
Feature Selection for Learning
from Demonstration in Minecraft

Brandon Packard, Santiago Ontañón
Drexel University

Philadelphia, PA, USA
{btp36,so367}@drexel.edu

Abstract
Learning from Demonstration has the potential to enable the
crafting of behavior for non-player characters, allies, and en-
emies without requiring programming knowledge. This paper
focuses on addressing two key problems of LfD when applied
to games. The first is data sequentiality, when actions might
be influenced by previous environmental states/actions, in-
stead of just the current state. The second is having structured
representations of data, where data is provided as an arbitrary
number of predicates instead of a fixed-length vector. In this
paper, we evaluate a collection of feature selection strategies
to address these problems in the context case-based learning
algorithms in the domain of Minecraft.

Introduction
This paper focuses on Learning from Demonstration (LfD).
Given sequential traces of the behavior of an expert perform-
ing a task on a given environment, the goal of LfD is to learn
the function that determines the expert actions given the ob-
served states. Specifically, this paper focuses on feature se-
lection in LfD, i.e., trying to derive which pieces of data
from the state should be used for learning which can both
increase prediction accuracy, with an emphasis on structured
representations, and on considering the sequential nature of
training data in LfD.

This structured representation setting for LfD is impor-
tant because of two reasons. First, in many domains of in-
terest (e.g., computer games), it is more natural to represent
the world state using structured representations than using a
feature-vector approach. For example, in the popular game
Minecraft, in a given world state there might be an arbitrary
number of enemies. It can be hard to represent all of these
enemies using a fixed-length feature-vector, but it is trivial to
do so using a structured representation such as Horn clauses
(Nienhuys-Cheng and Wolf 1997). Second, learning agents
might need to remember information from past states (data
sequentiality). For example, if an agent sees a treasure map
on the wall but cannot take it, they would need to remember
the map when looking for the treasure, since it would not
show up later on as part of the agent perception.

We focus on comparing strategies for feature selection,
both structured and sequential, in the context of case-based

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning algorithms. We first evaluate a collection of algo-
rithms based on adapting standard feature selection algo-
rithms for propositional representations (Kohavi and John
1997), then evaluate filter-based strategies (Guyon and Elis-
seeff 2003), and finally present a new approach called Naive
Sampling Feature Selection (NSFS), based on Monte Carlo
sampling. Time windows (Dietterich 2002) are also tested
to address data sequentiality. We use the popular videogame
Minecraft as our evaluation domain.

Learning from Demonstration
Argall et al. (2009) formally define LfD as follows. Let S
be the set of states the world can be in, and Y the set of ac-
tions an agent can perform. The mapping between states by
way of actions is defined by a probabilistic transition func-
tion T (s′|s, y) : S × Y × S → [0, 1]. If the state is not
fully observable, an observation function M : S → Z maps
states to observed states Z. A policy π : Z → Y selects ac-
tions based on observations of the world state, and can range
from low-level motions to high level behaviors. A demon-
stration Ti = [(z1, y1), ..., (zn, yn)] is defined as a sequence
of observation-action pairs, where zi ∈ Z, and yi ∈ Y .
The goal of LfD is, given training data consisting of a set of
demonstrations T = {T1, ..., Tn}, derive a policy for choos-
ing an action based on the current observed world state.

Problem Statement
The problem that we address in this paper is that of feature
selection in structured representations of sequential data:
• Structured Representations: we represent both actions

and world states as logical clauses of the form zt =
p0 ∧ p1,∧... ∧ pm. Each predicate pi takes the form
h(a1, ..., ar), where h is the functor and each ai repre-
sents the value that each of the attributes of the predicate
takes (note that both h and all the arguments ai are con-
stants), and represents some aspect of the world. For ex-
ample, health(20) would have health being the functor
and 20 being the value of the only attribute for that func-
tor. Let H = {h0, ..., hn} be the set of all functors and
Ahi the set of all attributes for the functor hi. Actions
are also represented as logical clauses, where each indi-
vidual predicate corresponds to a Minecraft action, and if
the player executed more than one action at a time (e.g.,
walking while swinging a sword), the clause representing

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

489

z162 = holding(17, 1, 0) ∧ rotation(sw, up) ∧ selectedBlock(17)
∧ target(none) ∧ block(1, extreme) ∧ block(2, extreme)
∧ block(3, extreme) ∧ block(4, high) ∧ block(17, high)
∧ block(18, extreme) ∧ level(0) ∧ health(20) ∧ food(20)
∧ pMob(pig, left, far) ∧ aMob(zombie, center, near),
∧ pMob(pig, right, far) ∧ groundItem(17, right, near),
∧ groundItem(17, left, far) ∧ cluster(17, 3, left, far) ,
∧ closestStone(none, none) ∧ closestWorkbench(none, none)

y162 = rotating(sw), choppingWood(−1)

Figure 1: An example world state and corresponding action.

Figure 2: A screenshot of Minecraft.

the action will have more than one predicate. An example
of an observation-action pair can be seen in Figure 1.

• Data Sequentiality: for some behaviors, all of the relevant
information might not be available in the current state,
in which case data from past states should be taken into
account. For example, if an agent passes a sign saying
“turn right at the next intersection”, when they approach
the intersection they need to turn right, but the sign would
no longer be in the current state information.

In structured representations, such as Horn Clauses
(Nienhuys-Cheng and Wolf 1997), one equivalent of select-
ing features is to select which functors and attributes of each
functor should be used. Specifically, we define the “set of
features” F for a structured domain as the set of functors
being used plus the set of attributes for each functor. Conse-
quently, we define a subset of features F ′ ⊆ F as a subset
of all the functors and attributes in F . Any subset of features
F ′ ⊆ F must satisfy the condition that no attributes can be
present if their corresponding functor is not present, i.e.: if
hi �∈ F ′, then Ahi ∩ F ′ = ∅ (see above).

Minecraft
Our motivating domain, as well as our testbed, is the game
of Minecraft (Figure 2), an open ended game that focuses
on exploration and building. The game imposes no true goal
on the player, instead letting them set their own. The players
move about in a 3-dimensional world divided into blocks
that (with a few exceptions) the player can pick up and
put down as they please. Players are able to kill enemies,
build/destroy structures, and collect items to craft new tools.
Due to these attributes, Minecraft requires short term, almost
reflexive decisions as well as long-term planning.

Feature Selection Methods
We evaluated the performance of seven different feature se-
lection approaches compared against three baselines. Meth-
ods were also compared for time windows of size greater
than one where feasible.

We explored a family of algorithms called wrapper meth-
ods (Kohavi and John 1997), which iteratively invoke a base
learning algorithm with different features subsets and eval-
uate the performance of each in order to find the feature
set that maximizes performance. Wrapper methods split the
training set T into two parts: the subtraining set S and the
cross-validation set C. Then, the wrapper method iteratively
tests different feature subsets by training the base learning
method using S and evaluating the resulting loss using C.

Moreover, some methods and baselines used assume a
propositional representation of the data. In addition to the
structured representation of our dataset, we created a propo-
sitional version in the following way (methods requiring
this propositional representations are marked by the word
“Propositional” in their names). We translated the structured
representation of the world state to a fixed-size vector that
contains a value for every attribute a ∈ Ahi |hi ∈ H, result-
ing in 98 propositional features in our dataset. When more
than one predicate with the same functor appears in a world
state (see for example pMob in Figure 1, which appears
twice in the game state), only the predicate which represents
the enemy/object closest to the player is used to compute
the corresponding feature value. When the predicate does
not appear in a world state, its associated feature is set to 0.

Handling Sequential Data
For most standard supervised approaches, only the current
world state is taken into account when learning. For LfD
problems however, knowledge of past states is often required
to fully capture the demonstrator’s behavior. One common
way of addressing this is time windows (Dietterich 2002),
or simply passing in information from the past k − 1 states
as input in addition to the current state. This can improve
results, but it also increases the computational cost signif-
icantly even for low values of k, so many of the feature
selection methods that we employed were computationally
unfeasible to run with a time window of size greater than 1.

Baselines
We compared against 3 baselines:

All Features Propositional (AFP): uses a propositional
representation where all features are used for learning.

All Features Structural (AFS): uses a structured repre-
sentation using all predicates and attributes.

Random (R): This method randomly selects an action
from the training data.

Wrapper Methods
Propositional Wrapper (PW): This method uses a greedy
search to attempt to find the best possible subset of fea-
tures (Algorithm 1) (Kohavi and John 1997). The algorithm
starts with an empty feature set, and iteratively adds the fea-
ture which will minimize loss. Once all possible features are
added, the subset that yielded the lowest loss is returned.

490

Algorithm 1 PW(F, S,C)

1: Fbest = Fsubset = ∅, Fleft = F, lbest = 1,
2: while Fleft �= ∅ do
3: fbest = argminf∈Fleft

loss(Fsubset ∪ f, S, C)
4: l = loss(Fsubset ∪ fbest , S, C)
5: Fsubset = Fsubset ∪ fbest
6: Fleft = Fleft \ fbest
7: if l < lbest then
8: lbest = l, Fbest = Fsubset

9: end if
10: end while
11: return Fbest

Algorithm 2 FSW(H, S, C)

1: Fbest = Fsubset = ∅,Hleft = H, lbest = 1,
2: while Fleft �= ∅ do
3: hbest = argminh∈Hleft

loss(Fsubset ∪ h ∪ Ah, S, C)

4: l = loss(Fsubset ∪ hbest ∪ Ahbest , S, C)
5: Fsubset = Fsubset ∪ hbest ∪ Ahbest

6: Hleft = Hleft \ hbest

7: if l < lbest then
8: lbest = l, Fbest = Fsubset

9: end if
10: end while
11: return Fbest

We define the loss function loss(Subset, S, C) as training
the base learning algorithm on the set of demonstrations S
using only the features in Subset, then calculating the loss
of the learned classifier using the set of demonstrations C.
Functor Structured Wrapper (FSW): This is a wrapper
method that works directly over the structured representa-
tion. It also employs a greedy search, but considers only the
set of functors, i.e., it does not select among the set of at-
tributes of each functor. As we can see in Algorithm 2, each
time a functor h is selected (added to Fselected), all of its
attributes Ahbest are also added to Fselected .
Attribute Structured Wrapper (ASW): The Attribute
Structured Wrapper (ASW) operates similarly to Functor
Structured Wrapper, but also selects which of the attributes
of each selected functor to include in the structured represen-
tation (see Algorithm 3). The algorithm also uses a greedy
search approach, and each time a functor is selected, the set
of its attributes (Afbest ∩ F) are added to the set of features
to consider in future iterations (lines 7-9). Therefore, the al-
gorithm might select a given functor, but only select a subset
of its attributes to be added to the representation.
Subtractive from Min Attribute Structured Wrapper
(SASWmin): One issue with the greedy search approach of
ASW is when a functor is added to the selected features,
none of its attributes are added initially. Thus, if a given
functor is only important if a given attribute is included, it
might not be added until very late in the feature selection
process. To avoid this, we devised this alternative search pro-
cess, which first calls Functor Structured Wrapper to obtain

Algorithm 3 ASW(F,H, S, C)

1: Fbest = Fsubset = ∅, Fleft = H, lbest = 1,
2: while Fleft �= ∅ do
3: fbest = argminf∈Fleft

loss(Fsubset ∪ f, S, C)
4: l = loss(Fsubset ∪ fbest , S, C)
5: Fsubset = Fsubset ∪ fbest
6: Fleft = Fleft \ fbest
7: if fbest ∈ H then
8: Fleft = Fleft ∪ (Afbest ∩ F)
9: end if

10: if l < lbest then
11: lbest = l, Fbest = Fsubset

12: end if
13: end while
14: return Fbest

Algorithm 4 SASWmin(H, S, C)

1: Fbest = Fsubset = FSW (H, S, C), lbest = 1,
2: while Fsubset �= ∅ do
3: fbest = argminf∈Fsubset

loss(Fsubset \ f, S, C)
4: l = loss(Fsubset \ fbest , S, C)
5: Fsubset = Fsubset \ fbest
6: if l < lbest then
7: lbest = l, Fbest = Fsubset

8: end if
9: end while

10: return Fbest

the initial set of functors, and then employs a greedy search
that subtracts attributes or functors one by one out of the ini-
tially selected functors, until no removal can be done without
increasing the loss (see Algorithm 4). The algorithm consid-
ers both removing a functor h (along with all its attributes,
Ah), and removing just one attribute.
Subtractive from Max Attribute Structured Wrapper
(SASWmax): Many different sets of features often achieve
the same loss (since adding irrelevant features sometimes
does not reduce the loss). This method operates identically
to the previous (SASWmin), except it uses a modified ver-
sion of the Functor Structured Wrapper which returns the
largest set of features that achieves the minimum loss.

Filter Methods
Proportion-Filtered ASW (PF-ASW): this method was
created to address the high computational cost of the ASW
wrapper. In this method, the features are preprocessed by
testing each feature individually and recording the results,
then taking the top X% of them, where X is a user-defined
parameter (see Algorithm 5 for the detailed procedure). This
selection of top features then becomes the list of selectable
features for ASW, the notion being that most of the helpful
features will still be maintained while considerably reducing
the computational cost of the algorithm. Three variants were
tested: PF-ASW10%, PF-ASW20%, and PF-ASW30%, which
keep the top 10%, 20% , and 30% of features, respectively.

491

Algorithm 5 PF-ASW(H, S, C,X)

1: Fbest = Fsubset = ∅, Fstart = H, lbest =
1, storeLoss = {}

2: for f ∈ Fstart do
3: storeFeatureAndLossPairs.add(loss(f,S,C))
4: end for
5: storeFeatureAndLossPairs.sortByLoss()
6: Fleft = storeLoss.getBestFeatures(X)
7: return ASW(Fleft ,H, S, C)

Naive Sampling Feature Selection (NSFS)
All the wrapper methods above are based on greedy search
(either greedily adding features one by one or removing
them one by one). This is since searching over the complete
space of possible feature subsets using systematic search is
unfeasible since there is an exponential number of feature
subsets to consider. In this section we present an alternative
search method based on Monte Carlo sampling.

The key insight is that feature selection can be seen
as a Combinatorial Multi-Armed Bandit (CMAB) problem
(Ontanón 2013). A CMAB is an extension of the classic
multi-armed bandit (MAB) problem (Kocsis and Szepesvári
2006), where at each iteration an agent picks a value for
a set of n variables X = {X1, ..., Xn}, where variable
Xi can take Ki different values in order to maximize the
cumulative reward (where the unknown stochastic reward
function depends on the selected values). When solving a
CMAB, an agent needs to estimate the potential rewards
of each variable combination based on past observations,
balancing exploration and exploitation in order to find the
combination that maximizes expected reward. There is a
combinatorial number of possible values (or macro-arms)
which the agent can select at each iteration. Additionally,
not all possible value combinations might be legal, a func-
tion L : X → {true, false} determines which of them are.

Given a set of n features F , we define a CMAB with
n binary variables, where Xi determines whether feature
fi ∈ F will be selected or not. The legality function L pre-
vents selecting an attribute but not its functor. Naive Sam-
pling Feature Selection (NSFS) exploits such a formaliza-
tion and works as follows (see Algorithm 6):
• The algorithm runs for a fixed number of iterations T (the

computation budget). At each iteration, a CMAB sam-
pling policy is used to select a set of features (line 4).

• With each set of features, the base learning algorithm is
trained using C, its performance is evaluated by a test
set made out of a single instance (a single observation-
action pair picked at random from C, and removed from
the training set before training) to obtain a reward (lines
5-6). Since we employ instance-based learning methods,
training time is basically zero.

• At the end of the computation budget, the set of features
that has been selected most often (i.e., the ones that the
sampling policy considers as the one that maximizes the
expected reward) is returned as the set of selected features
(mostFrequentMacroarm function in the algorithm).

Algorithm 6 NSFS(H, S, C)

1: F = H ∪ (⋃
h∈H Ah

)

2: CMAB = new with |F | binary variables.
3: for t = 1...T do
4: F ′ = Naı̈ve Sampling(CMAB , ε0, εl, εg)
5: (z, a) = randomly selected from any T ∈ C
6: r = 1− loss(F ′, S, {{(z, a)}})
7: Update CMAB reward for F ′ with r
8: end for
9: return mostFrequentMacroarm(CMAB)

Intuitively, evaluating the performance of each feature
subset via testing it against a single instance in each itera-
tion, minimizes the amount of time it takes to obtain a re-
ward for a given feature subset, letting the algorithm test
a larger number of feature subsets in the same computation
time. However, since we are testing against a single instance,
the loss computed for each feature has a large degree of ran-
domness. However, CMAB sampling policies are designed
to handle such stochastic reward functions.

Specifically, we employed Naı̈ve Sampling (Ontanón
2013), a CMAB sampling strategy based on using nested
ε-greedy sampling strategies. Naı̈ve Sampling has three pa-
rameters: ε0, εl, and εg , which are set to 0.3, 0.3, and 0.0 in
our experiments, based on preliminary experiments. Naı̈ve
Sampling, initially behaves as if it selects macro-arms at
random (when no information about the expected reward of
each macro-arm is available), and iteratively converges to
selecting only those macro-arms that are promising.

Experimental Evaluation
Experimental Setup
To evaluate our approach, we used Minecraft as our appli-
cation domain. We collected five different traces each from
two different worlds, all taken by one person. The same pro-
cedural generation seed was used to create the world for
each set of 5, and traces were taken from the moment of
world generation, for consistency. The data stored includes
the players inventory, nearby clusters of blocks, passive en-
tities, and aggressive entities. The average trace length is
723 observation-action pairs (40 seconds of gameplay), with
each pair containing at least one action (pairs where no ac-
tion is taken are not added to the traces). In all traces, the
player’s task was to “obtain a piece of cobblestone”. The
results reported below used 10-fold cross validation (where
one trace was held out as the test set, and the other nine were
used as the training set). Each algorithm was also tested with
time windows of sizes from 1 to 4 where feasible.

We used nearest neighbor (Cover and Hart 1967) as our
base learning method. For the propositional representations,
we used the well known Euclidean distance. For the struc-
tured representations, we employed the Jaccard similarity,
which is defined as the number of predicates shared between
two world states, divided by the number of different predi-
cates appearing in both world states: J(z1, z1) = |z1∩z2|

|z1∪z2| ,

492

where z1 ∩ z2 is a clause that contains only those predicates
present both in z1 and in z2, and z1 ∪ z2 is a clause that con-
tains the union of predicates in z1 and in z2. |·| represents
the number of predicates in a clause. For two predicates to
be considered equal, both their functor and all their attributes
must be identical.

The loss method employed was the normalized Leven-
shtein distance between the actions in the ground truth and
the actions predicted by nearest neighbor. To do this we rep-
resented predicates as trees and employed Pawlik and Aug-
sten’s 2009 tree edit distance measure, as in our previous
work (Packard and Ontañón 2015).

Results
Table 1 shows the average loss (lower is better) for each fea-
ture selection method used, for various time windows. Since
even small time windows (of size k >1) can significantly in-
crease runtime, many of the feature selection methods are
not computationally feasible to run. A dash (—) in the table
indicates that the test did not terminate after 100 hours, and
was therefore considered infeasible. Table 2 shows the loss
achieved by NSFS for varying numbers of iterations.

The method that achieved the best results for time win-
dows of size 1 was PF-ASW10%, by a very narrow mar-
gin. FSW and NSFS performed the worst of the symbolic
methods, but not significantly so. In fact, none of the sym-
bolic feature selection methods performed statistically sig-
nificantly better than any other, according to a 2-tailed t-test
with p = 0.05. However, all symbolic methods performed
significantly better than the three baselines. Moreover, FSW,
PF-ASW10%, and PF-ASW20% performed statistically sig-
nificantly better than both the baselines and PW.

It can also be seen that a greater time window decreases
loss, even without feature selection. In fact, using a time
window of size 4 gives statistically significantly less loss
that a time window of size 1 (p < 0.05). Time windows also
helped many of the feature selection methods perform better,
with the one exception being NSFS. We hypothesize that this
is due to having a larger pool of irrelevant features for NSFS,
which would make it take more iterations to converge on a
subset of features, and also, the high level of randomness
introduced by our reward assignment procedure (which we
will revise in future work). However, increasing the number
of iterations enough to solve this issue caused the algorithm
to take longer than the 100 hour cutoff that was employed.

We assessed computational cost by measuring how many
times the similarity measure was called during feature se-
lection, since more calls to the similarity measure will typ-
ically result in a longer runtime. The number of similarity
calls needed for each method with a time window of size 1
is shown in Table 3. As can be clearly seen, PF-ASW10%

and PF-ASW20% perform by far the best in this regard, fol-
lowed by NSFS. The next best are FSW, SASWmin, and PF-
ASW30%, which require more calls to the similarity mea-
sure, but still considerably less than the other methods. It
is also interesting that all of the structured feature selection
methods require less calls to the similarity measure, thanks
mainly to the fact that attributes are only considered if the
corresponding functors are added.

Feat. Sel. Method k = 1 k = 2 k = 3 k = 4
AFP 0.355 0.329 0.308 —
AFS 0.374 0.348 0.336 0.308
R 0.798 0.798 0.798 0.798
PW 0.333 — — —
FSW 0.265 0.245 — —
ASW 0.244 — — —
SASWmin 0.244 — — —
SASWmax 0.244 — — —
NSFS 0.265 0.269 0.263 —
PF-ASW10% 0.243 0.210 0.205 —
PF-ASW20% 0.244 0.211 — —
PF-ASW30% 0.247 0.243 — —

Table 1: Average loss for various feature selection methods
(lower is better) for various time window sizes (k).

NSFS Iterations Loss Similarity Calls
1,000 0.295 4.5 Million
2,000 0.288 9 Million
5,000 0.278 27.5 Million
10,000 0.274 45 Million
100,000 0.246 450 Million
200,000 0.248 900 Million
500,000 0.246 2,250 Million

Table 2: Average loss of NSFS for varying iterations (lower
is better), and approximate number of similarity measure
callsneeded to perform feature selection for a single test.

Related Work
The problem of learning behavior from demonstration has
received significant attention in the literature. For example,
Ross, Godron, and Bagnell study LfD in the context of the
Super Tux Cart and Super Mario Bros games (Ross, Gor-
don, and Bagnell 2010). Other approaches to LfD include
Inverse Reinforcement Learning (Abbeel and Ng 2004;
Tastan and Sukthankar 2011), Dynamic Bayesian Networks
(such as Hidden Markov Models) (Dereszynski et al. 2011;
Ontañón, Montaña, and Gonzalez 2014), and supervised
learning techniques (Sammut et al. 2014). The reader is re-
ferred to (Argall et al. 2009) and (Ontañón, Montaña, and
Gonzalez 2014), for recent surveys of LfD.

Although the literature on feature selection is vast, little
work has been done towards feature selection for structured
representations of traces. For example, some examples of
feature selection methods for propositional data are provided
by Guyon and Elisseeff (Guyon and Elisseeff 2003). These
methods are split into 4 categories: (1) Wrappers/Embedded
Methods: which search the space of feature subsets, eval-
uating each one by re-training the base learning algorithm.
(2) Nested Subset Methods: estimate the changes that occur
in the objective function value when moving from node to
node in the space of feature subsets and combine that infor-
mation with a greedy search strategy. (3) Direct Objective
Optimization: which try to maximize how good of a fit the
feature subset is, at the same time as minimizing the size of

493

Feat. Sel. Method (k = 1) Loss Similarity Calls
AFP 0.355 N/A
AFS 0.374 N/A
PW 0.333 19,876 Million
FSW 0.265 1,058 Million
ASW 0.244 8,698 Million
SASWMin 0.244 1,286 Million
SASWMax 0.244 3,273 Million
NSFS 0.265 450 Million
PF-ASW10% 0.243 214 Million
PF-ASW20% 0.244 356 Million
PF-ASW30% 0.247 623 Million

Table 3: Average loss (lower is better),and required number
of calls to the similarity measure during feature selection.

that subset. (4) Filter Methods: which use some evaluation
function to directly rank or filter the set of attributes.

Specific examples are the wrapper method proposed by
Maldonado and Weber for Support Vector Machines (Mal-
donado and Weber 2009), the filter based method by Hall
(Hall 1999), the hybrid methods presented by Kabir, Shahja-
han, and Murase (2012) and a method to complement wrap-
pers by Floyd, Davoust, and Esfandiari (2008).

Conclusions
This paper presented a collection of feature selection strate-
gies for structured, sequential data, including methods in-
spired by wrappers, filters, Monte Carlo sampling, and time
windows. Although the motivating task is in the context of
LfD, most methods presented in this paper apply to standard
supervised learning. Our results indicate that filter/wrapper
hybrid methods such as PF-ASW10% achieve the best trade-
off of performance and computation time. We did not ob-
serve significant gains moving from a greedy search strat-
egy to a Monte Carlo search strategy, although improving
our Monte Carlo approach is part of our future work.

As part of our future work, we would like to study how to
further extend the proposed methods specifically for prob-
lems arising in LfD. For example, some actions in the game
take time (such as breaking a block) and others only make
sense within the context of a sequence of actions, so includ-
ing previous actions as part of the world state might improve
results. Finally, we would like to evaluate our approach with
a range of different Minecraft tasks.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Cover, T., and Hart, P. 1967. Nearest neighbor pattern
classification. Information Theory, IEEE Transactions on
13(1):21–27.

Dereszynski, E. W.; Hostetler, J.; Fern, A.; Dietterich, T. G.;
Hoang, T.-T.; and Udarbe, M. 2011. Learning probabilistic
behavior models in real-time strategy games. In AIIDE.
Dietterich, T. G. 2002. Machine learning for sequential data:
A review. In Structural, syntactic, and statistical pattern
recognition. Springer. 15–30.
Floyd, M. W.; Davoust, A.; and Esfandiari, B. 2008. Consid-
erations for real-time spatially-aware case-based reasoning:
A case study in robotic soccer imitation. In European Con-
ference on Case-Based Reasoning, 195–209. Springer.
Guyon, I., and Elisseeff, A. 2003. An introduction to vari-
able and feature selection. The Journal of Machine Learning
Research 3:1157–1182.
Hall, M. A. 1999. Correlation-based feature selection for
machine learning. Ph.D. Dissertation, The University of
Waikato.
Kabir, M. M.; Shahjahan, M.; and Murase, K. 2012. A new
hybrid ant colony optimization algorithm for feature selec-
tion. Expert Systems with Applications 39(3):3747–3763.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kohavi, R., and John, G. H. 1997. Wrappers for feature
subset selection. Artificial intelligence 97(1):273–324.
Maldonado, S., and Weber, R. 2009. A wrapper method for
feature selection using support vector machines. Informa-
tion Sciences 179(13):2208–2217.
Nienhuys-Cheng, S.-H., and Wolf, R. d. 1997. Founda-
tions of Inductive Logic Programming. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.
Ontañón, S.; Montaña, J. L.; and Gonzalez, A. J. 2014.
A dynamic-bayesian network framework for modeling and
evaluating learning from observation. Expert Systems with
Applications 41(11):5212–5226.
Ontanón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
Ninth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.
Packard, B., and Ontañón, S. 2015. Learning behavior from
demonstration in minecraft via symbolic similarity mea-
sures. In Proceedings of the Foundations of Digital Games
conference (FDG) 2015.
Pawlik, M., and Augsten, N. 2009. RTED: A robust algo-
rithm for the tree edit distance. In Proceedings of the VLDB
Endowment), volume 5, 334–345. Instanbul, Turkey: VLDB
Endowment.
Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2010. No-regret
reductions for imitation learning and structured prediction.
CoRR abs/1011.0686.
Sammut, C.; Hurst, S.; Kedzier, D.; Michie, D.; et al. 2014.
Learning to fly. In Proceedings of the ninth international
workshop on Machine learning, 385–393.
Tastan, B., and Sukthankar, G. R. 2011. Learning policies
for first person shooter games using inverse reinforcement
learning. In Proceedings of AIIDE 2011.

494

