con-
tain sufficient contextual information to allow existing web
search and web mining algorithms to use the data and attain
meaningful results. The key to achieving high privacy guar-
antees is the introduction of a query pool for augmenting the
query log during the sanitation process. We empirically vali-
date the effectiveness of our framework for generating usable,
privacy preserving logs for web search, and demonstrate that
it is possible to maintain high utility for this task while guar-
anteeing sufficient levels of privacy. We conclude with a dis-
cussion of other web mining tasks that can be supported by
these anonymized logs and show some preliminary results for
the task of website clustering.

Introduction

In order to advance research in web search and web min-
ing, having access to web search query logs is vital. Large
scale web query logs enable researchers to analyze user be-
havior and improve the quality of web search methodolo-
gies. Specifically, web query logs have been used to guide
the development of new retrieval methods (Agichtein, Brill,
and Dumais 2006; Diriye et al. 2012; Luo, Zhang, and Yang
2014; Zhang, Luo, and Yang 2014), as well as web mining
tasks, including website clustering, ranking, and classifica-
tion, mining semantic relationship, query trend discovery,
popular website trend analysis, etc.

However, because query logs are a form of user-generated
data, they often contain sensitive and personal information.
Releasing query logs without anonymizing them may lead to
serious privacy violations. This was the case in 2006 when
American Online (AOL) released an anonymized version of

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their query log (Table 1 shows a sample of the AOL query
log) (Adar 2007). In this anonymized log, even though AOL
replaced username with user id, the search queries them-
selves were still very revealing for some users, violating
their privacy. The fallout was large (Barbaro and Zeller Aug
2006), and web search companies have hesitated to release
any query logs since then, even for research purpose.

A few attempts have been made to alleviate the lack
of available search log data. For example, in 2014 Yan-
dex shared an anonymized query log (Table 2) for a web
search challenge at the Web Search Click Data (WSCD)
2014 workshop to support document reranking.1 In this re-
leased query log, all words were converted to hash codes,
reducing the utility of the released log significantly. The
only web search task that can be researched with this data
set is document re-ranking (Cai, Liang, and de Rijke 2014;
Radlinski and Joachims 2005; Shokouhi et al. 2013). Be-
cause the contextual data has been removed, the data set is
not useful for studying other traditional web mining tasks,
including clustering, classification, and trend analysis.

While not obvious, query log anonymization is more dif-
ficult than other more structured data sets because query
logs are generated from billions of individual users’ natu-
ral language. The associated vocabulary domain for these
queries is, therefore, infinite. This is a sharp contrast to the
finite domains of more traditional data, e.g. itemset min-
ing of a finite domain of items (Lee and Clifton 2014;
Cheng et al. 2015).

In this paper, we develop a novel ε-differential privacy
framework called Safelog that sanitizes and anonymizes a
query log. The generated query log maintains utility for web
search and web mining algorithms while maintaining strong
privacy guarantees. The key to achieving the strong privacy
guarantees is the introduction of a query pool for augment-
ing the query log during the anonymization process. We ex-
plain and empirically show the privacy guarantee and how
to measure the actual retrieval utility for the task of web
search (the primary task that uses query logs). We also con-
sider other web mining tasks that can be supported by these
anonymized logs and show some preliminary results for a
clustering task.

1http://research.microsoft.com/en-us/um/people/nickcr/
wscd2014/

The 2016 AAAI Fall Symposium Series:
Privacy and Language Technologies

Technical Report FS-16-04

276

Table 1: The query log from AOL (sample).
UserID Query Query Time Rank Clicked Web Page

479 family guy movie references 03-03 22:37:46 1 http://www.familyguyfiles.com
479 top grossing movies of all time 03-03 22:42:42 1 http://movieweb.com
479 top grossing movies of all time 03-03 22:42:42 2 http://www.imdb.com
479 car decals 03-03 23:20:12 4 http://www.decaljunky.com
479 car decals 03-03 23:20:12 1 http://www.modernimage.net
...

Table 2: The query log from WSCD 2014 (sample).
SessionID SERPID QueryID ListOfURLs
34573630 0 10509813 34175267 34171511 35444452 15370141

31342884 43630531 26065978 29902424
39016998 62861215

34573635 0 8447254 44298735 41815016 62677540 13753389
3336907 67724115 22354391 4606079
37985498 53161116

...

To summarize, the main contributions of the paper are as
follows: (1) This paper is the first to evaluate the utility of
differentially private anonymized query logs on the task of
web search. We present Safelog, an effective framework for
implementing and evaluating both privacy and utility of an
anonymized query log. To better evaluate the effectiveness
of the anonymized query log, we propose a new utility func-
tion that is tailored to this task. (2) We demonstrate how
our log anonymization algorithm achieves ε-differential pri-
vacy, improving the state-of-the-art in this area from (ε, δ)-
differential privacy (Korolova et al. 2009). (3) We present
an empirical analysis that highlights the effectiveness of our
framework for document retrieval on real world data. We
also analyze the privacy-utility tradeoff so that companies
can decide on the level of privacy that is acceptable to them.
Based on both the theoretical and empirical findings, we
make practical recommendations for companies interested
in releasing anonymized query logs that include a detailed
discussion of how to set parameters. (4) We discuss other
web mining tasks that can be supported by these anonymized
logs and show some preliminary results for the task of web-
site clustering.

Related Work

The query log anonymization task came on researchers’
radar in 2006 when a user was identified from the released
AOL search log (Barbaro and Zeller Aug 2006). For years,
researchers have proposed many ad-hoc techniques to help
preserve privacy in query logs. (Adar 2007) and (Gotz et
al. 2012) proposed anonymizing query logs by removing
unique queries and segmenting the search sessions. Jones et
al. (Jones et al. 2007; 2008) studied the application of simple
classifiers for identifying gender, age, and location, which
can largely reduce the size of user candidates for portions of
the query log. They found that the re-identification approach
remains very accurate even after removing unique terms
from the query log. These works verified the need for more
robust anonymization techniques for query log anonymiza-
tion.

Though with limitations, k-anonymity (Carpineto and Ro-
mano 2013; Adar 2007; Hong et al. 2009) provides specific
privacy guarantees and has been utilized to help in this query
log anonymization task. (Carpineto and Romano 2013) and

(Hong et al. 2009) proposed methodology to reduce the
large-scale data losses and utility. However, the privacy of
k-anonymity is based on assumptions about the background
knowledge of the adversary. An approach that does not re-
quire such strict assumption would be preferred.

Differential privacy (Dwork 2008; Fan et al. 2014; Feild,
Allan, and Glatt 2011; Korolova et al. 2009; Gotz et al.
2012) is a promising option since it does not make assump-
tions about the adversary. Although none of the previous re-
search has achieved a proven private query log anonymiza-
tion scheme that can publish the query log in its original
plain format, some have begun investigating differential pri-
vacy in this context. For instance, (Korolova et al. 2009)
proposed an algorithm that releases a query-click graph con-
taining queries, clicked URLs with each query, and the cor-
responding counts. They gave an (ε, δ)-differential privacy
approach which maintains some utility. However, as men-
tioned in their paper as limitations, their framework can not
output queries that were not included in the original query
log, which also means that they cannot achieve ε-differential
privacy. In this paper, we filled this important gap by 1)
proposing a method that preserves more contextual infor-
mation than previous methods, 2) proposing a utility func-
tion that is specific to the primary task of query logs (web
search) and leads to a more comprehensive evaluation, and
3) achieving ε-differential privacy by incorporating the idea
of an external query pool. We accomplish this by using an
external query pool.

A closely related research topic to query log anonymiza-
tion is publishing transaction or sequence data with differ-
ential privacy (Lee and Clifton 2014; Cheng et al. 2015).
Query log can be viewed as a set-valued or sequence dataset
where each user’s record corresponds to a set or sequence
of query terms and URLs (items), and the goal is to pub-
lish the count of query terms or sequences (itemsets). While
many algorithms have been proposed in the literature for fre-
quent itemset mining and frequent sequence mining with DP,
a fundamental difference is that these methods assume a fi-
nite domain for the items, begin with all items in the domain
as candidate itemsets and compute their noisy count. While
in query logs, there is an infinite possible set of query terms.
Hence, the previous work only achieves the weaker epsilon-
delta DP by releasing the noisy count of a subset query terms
from the query log (as opposed to the entire domain of pos-
sible query terms).

Background & Preliminaries

This section gives background and preliminaries to our
work. Firstly, a query log Q contains data about requests the
search engine receives from its users. The types of data it
contains include user ids, user queries, a ranked list of doc-
ument ids (or URLs to those documents) that the search en-
gine returns to the user, snippets of those documents, the
URLs that are clicked by the users, and the timestamps
for all the user actions. Then, given an input query log
Q, the query log anonymization process is to produce an
anonymized query log Q′ that has clearly specified privacy
guarantees.

277

Algorithm 1 Query Log Anonymization Algorithm
1: Input. Q: Original query log collected by search engine;

Qp: Set of external search queries; τ :query filtering pa-
rameter; qf , cf : limiting activity parameters for number
of queries per user and number of clicked urls per user;
b, bq, bc: noise parameters; K: threshold of tail.

2: Output. Q′.
3: Qclean = removeSensitiveData(Q, τ)
4: Qclean = limitUserActivity(Qclean,qf , cf)
5: Q+ = Qclean + Qp, considering queries from Qp as

queries with 0 frequency as in Qclean.
6: Qreduced = selectFinalQuerySet(Q+,b,K)
7: Q′ = generateLogStats(Qreduced,bq, bc,K)
8: Q′ = generateQueryTransitions(Q′,bt)
9: return Q′

In order to evaluate the quality of Q′ to support web
search and mining tasks, we define the utility function
U(Q′). The function quantifies the ability of Q′ to return a
list of documents or URLs D that are relevant to for queries
q ∈ Q′. Here the utility function corresponds to the evalua-
tion metrics of the document retrieval task.

Most importantly, we use differential privacy in our work.
Differential privacy is usually used in an interactive setting
in which a statistical database is repeatedly queried. Our
problem setting differs from this since our goal is to re-
lease a query log. Therefore, we fit into a data publishing
or non-interactive setting. When using differential privacy
ideas in this context, we need to ensure that an adversary
that has a copy of the anonymized query log Q′ cannot de-
termine whether or not a particular user exists in the original
data set Q. Assume that are two neighboring query logs that
only differs by one user’s search records. We say that an
anonymization scheme A(Q) is (ε, δ)-Differentially Private
if the following definition holds.

Definition. A non-interactive query log anonymization
mechanism A(Q) satisfies (ε, δ)-differential privacy if for
all neighboring query logs Q1 and Q2, and for all possible
output Q∗, the following inequality holds:

Pr[A(Q1) = Q∗] ≤ eε × Pr[A(Q2) = Q∗] + δ (1)
where Q1 and Q2 are defined as neighboring when they ex-
actly differ in one user’s search log. The goal of a successful
data anonymization plan is to have |U(Q) − U(Q′)| < σ,
where σ is a small non-negative number; while at the same
time ensuring that the privacy level ε : Q′ = A(Q) is small
enough to maintain high privacy.

The Query Log Anonymization Algorithm
Algorithm 1 shows our high-level algorithm for query log
anonymization. The remainder of this subsection describes
the main components of the proposed algorithm.

In Safelog, we first empirically remove all queries with
a frequency less than 5 from the corpus in order to prevent
the release of unique sensitive data. This step also removes
typos. We refer to the output of this step as Qclean.

Then, we reduce each user’s sample in the query log by
limiting the number of queries and URL clicks of each user.

Specifically, we only keep the first qf queries and the first
cf URL clicks of each user from Q, and remove the rest.
Intuitively, this step allows us to guarantee that the removal
or addition of a single individual in Q has a limited effect
on the query log. We will give an experiment later about the
values of qf and cf .

Next, in order to overcome the challenge of the infinite
domain in query logs, our key idea is to use an external
stochastic query pool to augment the query terms already in
the query log. In other words, our query term domain can be
viewed as a sampled set of terms S from the set of all possi-
ble query terms in the population P . We will show formally
that using an external stochastic query pool Qp to augment
the query log with additional queries, improves the overall
privacy and allows us to achieve pure DP. We refer to the
expanded set of queries as Q+, where Q+ = Qclean + Qp.
In the next section, we will discuss different query pool gen-
eration strategies.

After that, we select the final set of queries to release.
Using Lap(b) to represent a random real value drawn in-
dependently from the Laplace distribution with mean 0 and
scale parameter b (Dwork et al. 2006), we define perturbed
counts to be query counts after applying Laplacian noise. We
choose to release a query q when its perturbed query count
(M(q,Q+) + Lap(b)) is greater than a threshold K, where
M(q,Q+) is the frequency of query q in Q+. Specifically,
for each query q added from the query pool, M(q,Q+) = 0.
However, its perturbed query count (M(q,Q+) + Lap(b))
still get a chance to pass the threshold K and therefore be
included in the output of this step. Theoretically, since ev-
ery query on Q+ has a chance of being selected in the final
log, we can achieve ε-differential privacy. The final query set
generated after this step is referred to as Qreduced.

As previously mentioned, we release the perturbed query
counts (M(q,Q+) + Lap(bq)) for each query. It is worth
noting that for the perturbed query counts, we add noise
again using another parameter bq . Although bq does not nec-
essarily differ from b, this re-fuzz process reduces the impact
of the cut-off threshold K from the previous step. We also
release the perturbed click counts for each URL: <q, u, #u
was clicked when q was posted + Lap(bc)>. These statis-
tics are the basis for the first two components of the released
query log as shown in Figure 1.

Furthermore, releasing query transition information al-
lows us to preserve some sequential information from the
original log. It improves the utility of the query log by al-
lowing for more complex web search research, e.g. session
search. In our approach, we release adjacent query transi-
tions from Qclean with perturbed counts with a noise scale
of Lap(bt), for each query pairs in Qreduced. Specifically,
if either of the two queries comes from Qp, such perturbed
counts of query transition will be 0+Lap(bt) since there are
no such transitions in the original log.

Figure 1 shows an example of our proposed format for
Q′. Each released Q′ consists of three components. The
first component contains the released search queries and
their corresponding frequencies in Q. The second compo-
nent contains click-through data for each of the released
query-URL pairs. In this part, each line shows a query; a

278

Figure 1: Format of our anonymized query log with 3 com-
ponents.

clicked-through URL with this query and the number of
clicks for the query-URL pair. The last part of Q′ contains
information about the query transitions in Q. Specifically,
each line shows a pair of adjacent queries along with the
frequency of the specific query transition.

Query Pool Generation

Formally, we define Qp as an external query pool generated
using an external set of search queries that are independent
of the queries in the original query log Q. Qp serves as a
proxy for the full set of queries that exist in the population
P . Each query in Qp has an equal probability of being in-
cluded in the query pool. When a commercial search engine
using our algorithm, this query pool Qp can be generated
using a random sample of all their recorded queries, or by
using queries from a different period. If the previous set of
recorded queries is insufficient to represent P , query terms
can be randomly extracted from a random set of web pages.
Then, we can expand the query log as Q+ = Qclean + Qp.
Queries added to Q+ from Qp, are queries with a click count
of zero in the original query log.

Because academic researchers do not have access to an
extensive query set like commercial companies, we must
have an approach for simulating the query pool construction
process. Therefore, we propose a simulation algorithm that
generates a query pool using artificial queries constructed
by randomly sampling and combining high-frequency n-
grams present in the English language. In our experiments,
we use the Corpus of Contemporary American English
(COCA)2, which includes approximately 450 million words
and 190,000 texts. Using this corpus, Davies (Davies 2011)
published the (approximately) 1 million most frequent n-
grams each for n=2, 3, 4 and 5. We identified 1,159,938 n-
grams from this list that end with a noun since nouns are
more likely to be part of search engine queries. We sample

2http://corpus.byu.edu/coca/

these n-grams to generate the final query pool Qp. In other
words, we combine the query terms from two independent
samples, making it difficult for an adversary to know clearly
which queries are real and which ones are not. Using a query
pool to maintain log privacy is one of the main contributions
of this paper. We will show in our empirical evaluation that
even with the addition of these noisy, external data, we can
still maintain reasonable utility for web search queries.

Proof of Differential Privacy

We now present a general privacy proof sketch that analyzes
the privacy guarantees of our approach for all the major steps
in Algorithm 1, except the query transition generation step.
Let K, qf , cf , b, bq , bc and bt be parameters in our algo-
rithm as defined previously. Let Q be the original query log
as input to the algorithm, Qclean be the set of queries from
Q that are possible options for release because they occur
often enough while keeping at most qf queries and cf clicks
from each user. Let Qp be an externally generated stochastic
query pool containing a large set of queries. Suppose each
possible query q in the infinite domain has a probability of
pg ∈ [0,1] to be included in the pool Qp. In practice, the
value of pg depends on the source that is used to generate
the query pool. While we provide an approach for generat-
ing Qp, major commercial search engines that have access
to a large number of historic queries in their system can cre-
ate a large pool Qp satisfying a pg value close to 1. Here we
state the following theorem:

Theorem 1: The query log anonymization algorithm pre-
sented in Algorithm 1 satisfies ε-differential privacy, where
ε is defined as:

α = Max{e
1/b

pg
, 1 +

1

2e(K−1)/b − 1
}

ε = qf · ln(α) + qf/bq + cf/bc + (qf − 1)/bt

(2)

In order to prove Theorem 1, we first consider the follow-
ing theorem:

Theorem 2: The generation of qreduced in Algorithm 1
satisfies (qf · ln(α))-differential privacy.

Theorem 2 is necessary for our algorithm to achieve ε-
differential privacy rather than (ε,δ)-differential privacy. It
makes our algorithm different from previous work (Ko-
rolova et al. 2009), and helps us achieve stronger privacy
guarantees. Being more specific, our Theorem 2 achieves
stronger privacy guarantees than the Select-Queries proce-
dure in (Korolova et al. 2009), while the remainder of our
algorithm has a similar structure to theirs in terms of adding
Laplacian noises. Theorem 1 is now a straightforward proof
if we combine our Theorem 2, and Lemmas 2,3, and 4 as
presented in (Korolova et al. 2009).

Recall that Q′ also contains query transitions. While each
user may have at most qf queries, the user may bring at most
qf−1 adjacent query transitions. Therefore, we can calculate
the privacy guarantees in a similar way as the other compo-
nents. We now prove Theorem 2, thereby showing why we
achieve such a stronger privacy notion.

279

Proof of Theorem 2

Proof . 1) We first consider the case in which qf =1, K≥1.
Q1, Q2 are two neighboring search logs, Q2 has one more
user than Q1, since qf = 1. This means that Q2 has one
more query q∗. Also, we partition any set of query sets Q̂

into two subsets: Q̂+, the query sets in Q̂ that contains q∗,
and Q̂−, the query sets in Q̂ that do not contain q∗. The
proof structure is similar to the Lemma 5 proof in Korolova
et al. (Korolova et al. 2009). Here we only show why our
algorithm has a stronger privacy guarantee than theirs. When
q∗ ∈ Q1, we can prove that the algorithm satisfies (1/b, 0)-
differential privacy using a similar idea as in Korolova et
al. (Korolova et al. 2009). Here we give the derivatives in
the case of q∗ /∈ Q1, q

∗ ∈ Q2. For all q∗ ∈ Qp, q
∗ /∈ Q,

we have M(q,Q) = 0, which is different from Korolova et
al. (Korolova et al. 2009). Differential privacy requires the
following two inequalities.

P [A(Q1) ∈ Q̂] ≤ αP [A(Q2) ∈ Q̂] + δ (3)

P [A(Q2) ∈ Q̂] ≤ αP [A(Q1) ∈ Q̂] + δ (4)
i). For inequality 3: First, we consider the case when q∗

is not included in the output. Then P [A(Q2) ∈ Q̂−] = P[q∗

not released by A(Q2)] · P [A(Q1) ∈ Q̂−]. Therefore,

P [A(Q1) ∈ Q̂−]

P [A(Q2) ∈ Q̂−]
=

1

P [q∗ /∈ A(Q2)]
=

1

1− 0.5exp(1−K
b

)
(5)

Next, we consider the other case when q∗ is included in
the output. Since q∗ /∈ Q1, A(Q1) ∈ Q̂+ will only be possi-
ble when q∗ is outputted from the query pool Qp. Therefore,

P [A(Q1) ∈ Q̂+]

= P [q∗ ∈ Qp] · P [0 + Lap(b) ≥ K] · P [A(Q1) ∈ (Q̂+ \ q∗)]
= pg · 0.5exp(−K

b
) · P [A(Q1) ∈ (Q̂+ \ q∗)]

(6)

On the other hand, q∗ ∈ Q2, which means A(Q2) ∈ Q̂+

requires q∗ be outputted from Q2:

P [A(Q2) ∈ Q̂+]

= P [1 + Lap(b) ≥ K] · P [A(Q1) ∈ (Q̂+ \ q∗)]
= 0.5exp(

1−K

b
) · P [A(Q1) ∈ (Q̂+ \ q∗)]

(7)

Therefore, we achieve an upper bound that:

P [A(Q1) ∈ Q̂]

P [A(Q2) ∈ Q̂]
=

P [A(Q1) ∈ Q̂+] + P [A(Q1) ∈ Q̂−]

P [A(Q2) ∈ Q̂+] + P [A(Q2) ∈ Q̂−]

≤ Max{P [A(Q1) ∈ Q̂+]

P [A(Q2) ∈ Q̂+]
,
P [A(Q1) ∈ Q̂−]

P [A(Q2) ∈ Q̂−]
}

= Max{pg · exp(−
K
b
)

exp 1−K
b

,
1

1− 0.5exp(1−K
b

)
}

=
1

1− 0.5exp(1−K
b

)

(8)

The last step is because pg ∈ [0, 1), exp(− 1
b) ∈ (0, 1).

Hence we get pg · exp(− 1
b) < 1 < 1

1−0.5exp(1−K
b)

. There-

fore, inequality 3 holds for α = 1
1−0.5exp(1−K

b)
, δ = 0

ii). For inequality 4:
Here we give a stronger upper bound in this case with the

help of the query pool Qp.

P [A(Q2) ∈ Q̂]

P [A(Q1) ∈ Q̂]
=

P [A(Q2) ∈ Q̂+] + P [A(Q2) ∈ Q̂−]

P [A(Q1) ∈ Q̂+] + P [A(Q1) ∈ Q̂−]

= {0.5exp(1−K

b
) · P [A(Q2) ∈ {Q̂+ \ q∗}]

+ (1− 0.5exp(
1−K

b
)) · P [A(Q2) ∈ Q̂−]}/{0.5pg·

exp(−K

b
) · P [A(Q1) ∈ {Q̂+ \ q∗}] + P [A(Q1) ∈ Q̂−]}

≤ Max{ 0.5exp(1−K
b

)

0.5pg · exp(−K
b
)
, 1− 0.5exp(

1−K

b
)}

= Max{exp(1/b)
pg

, 1− 0.5exp(
1−K

b
)} =

exp(1/b)

pg

(9)

Therefore, inequality 4 holds for α = e1/b

pg
, δ = 0.

Combining the 2 cases, we conclude that our algorithm
satisfies the (ln(α), 0)-differential privacy, where:

α = Max{e1/b, 1

1− 0.5exp(1−K
b

)
,
e1/b

pg
}

= Max{e
1/b

pg
, 1 +

1

2exp(K−1
b

)− 1
}

(10)

which concludes the proof when qf = 1.
2) Now we generalize the proof for cases when qf > 1,

which leads the approach from record level differential pri-
vacy to user level differential privacy. While our algorithm
achieves differential privacy with δ = 0, the generaliza-
tion to situations with arbitrary qf values becomes pretty
straightforward. Since Q1 and Q2 differs by one user, with-
out loss of generality, suppose Q2 contains one more user,
i.e. it contains qf additional queries at most, namely q1, q2,
...qqf . Then we have the following:

P [A(Q1) ∈ Q̂] ≤ α · P [A(Q1 + q1) ∈ Q̂]

≤ ... ≤ αqf · P [A(Q2) ∈ Q̂]
(11)

This concludes the proof of Theorem 2 that the generation
of Qreduced is user level (qf · ln(α))-differentially private.

Web Search Task and Utility Function

Figure 2 shows the Safelog framework. It focuses on a work-
flow of creating anonymized query logs as well as measur-
ing the logs’ utility in a complete pipeline for the task of web
search. We first partition data using 5-fold cross validation.
In each run, we use 80% of the data as the training set Q and
the remaining as the test set QTest. Q acts as the raw query
log from the search engine that is the input to the query log
anonymization algorithm. QTest is used to evaluate the util-
ity of our approach on the document retrieval task. Then we

280

Figure 2: Framework Overview.

transform the query log Q into Q′ = A(Q) in a privacy-
preserving way. After that we build a query-click graph,
where nodes are queries and URLs (documents) while edges
connect query nodes with their clicked URL nodes.

Retrieving Documents. We retrieve documents using
three different algorithms (Agichtein, Brill, and Dumais
2006; Craswell and Szummer 2007; Tran et al. 2015) for
queries in QTest in order to evaluate the utility of the re-
leased query log Q′.

The first retrieval algorithm is based on a random walk
on the query-click graph. In the graph, nodes are queries
and documents (URLs), while the transition weights be-
tween nodes are defined by their relationship in the re-
leased data. The most common transition type links a query
node to a document node. Another type of transition we
consider is between two query nodes in the query-click
graph. Each query node also has a transition weight to it-
self as a self-loop. We calculate the transition probability
P (k|j) from a query node j to document node or another
query node k in a slightly different way from a popular ran-
dom walk click model proposed by Craswell and Szummer
(Craswell and Szummer 2007). Then, we rank the URLs ac-
cording to the descending order of the probabilities of stay-
ing at corresponding URL nodes. P (k|j) is calculated as
(1 − s)Cjk/ΣiCji when k �= j and is s when k = j. Here
Cjk is the weight between nodes j and k given by Q′, and
s is the self-transition probability. If both nodes j and k are
query nodes, weight Cjk is defined as the query transition
counts from j to k as specified in Q′; otherwise, if j is a
query node while k is a document node, weight Cjk is de-
fined as the click-through counts for this query-document
pair as specified in Q′. In our approach, we empirically set
the self-loop probability s = 0.1.

The second algorithm uses the impact factor of each web
page to enhance the random walk model. It is based on
(Tran et al. 2015). In this setting, more popular websites gain
greater probabilities for the random walker to walk into. An
impact factor F for each web page is introduced to the above
random walk model, resulting in greater probabilities for the
walker to walk into nodes with greater F values. In our im-

plementation, we define the impact factor Fi of a web page
(document node i) as a smoothed sum of its click counts
as Fi = 1 + log(1 + ΣjCji), where Cji is the weight be-
tween node j and i given by Q′, and the impact factors for
the other query nodes are set to be a constant 1. The new
transition probability P ′(k|j) from node j to node k can be
calculated by P ′(k|j) = Normalized(Fk∑

i∈L
+
j

Fi
× P (k|j)),

where L+
j is the set of outbound links of node j, P (k|j) and

F are calculated as earlier.
Besides using query graphs for document retrieval, we can

also consider using user clicks as feedback. This additional
query log data is useful for some web search algorithms.
The third algorithm is a modified version of the implicit
feedback model proposed in (Agichtein, Brill, and Dumais
2006). It merges the original rankings with the implicit feed-
backs, in our case the user clicks. Previous literature has pro-
posed methods that incorporate user behavior data to help to
improve the order of retrieved documents. In this work, we
implement a variant of (Agichtein, Brill, and Dumais 2006).
Given a query q, the relevance score S(d) for each document
d is λ 1

Id+1 + (1 − λ) 1
Od+1 if the implicit feedback exists

for d. Otherwise it is 1
Od+1 . Here Od represents the original

rank of document d, Id represents the implicit feedback rank
in Qtest, and λ is a parameter to weigh the importance of the
implicit feedback. In this approach, the original rank Od is
ranked by the order of click-through counts of document d
for query q, according to Q′. Id is the rank of d from QTest

when the user makes a click. We empirically set λ = 0.6.
Finally, the documents are ranked in the descending order
of S(d) scores for each query q. In addition, we generate a
ground truth set of documents based on the actual clicking
information in QTest to evaluate the document retrieval re-
sults obtained from the previous step. For each tested query
in QTest, the corresponding ground truth contains a set of
relevant documents (URLs), where relevant means that they
have been clicked on in QTest. Actual search engines may
choose to replace our approach in this step since they have
more detailed data about users’ online activity (for instance,

281

the dwell time on each returned page) than we do.
Calculating Retrieval Effectiveness. We compare our re-
trieval results to the ground truth and evaluate the re-
trieval effectiveness using multiple IR metrics, including
nDCG (normalized discounted cumulated gain) (Järvelin
and Kekäläinen 2002), MAP (Mean Average Precision)
(Robertson 2008), Precision, and Recall. Among them,
nDCG at rank position 10 (nDCG@10) is the most widely
used IR evaluation metric for web search in both commercial
companies and academia. It measures the retrieval effective-
ness for a ranked list of retrieved documents in the first ten
results, which form a SERP that a searcher cares most about.
We also use nDCG@10 as our predominant evaluation met-
ric. For each query q in a query log Q, we can calculate its
nDCG@10 as:

nDCG@10(q,D) = {
10∑

i=1

reli
log2(i+ 1)

}/{
NRel∑

i=1

1

log2(i+ 1)
}

(12)
where D is the ranked list of documents retrieved for query q
by ranking algorithm R such that D = R(q). reli is 1 when
the ith retrieved document di ∈ D is relevant. Otherwise, it
is 0. NRel is the smaller value of the total number of relevant
documents for q and 10.

This work is the first to evaluate the utility of a query log
using actual IR evaluation metrics. Our total utility function
U(Q) for a query log Q is:

U(Q) =
1

|Q|
∑

q∈Q

nDCG@10(q,D) (13)

Note that not all queries in QTest can be found in the
anonymized query log Q′. Most of the added queries in
Q′ from the query pool may not be included in QTest ei-
ther. Therefore, when this utility function is used on the
anonymized query log Q′ to test on retrieval on QTest, we
can only evaluate those queries that are at the intersection
of both QTest and Q′. The size of the query set thus often
varies.

Experiments

This section presents our empirical results and analysis.

Experimental Setup

To evaluate the strengths and weaknesses of our approach,
we use the released AOL query log data set (Adar 2007)
for our experiments. It is a query log containing 36,389,567
search records, 10,154,742 unique queries and 19,442,629
clicks. At this stage, the AOL query log is the only avail-
able query log for privacy-related research like ours. Table 1
gives a sample of the original AOL query log.

As detailed in the previous section, we first partition the
input query log into a training set Q and a test set QTest.
Then we use our query log anonymization algorithm to gen-
erate the anonymized query log Q′. After that, we use the
presented document retrieval algorithms to retrieve docu-
ments for queries in QTest. Finally, the utilities are calcu-
lated by comparing search results against the ground truth.

During parameter tuning of the query log anonymization al-
gorithm, we ran different combinations of the major param-
eters, including K, b, qf , and cf . To better control and com-
pare the major parameters, we set constant values for some
other parameters such as bc and bq .

(a) nDCG@10 (b) MAP

Figure 3: Utilities (nDCG@10 and MAP) of the anonymized
log vs. the original log based on three algorithms.

Utility by Retrieval Effectiveness

We begin by comparing retrieval results using the original
query log (Q) and the anonymized query log (Q′). Figure 3
shows the utility across different retrieval evaluation met-
rics including nDCG@10 and MAP (Mean Average Pre-
cision). For each of the three algorithms we presented in
the previous section, we run them on both the original log
and an anonymized log with the following privacy settings:
ε = 29.99, query frequency threshold K = 500, and noise
scale b = 10.

Results in Figure 3 indicate that our anonymized query
log can produce comparable query effectiveness results to
those of the un-anonymized version. Under certain circum-
stances, Q′ can perform as well as the original non-private
query log. This occurs when the noise scales b is much
smaller than the query count threshold K. This means that
the statistics in the released query logs are not influenced
significantly by the added noise. These results confirm the
utility level of the anonymized log generated by our frame-
work.

Privacy-Utility Trade-off

In this section, we consider the privacy-utility trade-off by
adjusting different parameter settings to see when the re-
trieval performance decreases significantly. Among the three
retrieval algorithms we have, two of them are based on ran-
dom walk model and are similar to each other. Therefore, in
this subsection, we focus our discussion on the regular ran-
dom walk algorithm and the implicit feedback algorithm.

Figure 4 shows the document retrieval evaluation results
using Q′ with different K and b values. Each subgraph
shows experiments using a different K value with K rang-
ing from 10 to 500. Each data point on the subgraph repre-
sents the average of a set of 5-fold cross-validation results
from the two retrieval algorithms (Implicit Feedback, and
Random Walk algorithm). Within each subgraph, all the data
points share the same qf , cf and K values. They also use the

282

(a) K=10 (b) K=30 (c) K=50 (d) K=100 (e) K=500

Figure 4: Relationships between noise scale b and utility nDCG@10, with K and other parameter values fixed.

(a) K=10 (b) K=30 (c) K=50 (d) K=100 (e) K=500

Figure 5: Relationships between b and privacy level ε. The data points are marked with their corresponding nDCG@10 scores
using the Implicit Feedback algorithm.

same Q′ size. Therefore, the results within each subgraph
highlight the effect of different values of b. In general, as b
increases, the utility nDCG@10 decreases. This matches in-
tuition since we expect larger noise scales to reduce retrieval
performance and cause decreased utility.

Another observation is that the utility score is less sen-
sitive to the noise scale b when b is much smaller than K.
Finally, we can see that the implicit feedback algorithm per-
forms better than the random walk algorithm, but they share
similar patterns of retrieval performance as b changes. Note,
because different values of K lead to different sizes of data,
comparing across subgraphs does not make sense.

Another experiment that reveals the privacy-utility trade-
off focuses on the performance differences caused by qf
(query limitations from each user in Q) and cf (clicking lim-
itations from each user in Q). It is worth noting from Equa-
tion 2 that ε is very sensitive to qf and cf since it is linearly
related to qf and cf . However, qf and cf also linearly control
the actual size of query logs used in the experiments. Hence,
to fairly understand the effect of changing these parameters,
we need to ensure that each run has the same data size. We
accomplish this by requiring that these experiments contain
the same total number of queries and clicks used from the
original query log Q. Intuitively, runs with smaller qf and
cf values will have search data from more users while runs
allowing more queries and clicks from each user will have
fewer users in the anonymized query log.

Table 3 presents the evaluation results of this experiment,
using the implicit feedback algorithm (IF), the random walk
algorithm (RW) and the random walk algorithm with impact
factor (RW-2). As we can see, while all the runs have the
same number of total input queries and clicks, the evalua-
tion results do not differ much from each other. However,

Table 3: Privacy-utility trade-off: the relationship between
qf ,cf and utility. All runs have the same number of total
queries and clicks in Qclean, with K = b = 10.

qf cf ε IF RW RW-2
10 10 4.27 0.5884 0.5826 0.5891
50 50 21.36 0.5888 0.5828 0.5893
100 100 42.73 0.5903 0.5843 0.5909
150 150 64.09 0.5910 0.5850 0.5916
200 200 85.45 0.5920 0.5850 0.5923

we do observe that smaller qf and cf (input data obtained
from more users) leads to smaller ε value (more privacy) and
slightly smaller nDCG@10 scores (less utility), and vice
versa. In other words, we also observe the privacy-utility
trade-off with the change of qf and cf .

Privacy Analysis

In this section, we analyze the privacy parameters and give
recommendations to query log owners who want to use
our framework to release and evaluate query logs. Figure 5
shows 25 different released query logs with different K and
b values. The remaining parameters are fixed. They are or-
ganized in 5 subgraphs that show the b-ε relationships, each
with different K values. In each subgraph, we label each
point with the evaluated utility score (nDCG@10 from the
implicit feedback algorithm). The figures show that the ε
value is not always monotonically related to b. In graph 5(d)
and 5(e), we can observe turning points with minimum ε val-
ues. These data points represent the smallest ε value we can
achieve, i.e. the strongest privacy. We also notice that the
utility at these points remains high. As b increases after the
turning point, our performance decreases both regarding pri-

283

vacy (greater ε) and utility (smaller nDCG@10). Such turn-
ing points can be mathematically calculated from Equation
2. We get such turning points when e1/b

pg
= 1+ 1

2e(K−1)/b−1
.

Base on these experiments, we recommend query log own-
ers using Safelog should set parameters near these turning
points. We also recommend using smaller b values (around
b = 10) when K values are small (e.g., K = 10, 30, or 50).
As K gets larger (e.g., K = 100 or 500), it is better to set
b to be the same scale as K and close to the turning point.
These settings should achieve the best combination of pri-
vacy and utility. Finally, if we choose qf and cf carefully,
we can tune according to our needs. For example, smaller
values of qf and cf lead to better privacy, while larger val-
ues of qf and cf lead to higher utility.

Exploring Web Mining

Query logs are used for some different web mining tasks.
While testing the effectiveness of using an anonymized
query log for this different task is outside the scope of this
paper, we conduct a preliminary analysis on a simple web
page clustering task. The goal of this task is to group n
websites W = {w1...wn} using query log click informa-
tion from similar queries. We now sketch how to accom-
plish this and show that we get meaningful clusters using
the anonymized query log Q′. We pause to mention that we
purposefully do not conduct a complete analysis of this task.
Instead, we demonstrate that web mining utility is still possi-
ble using Q′ and that future work should explore more tasks
from these anonymized query logs.

We consider a simple single-link hierarchical clustering
algorithm (Guojun, Chaoqun, and Jianhong 2007) to cluster
the websites (URLs) in Q′ using the generated query-click
graph. In the query-click graph, for each query q and website
w, we define C(q, w) as the number of clicks from query q
to website w. We also define C(w) to be the total number of
clicks to website w. QSet(w) is defined as the set of queries
leading to clicks on website w. Then, for every website pair
w1 and w2, we define their similarities as the ratio of clicks
from common queries:

Sim(w1, w2) =

min{

∑
q∈QS(w1,w2)

C(q, w1)

C(w1)
,

∑
q∈QS(w1,w2)

C(q, w2)

C(w2)
}

(14)

where QS(w1, w2) = QSet(w1)
⋂
QSet(w2). Once we

compute the similarities, we use single-linkage clustering to
cluster the websites. We empirically tested different hierar-
chical clustering methods and chose single link clustering
for this task because of the sparsity of the query log click
graph. The parameter setting for generating Q′ were: query
count threshold K = 100, query limit and click limit per
user qf = cf = 100, all noise scales bx = 10.

To evaluate the quality of the clusters, we clustered 1000
websites. The hierarchical clustering algorithm merges two
clusters when the websites have a high similarity score:
Sim(w1, w2) ≥ 0.5. We hand label 10 clusters with class
labels (Table 4 shows an example) and then measure purity.

Table 4: Some clustering results based on the anonymized
query log.

(Cluster of Lyrics) (Cluster of Lottery)
lyrics.astraweb.com lottery.yahoo.com
www.lyricsfreak.com www.flottery.com
www.lyrics.com www.lotteryusa.com
www.azlyrics.com www.flalottery.com
www.sing365.com (Cluster of Banks)
www.musicsonglyrics.com www.bankone.com
www.lyricsdownload.com www.chase.com

To compute purity, we use the class label that is most fre-
quent in the cluster and assumes that to be the correct class
label. The accuracy is the number of correctly assigned web-
site wi divided by the total number of websites |W |. For the
10 clusters we hand labeled, there was a total of 59 websites
in them. The purity was 0.76. This means that there were
some websites that were put into the wrong clusters, but the
majority were not. In other words, a meaningful structure for
web mining can still be extracted from anonymized logs.

Conclusions

Given concerns about privacy, web search companies are
hesitant to share web query logs. In this paper, we intro-
duce Safelog - a framework for anonymizing and evaluat-
ing the utility and privacy of the anonymize log. To the best
of our knowledge, we are the first to generate anonymized
query logs that have been measured for utility on actual
web search tasks. Our framework provides effective query
log anonymization algorithms that place adequate privacy
guards on those logs while simultaneously maintaining high
retrieval utility. The experiments show that the proposed
framework is very effective – a statistical significance test
(two-tailed t-test, p < 0.01) shows that popular web search
algorithms using the anonymized logs perform comparable
with those using logs before anonymization. In addition, our
comparative experiments illustrate the privacy-utility trade-
off in query log release. In particular, the stricter the privacy
standard we require, the lower the utility or usefulness of
the released query log regarding web search. In this work,
we show that the differentially private query log can be well
supporting typical web search and mining tasks. We hope
that it encourages web search engine companies to release
logs for research purposes.

Acknowledgments

This research was supported by NSF grant CNS-1223825,
NSF grant IIS-145374, and DARPA grant FA8750-14-2-
0226. Any opinions, findings, conclusions, or recommenda-
tions expressed in this paper are of the authors, and do not
necessarily reflect those of the sponsor.

References

Adar, E. 2007. User 4xxxxx9: Anonymizing query logs. In
Query Logs Workshop at the WWW’07.

284

Agichtein, E.; Brill, E.; and Dumais, S. 2006. Improving
web search ranking by incorporating user behavior informa-
tion. In SIGIR ’06.
Barbaro, M., and Zeller, T. Aug 2006. A face is exposed for
AOL searcher no. 4417749. In New York Times.
Cai, F.; Liang, S.; and de Rijke, M. 2014. Personalized
document re-ranking based on bayesian probabilistic matrix
factorization. In SIGIR ’14.
Carpineto, C., and Romano, G. 2013. Semantic search log
k-anonymization with generalized k-cores of query concept
graph. In ECIR’13.
Cheng, X.; Su, S.; Xu, S.; Tang, P.; and Li, Z. 2015. Differ-
entially private maximal frequent sequence mining. Comput.
Secur. 55(C):175–192.
Craswell, N., and Szummer, M. 2007. Random walks on the
click graph. In SIGIR ’07.
Davies, M. 2011. N-grams data from the corpus of
contemporary american english (coca). Downloaded from
http://www.ngrams.info 23:2012.
Diriye, A.; White, R.; Buscher, G.; and Dumais, S. 2012.
Leaving so soon?: Understanding and predicting web search
abandonment rationales. In CIKM ’12.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating noise to sensitivity in private data analysis. In
Proceedings of the Third Conference on Theory of Cryptog-
raphy, TCC’06.
Dwork, C. 2008. Differential privacy: A survey of re-
sults. In Theory and Applications of Models of Computation.
Springer. 1–19.
Fan, L.; Bonomi, L.; Xiong, L.; and Sunderam, V. 2014.
Monitoring web browsing behavior with differential privacy.
In WWW ’14.
Feild, H. A.; Allan, J.; and Glatt, J. 2011. Crowdlogging:
Distributed, private, and anonymous search logging. In SI-
GIR ’11.
Gotz, M.; Machanavajjhala, A.; Wang, G.; Xiao, X.; and
Gehrke, J. 2012. Publishing search logs – a comparative
study of privacy guarantees. IEEE Trans. on Knowl. and
Data Eng. 24(3):520–532.
Guojun, G.; Chaoqun, M.; and Jianhong, W. 2007. Data
clustering: theory, algorithms, and applications. ASA-SIAM
Series on Statistics and Applied Probability.
Hong, Y.; He, X.; Vaidya, J.; Adam, N.; and Atluri, V. 2009.
Effective anonymization of query logs. In CIKM ’09.
Järvelin, K., and Kekäläinen, J. 2002. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4):422–
446.
Jones, R.; Kumar, R.; Pang, B.; and Tomkins, A. 2007. ”i
know what you did last summer”: Query logs and user pri-
vacy. In CIKM ’07.
Jones, R.; Kumar, R.; Pang, B.; and Tomkins, A. 2008. Van-
ity fair: Privacy in querylog bundles. In CIKM ’08.
Korolova, A.; Kenthapadi, K.; Mishra, N.; and Ntoulas, A.
2009. Releasing search queries and clicks privately. In
WWW ’09.

Lee, J., and Clifton, C. W. 2014. Top-k frequent item-
sets via differentially private fp-trees. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, 931–940. New
York, NY, USA: ACM.
Luo, J.; Zhang, S.; and Yang, H. 2014. Win-win search:
Dual-agent stochastic game in session search. In SIGIR ’14.
Radlinski, F., and Joachims, T. 2005. Query chains: Learn-
ing to rank from implicit feedback. In KDD ’05.
Robertson, S. 2008. A new interpretation of average preci-
sion. In SIGIR ’08.
Shokouhi, M.; White, R. W.; Bennett, P.; and Radlinski, F.
2013. Fighting search engine amnesia: Reranking repeated
results. In SIGIR ’13.
Tran, G.; Turk, A.; Cambazoglu, B. B.; and Nejdl, W. 2015.
A random walk model for optimization of search impact in
web frontier ranking. In SIGIR ’15.
Zhang, S.; Luo, J.; and Yang, H. 2014. A pomdp model for
content-free document re-ranking. In SIGIR ’14.

285

