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Abstract

Automatic and accurate classification of items enables nu-
merous downstream applications in many domains. These ap-
plications can range from faceted browsing of items to prod-
uct recommendations and big data analytics. In the online re-
cruitment domain, we refer to classifying job ads to a pre-
defined occupation taxonomy as job title classification. A
large-scale job title classification system can power various
downstream applications such as query expansion, seman-
tic search, job recommendations and labor market analytics.
Such classification systems mostly use Bag-of-Words (BOW)
model for document representation and consider only the job
titles when classifying job ads. However the BOW model
lacks the semantic discrimination capability that is needed
to accurately classify job ads when they contain multiple as-
pects of the job such as the job description, job requirements,
company overview and other details. In this paper we explore
the applicability of recent advances in the word and docu-
ment embedding space to the problem of job title classifica-
tion. We investigate several document embedding approaches
and propose a novel customized document embedding strat-
egy for job title classification that addresses the multi-aspect
job ad issue. Our experimental results show that incorporating
document embedding approaches in a job title classification
system improves the classification accuracy on entire job ads
compared to approaches based on the BOW model.

Introduction

Many e-commerce and web properties have a need to au-
tomatically classify millions of items to thousands of cate-
gories with a high level of accuracy. Such large-scale item
classification systems have many downstream applications
such as product recommendations, faceted search, semantic
search and big data analytics. In the online recruitment do-
main, classification of job ads can power applications such
as labor market analytics, job recommendations, and seman-
tic search. We refer to classifying job ads (text documents
composed of title and description fields) to predefined or
custom occupation categories as job title classification. For
automatic job title classification, we developed a machine
learning-based, semi-supervised, multi-class job title classi-
fication system called Carotene, which has: i) a taxonomy
discovery component that leverages clustering techniques
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to discover job titles from data sets to create a custom job
title taxonomy, and ii) a two stage classifier, for coarse-
grained and fine-grained categories, that uses an SVM-kNN
(k-Nearest Neighbors) classifier cascade to classify the input
text to the most appropriate job titles, respectively in root
and leaf levels of our custom taxonomy. The coarse-grained
classifier assigns the title to one of the 23 top level cate-
gories, called SOC-majors, after the Standard Occupational
Classification (SOC) system (U.S. Bureau of Labor Statis-
tics 2010). Then the fine-grained classifier chooses from nor-
malized job titles only from the given vertical (SOC-major).
In creation of the taxonomy, Lingo3G algorithm (Osinski
and Weiss 2005) was used to identify the ideal clusters and
their labels which is used as normalized titles.

Bag of words (BOW) representation is commonly used
in text classification and it was adopted for job text repre-
sentation in both stages in previous version of our job clas-
sification system. However, BOW lacks semantic relation-
ships so it can not handle synonyms, polysemous words and
multi-word expressions. Given the recent success of word
and document embedding techniques that provide semantic
relations among words and documents, the focus of this pa-
per is improving our system by using semantically rich doc-
ument representations based on these techniques.

Word and Document Embedding

Distributional Semantic Models (DSMs) build representa-
tions of words in high-dimensional vector spaces based
on the contexts in which they occur. GloVe (Pennington,
Socher, and Manning 2014) applied dimensionality reduc-
tion on word co-occurrence counts matrix to get the vec-
tor representations corresponding to each word. Neural Net-
work trained DSMs are shown to perform better than GloVe
for a range of lexical semantics tasks (Baroni, Dinu, and
Kruszewski 2014). Word2vec (W2V) (Mikolov et al. 2013),
uses a shallow neural network to produce high dimensional
vector representations for words and phrases. Neural net-
work optimizes accuracy of prediction of surrounding words
for each word, based on the skip-gram model. The relative
placement of these vectors in high dimensional space turns
out to preserve some semantic relationships of correspond-
ing words. A W2V vector represents a single word or short
phrase, whereas we need vector representations of job titles.
(Le and Mikolov 2014) proposed paragraph vectors, to
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represent whole paragraphs or documents produced by Neu-
ral Networks whose objective is to predict words in the doc-
ument. They found it to have significantly higher accuracy in
their sentiment analysis and information retrieval tests com-
pared to the state of the art. We evaluated it in job title clas-
sification as well, but it did not improve our results.

In Carotene we replaced BOW with word and document
embedding based representations for job ad titles and used
corresponding similarity measures in the kNN classification
component. Our comprehensive performance comparisons
show improvement in multiclass classification accuracy.

Related Work

Enriching vectors and semantic kernels are the two most
commonly used semantic enrichment techniques for text
classification. In the enriching vectors approach (Huang et
al. 2012), a document representation is enriched with some
or all of the following: hypernyms, synonyms and related
concepts. Semantic kernels (Wang and Domeniconi 2008)
leverage a semantic proximity matrix to transform docu-
ment representations into linearly separable semantic rep-
resentations. (Albitar and Fournier 2014), compared their
success on medical text classification, and found that en-
riching vectors performed better whereas semantic kernels
introduced noise in document representations, and degraded
performance. Semantic kernels are usually used with SVMs
and applied before classifier training time. However, (Lu and
Zhai 2006) details a semantic kernel approach that actually
improved the performance of the SVM algorithm when the
dimensionality of the input feature space is large and train-
ing data is scarce. For job title classification, LinkedIn uses
a phrase-based classification system that relies on the near-
sufficiency property of short text (Bekkerman and Gavish
2011). Near-sufficiency of short text means short documents
usually have higher signal to noise ratio which increase doc-
ument classification accuracy. Also in our experiments, job
titles alone gave more accurate classification results. A se-
mantic enrichment approach to job title classification is dis-
cussed in (Malherbe, Cataldi, and Ballatore 2015). This ap-
proach semantically enriches job categories with contextu-
ally relevant terms derived from a corpus of job ads. A field-
to-field similarity matching approach then matches job ads
to job categories.

Methods

Basic Definition and Notation

Document Document concept, in this work, refers to a
number of consecutive words: D = 〈w1, w2, ..., wn〉.
Query Job Ad A query job ad is formed of title and de-
scription documents, i.e., Jq = 〈Dqt, Dqd〉, where descrip-
tion is usually a longer document than title.

Training data for kNN The training data for our kNN
classifier contain pairs of a raw job title document, Drt,
and the matching normalized title document Dnt. Jtr =
〈Drt, Dnt〉 Raw titles are titles from real world job ads,
and have many-to-one mapping to normalized titles. Table
1 shows a sample from the training data.

Raw Title Normalized Title
Software Developer III Software Engineer

Software Developer Consultant Software Engineer
C++ Linux Embedded SW Eng Software Engineer
Mobile Applications Developer Mobile SW Engineer

Web Integration Intern Integration Engineer
RN Full Time pm Shift Registered Nurse

Registered Nurse PCU PRN Registered Nurse

Table 1: Sample Training Data

Given a query job ad, the kNN classifier is supposed to
find the similar training data examples (neighbors) and then
classify the query according to the normalized titles of those
retrieved neighbors. While most queries will have a non-
empty description, the training data doesn’t have one. Given
this heterogeneity between query and training data, one ma-
jor challenge is to find a common representation that would
have meaningful distances for the kNN classifier. The rest of
this section covers our approaches to tackle this problem.

Baseline

In the previous version of Carotene, we created document
clusters using cosine distance on BOW representation of
training documents. Our baseline is the fine-grained clas-
sifier component which used open-source search engine
Lucene to implement a kNN classifier.

D2V: W2V-based Document Embedding

General Framework W2V models give a dense vector
representation for every single word, while our job classi-
fication system operates on the level of documents, i.e., ti-
tle, and description. In this work, we adopt a weighted aver-
age framework to generate document vectors. Given a W2V
model and a document D = 〈w1, w2, ..., wn〉, the document
vector representation is calculated as:

V (D) =

∑
wi∈D αi · w2v(wi)

∑
αi

where w2v(wi) is the vector generated by the W2V model
for word wi and αi the weight assigned to wi in forming the
document vector. Several weighting strategies employed in
our work to determine the weights, αi, will be discussed in
next section. Given the vector representation of all 4 doc-
uments; raw title (Drt), normalized title (Dnt), query title
(Dqt) and query description (Dqd), we form the final vector
representation for training data and query jobs as follows:

V (Jtr) = β1 · V (Dnt) + (1− β1) · V (Drt) (1)
V (Jq) = β2 · V (Dqt) + (1− β2) · V (Dqd) (2)

where β1, β2 ∈ [0, 1] are the balance factors controlling how
much each document contributes to the final vectors.

Uniform weighting The most straightforward strategy is
to treat each word in a document equally, i.e.,

αi = 1, 1 ≤ i ≤ n (3)

This strategy can be applied to all 4 documents.
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Document type Weighting strategy
Drt, Dnt, Dqt Uniform, Frequency

Dqd Uniform, Tf-idf, Consistency

Table 2: Summary of word weighting strategies

Frequency based weighting Although words in short
documents (Drt, Dnt and Dqt) are supposed to be more
informative on average than words in the long job descrip-
tion document (Dqd), we still see words that are irrelevant to
job categorization such as location (e.g, ”New York City”,
”LA”) and Salary (e.g., ”40k-60k”). Word frequency is an
good option to reduce the contribution of such irrelevant
words, i.e.,

αi = log(freq(wi)) (4)

where freq(wi) is number of occurrences of word wi in our
data set of titles of 40 million job postings. Smoothing with
a log scale gave us better results.

Tf-idf weighting for description Tf-idf is a common
weighting strategy in text classification tasks. We use tf-idf
weights only for Dqd, since term frequency (tf) is always 1
in short documents. In a title document, we observed that
words rarely repeat, and we remove such duplicates in our
preprocessing. Formally,

αiD = tfidf(wi, D) (5)

tf-idf weight of word wi for document D, given the descrip-
tions in the 40 million job dataset.

Consistency weighting for description In a query job
Jq = 〈Dqt, Dqd〉, title (Dqt) and description (Dqd) are re-
ferring to the same job opportunity. So it’s reasonable to as-
sume the relevant words in Dqt should be semantically con-
sistent to words in Dqt. With this assumption, we weight the
words in Dqd by the similarity of their W2V vector to the
corresponding title vector V (Dqt):

αi = sim(w2v(wi), V (Dqt)) (6)

where sim(v1, v2) is a similarity measure between two vec-
tors. We adopted cosine similarity for our implementation.

Table 2 summarizes all the weighting strategies that will
be tested in our work. There are 2 options for Drt, Dnt, Dqt

and 3 for Dqd which leads to 24 combinations in total as
shown in Table 3 in the Experiments section.

Denoising Job descriptions usually contain words that are
not category specific, such as equal employment opportunity
(EEO) statements, benefits related content. Removing such
noise can increase classification accuracy. For this purpose,
we ranked the words in the description by the weights, as-
signed by above weighting strategies for job descriptions,
and discarded words with low weights, keeping N words
with highest weight for each job description.

Vectors for Training Data and Query Jobs

Title documents and sentences of description documents
are transformed to D2V vectors. Vector for job description

Figure 1: Accuracy of BOW, W2V and D2V based ap-
proaches

(Dqd) can be formed by aggregating vectors of its sentences
in either uniform or consistency weighting strategies, i.e.,

Vd2v(Dqd) =

∑
S∈Dqd

αS · d2v(S)
∑

αS

where value of αS is determined by weighting strategies
and the similarity to title vector if needed. With descrip-
tion vector calculated, the final vectors for training data and
query jobs can be formed in the same way as W2V-based
approaches, i.e.,

V (Jtr) = β1 · d2v(Dnt) + (1− β1) · d2v(Drt)

V (Jq) = β2 · d2v(Dqt) + (1− β2) · Vd2v(Dqd)

where d2v(D) is the vector generated by doc2vec for any
document D and β1, β2 balance factors

Experiments

Evaluation Data

We evaluate the performance of various document embed-
ding methods in kNN job classification task, i.e., the fine-
grained classifier in our system. Evaluation data includes
1667 human-labeled query jobs and training data contains
835804 titles that fall into 5425 predefined categories. Over-
all accuracy is used as the performance metric for all exper-
iments.

BOW vs. W2V vs. D2V

To get a performance overview over different document em-
bedding methods, we first compare the basic W2V and D2V
embedding approaches with the baseline. Specifically, 1)
Uniform weighting strategy for all documents in W2V based
approaches. 2) Basic D2V approach means raw vectors by
doc2vec model are used as representation for raw and nor-
malized title in training data and job title in query. In ad-
dition, Drt, Dnt contribute evenly in forming training data
vectors and so do Dqt, Dqd for query, i.e., β1 = β2 = 0.5.
Our baseline is the kNN classifier using BOW (unigram +
bigram) as described in section 2. Number of neighbors (k)
for all three models in this comparison is set to 20 which is
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Figure 2: Accuracy with different k values

the practical optimal based on experiments in our previous
work.

As shown in Figure 1, BOW (baseline), W2V and D2V
score at 38.9%, 42.5% and 32.8% respectively. W2V based
approaches significantly outperform the BOW. However
D2V performs much worse than the other two, which is
similar to the results obtained in (Dai, Olah, and Le 2015)
and (Partalas et al. 2015) that D2V models don’t necessarily
work well in all cases. So in the rest experiments, we don’t
include D2V model for comparison.

KNN parameter tunings

Size of Neighborhood As k = 20 was the optimal num-
ber of neighbors picked empirically in our previous system,
we also investigated how value of (k) impacts the perfor-
mance in W2V based methods. Figure 2 shows the perfor-
mance of all weighting strategies with varying k from 1 to
50. w1 = w2 = 0.5 stay the same as in previous experiment.
The observation shows that the optimal k for this particular
parameter setting is in range between 3 and 14 which leads
to 42+% average accuracy. Accuracy begins to drop notably
with k > 15. Given previous optimal k = 20 and W2V
based approaches perform better than baseline for k = 20,
a smaller optimal k could be interpreted as an evidence of
stronger capability of W2V based approaches in finding cor-
rect neighbors. In the rest of the experiments, we include all
accuracy numbers for k ∈ [3, 14] if not specified otherwise.

Weighted KNN Weighted kNN is a common option in
practice to increase the accuracy of kNN. The difference of
weighted kNN and original kNN is how to decide the final
label after finding the neighbors. Specifically, kNN origi-
nally uses simple majority vote, i.e., the most frequent la-
bel among neighbors is selected to classify a query data.
On the other hand, weighted kNN assigns neighbors’ votes
weights proportional by their similarity to the query data,
i.e., the more similar the neighbor is to query, the higher its
label is weighted in final decision. In our weighted kNN im-
plementation, we use cosine distances to weight the neigh-
bors’ votes. To see the impact of weighted kNN, tested

Figure 3: Impact of weighted kNN

8 weighting strategy combination for Drt, Dnt, Dqt, i.e.,
{Uniform, Frequency}×{Uniform, Frequency}×{Uniform,
Frequency} with ”Uniform” setting for Dqd. In Figure 3,
each pair of bars indicates one weighting strategy setting ex-
cept with or without weighted voting. Obviously in all set-
tings, weighted kNN helps slightly in increasing the accu-
racy of the model. We will keep using weighted kNN in the
rest experiments.

Influence of Balance Factors

In equation (1) and (2), two balance factors (β1 and β2) are
involved in forming training data and query job vectors. In
order to understand the importance of different documents,
we explore the best combination of β1 and β2 in various pa-
rameter settings. Figure 4 shows the results with one par-
ticular setting where uniform weighting is applied for all
documents and k = 10. The orange colored squares indi-
cates performance improvement over the baseline (38.9%),
the darker the better, and blue indicates worse. In this partic-
ular parameter setting, the optimal combination is β1 = 0.8
and β2 = 0.7 which achieves the highest accuracy as 43.7%.
We plotted the same heat map with other parameter set-
ting and found the optimal combination is in the area of
β1, β2 ∈ [0.6, 0.8]. In other words, normalized title Dnt

is more important than raw title (Drt) in training data, and
query job title Dqt is more important than query job descrip-
tion (Dqd), as we expected.

Effect of Weighting Strategies

As summarized in Table 2, 24 different weighting strategy
configurations are applicable in total. Table 3 on next page,
summarizes the performance of these strategies with β1,
β2 and k varying in optimal ranges as suggested in previ-
ous experiments. The first 4 columns specify the weighting
strategies for each document and last 2 columns present the
mean±std and maximum of accuracy achieved. Table 3 is
sorted by mean accuracy. In addition, highest mean and max
accuracy are underlined and top 1 is marked with bold font.
Apparently weighting strategies for longer job description
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Figure 4: Accuracy of different β1, β2

Figure 5: Accuracy of Top N

Dqd are beneficial as both tf-idf and consistency configu-
rations consistently outperform uniform ones. On the other
hand, frequency based weighting doesn’t help much for Dqt

and Drt as the uniform configurations take the top positions.
This is reasonable as words in short text like titles (Dqt, Drt)
are supposed to be very informative and leave very limited
noise that could be reduced by any weighting strategy.

Selective Words for Document Embedding

As the weighting strategies for description in evaluation data
(ED) provide the weight scores of each word when calculat-
ing the weighted vector average. Based on the same assump-
tion that words with higher weight are semantically more
relevant to the corresponding job post, an interesting usage
of this score is to rank the words in description and dis-
card the least relevant words. We implemented a TopN strat-
egy that picks N words with highest tf-idf and Consistency
Scores for final job vectorization. With other parameters set
in suggested optimal range (k ∈ [3, 14], β1, β2 ∈ [0.6, 0.8]),
Figure 5 shows the accuracy summaries of TopN with N =
[5, 10, 20, 50] compared to non-selective approaches with tf-
idf and Consistency weighting strategies.

Figure 6: Accuracy comparison of raw and normalized W2V
model

Normalization of W2V vectors

The word vectors generated by W2V are of different norms.
In the last experiment, we are interested in finding out if
and how much the normalization of all word vector will af-
fect the results. We repeat the previous experiment again ex-
cept with all word vectors normalized immediately after the
W2V is trained. As Figure 6 shows, normalized word vectors
generate better quality document embedding which leads to
higher overall accuracy.

Conclusion

In this work, document embedding with different word
weighting strategies are proposed as a replacement of cur-
rent bag-of-words (BOW) representation in the kNN com-
ponent of our current job classification system. According
to the experiment results, both tf-idf and consistency word
weighting strategies for long text (job description) improve
the performance significantly while short text (job title, cat-
egory label) are not sensitive to word weighting. In addition,
job document embedding using only top N selective words
by weighting score is the best among all configurations we
tested. Experiments also verify the effectiveness of weighted
kNN, normalized word vectors. Overall, this work provides
a good practical experience and guide for applications in-
volving word/document embedding. Interesting future work
include 1) applying other alternative distance metrics like
the word mover distance for similarity measure in kNN, and
2) job enrichment with skill terms using our internal skills
extraction service.
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