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Abstract

Dynamic Bayesian Networks (DBNs) bring efficient tools to
model complex multivariate dynamical systems learned from
collected data and/or expert knowledge. Notwithstanding, the
underlying generative Markov model is supposed homoge-
neous ; neither its topology nor its parameters evolve over
time. Thus, learning a DBN to model a non-stationary pro-
cess with this belief will lead to poor prediction capabilities.
In order to account for non stationary processes, we build on a
framework to identify transitions between underlying models
and a framework to learn them in real time, without making
hypothesis about their evolution. We present the tool perfor-
mances on simulated datasets. Since we aim to use this to
model and predict incongruities within an Intrusion Detec-
tion System (IDS) in near real-time, great care is ascribed to
the capability to correctly detect transition times. Our prior
results display the precision of our algorithm in the choice of
transitions and therefore the quality of identified networks. At
last we suggest future work.

Introduction

In numerous fields, especially information systems, physic
and biology modeling, observed processes evolve over time
on several scales, drawing complex trajectories. Correlations
at any given time do not have to hold forever, and which en-
tity influences another may change. Hence we cannot sup-
pose stationarity if we wish to model such a process with-
out being aware of the mechanism accountable for those
changes, otherwise we get a behavior averaged over differ-
ent ones.

Our aim is to model the behaviors of information sys-
tems in real time and in this setting programs interact with
each other, modify their states and change their behavior
accordingly. As such it seems realistic to assume the non-
stationarity of the modeled system.

There are complex dynamical processes for which no
complete deterministic model exists. In such cases, Dy-
namic Bayesian networks (Dean and Kanazawa 1989; Mur-
phy 2002), which extend Bayesian networks (Pearl 2014),
are a convenient formalism to describe those. The proba-
bilistic and graphical essences of DBNs make them efficient
tools to integrate both data and expert knowledge within a
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single representation. Yet it has limitations as the use of
dynamic in DBN refers to the system evolving over time,
not the dynamics of the network structure or its parame-
ters. Indeed, once ascertained on a subset of observations,
conditional dependencies and parameters are never revis-
ited. It is unreasonable, in many applications, like our own,
and even more so when data are not produced in a con-
trolled manner, to assume homogeneity of the underlying
model(s) describing which state the system is in. This issue
has received attention in the last years giving rise to non-
stationary dynamic Bayesian Networks (ns-DBN) (Robin-
son and Hartemink 2009; 2010; Grzegorczyk and Husmeier
2009; 2011; Gonzales, Dubuisson, and Manfredotti 2015)
and time-varying dynamic Bayesian Networks (TV-DBN)
(Song, Kolar, and Xing 2009), with some preliminary ap-
plications for system biology (Grzegorczyk et al. 2008).

Thereby we set our focus on non-stationary dynamic
Bayesian networks.

The goal of this paper is to present a new algorithm to
account for non-stationary processes in real time using non-
stationary dynamic Bayesian networks. We begin by recall-
ing preliminary notions of (d)BNs and ns-DBNs. Then we
suggest a non-stationary learning algorithm and present our
framework before evaluating its performances on a number
of simulated cases to reveal strengths and weaknesses. At
last, we conclude and expand on our future work.

Dynamic Bayesian Networks

DBNs extend Bayesian networks (Pearl 2014) with nodes
{Xi(t), i = 1 . . . n}, representing random variables, in-
dexed by time t. They provide a factored representation of
the joint probability distribution P (X(1), . . . ,X(τ)) on a
finite time interval [1, τ ], encoding the beliefs about the tra-
jectories of the dynamic process X(t):

P (X(1) . . . ,X(τ)) =

n∏
i=1

τ∏
t=1

P (Xi (t) | Ui (t)) (1)

where Ui(.) represents the set of parent nodes of Xi(.) and
P (Xi (t) | Ui (t)) the conditional probability function as-
sociated with random variable Xi(t) given Ui(t). X(t) =
{X1(t), . . . , Xn(t)}, is called a “slice” and represents the
set of all variables indexed by the same time t.
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Figure 1: A 2-Time-Slice BN (2TBN) and its (unrolled) dy-
namic Bayesian network.

DBNs assume the first-order Markov property which
means that the parents of a variable in time slice t must occur
in either slice t− 1 or t :

Ui(t) ⊆ X(t− 1) ∪X(t)\Xi(t) (2)

Most importantly, the conditional probabilities are time-
invariant (first-order homogeneous Markov property):

P (Xi (t) | Ui (t)) = P (Xi(2)|Ui(2))) ,∀t ∈ [2, τ ] (3)

irst two time slices. We obtain a 2TBN such as in Figure 1.
In this paper, we consider Xi(t) are all discrete variables

and let P t
ijk be the probability that Xi(t) = k, given that its

parents are in instantiation j, i.e.

i = 1, . . . , n
P t
ijk = P (Xi(t) = k | Ui(t) = j), j = 1, . . . , ci

k = 1, . . . , ri

(4)

where ri is the number of values that node Xi(t) can take
and ci is the number of distinct configurations of Ui(t).

DBNs have been applied in a variety of domains such
as fault detection (Lerner et al. 2000), speech recognition
(Mitra et al. 2011), medical diagnosis (Charitos et al. 2009)
or system biology (Sicard et al. 2011) but their applica-
tions on Intrusion Detection Systems are scarce (An, Jutla,
and Cercone 2006). In this field Bayesian Networks are
mainly used for classification purposes, as static models and
deciding mechanism aggregating smaller models outputs,
thus offering a summary of input data (Kruegel et al. 2003;
Mutz et al. 2006). However, (Hidden) Markov Models have
been extensively proposed to model system call traces and
shell commands (Yeung and Ding 2003; Zanero and Serazzi
2008) as well as network data flow (Ourston et al. 2003).

Non-stationary dynamic Bayesian Networks

Ns-DBNs are represented as a collection of dynamic
bayesians networks B : (Θ,G) organized by epochs of vary-
ing size (or transition times) T : {(Bm : (Θ,G)m, Tm)}.
They leverage piece-wise stationarity over epochs to solve
the issue with Equation 3. It is noteworthy that there is no
framework to model the behavior of the transition times for
ns-DBNs yet, which could also be non-stationary.

Learning of ns-DBNs amounts to the identification of
epochs and their associated DBNs. Although different
epochs may alter parameters, structures and even set of vari-
ables (see Figure 2), current learning algorithms focus on
either structure or parameter evolution to cope with the size
of the search space ; as such (Grzegorczyk and Husmeier
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Figure 2: Non-Stationary dynamic Bayesian network (ns-
DBN) with 3 different epochs. DBNs in different epochs
may have different parameters, structures and/or variables.

2009) focuses on parameters evolution with fixed structure
whereas in (Robinson and Hartemink 2010) the focus is
set on structural evolution, with edges gained and lost over
time (non-stationarities from parameters only occur when
the parameters of a conditional distribution imply a change
of structure). For those later papers, the number of variables
and their domains remain constant over time (even if some
are not observed during whole epochs). They also are offline
algorithms, requiring the availability of the whole database,
and cannot be used in our online framework - except for
our first learnings (when discovering new networks). Offline
learning of ns-DBNs is achieved with the use of a modified
DBNs scoring function accounting for the sufficient statis-
tics, now specified by epoch, to find the best transitions.
There is also an updated structural move set for learning the
structure which also need to be specified by epoch. Still, we
need simpler algorithms to achieve real time performance
as we are streaming data. (Gonzales, Dubuisson, and Man-
fredotti 2015) is close to our approach allowing structure,
parameters as well as variables and their domains to evolve
over time, in real time. A test statistic is used to determine
if the observed data is consistent with the model distribu-
tion, although new modalities always lead to new transi-
tions. However, we use different criteria and a mechanism
for windows overlapping events from different models to re-
fine transition times.

Learning ns-DBNs

We present in this section a new framework to learn ns-
DBNs in real time. We do not restrict ourselves to smooth
evolutions from model to model as the assumption that
two adjacent models are governed by similar distributions
and/or similar structures is often made (Grzegorczyk and
Husmeier 2009; Robinson and Hartemink 2010; Grzegor-
czyk and Husmeier 2011).

Data are streamed in real time, in a continuous man-
ner using a sliding window w. At any current time τ ,
the algorithm confronts a collection of M DBN models
{Bm : (Θ,G)m}M with the windowed data w[τ, τ + r]. It
has to choose between using one of the known models or
creating a new one. This choice is founded on the likelihood
of the windowed data ; certainly the likelihood of a model
will decrease if the underlying behavior changes (see Figure
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3). The algorithm begins with a burn-in to get a network that
serves as a starting point (we could and should use one of
the offline algorithms mentioned previously to confirm there
is only one model).

To confront a model m with w the algorithm uses the log-
likelihood of the data in w against the network with structure
G and parameters Θ :

LL(w : Θ,G) ∝
τ+r∑
t=τ

∑
i,j,k

Nijk log(θijk) (5)

with θijk = P (Xi(t) = k | Ui(t) = j) and Nijk the num-
ber of cases where Xi(t) = k and Ui(t) = j in w.

This is computed for each known DBN. However we can-
not select the best fitting model only by maximizing LL
since having the best score does not ensure the correspond-
ing network accurately represents the data ; the algorithm
may also discover new models on the fly. As such, one can
note that the distribution of the log-likelihood for a window
w is approximately normally distributed (as the sum of r+1
i.i.d random variables, using the central limit theorem) as-
suming only one behavior is observed. Thus we design a
statistical hypothesis test in order to find the log-likelihood
p-value LLtr such that 99% of matches occur with greater
or equal log-likelihood (see Figure 3). For each model m,
we compute LLtr(Θm,Gm)

LL(w:Θ,G) . Our selection rule becomes :

m∗ = argmax
m∈M0.97

LL(w : Θm,Gm)

with M0.97 =

{
m :

LLtr(Θm,Gm)

LL(w : Θm,Gm)
≥ 0.97

}
(6)

We use 0.97 as threshold on the likelihood ratio instead of 1
since the first learning are note accurate - only a few events
to learn a lot of parameters - and we allow some divergence
to occur. This threshold could be made dynamic to take into
account parameters and structure convergence. The higher
the threshold the more specific the discovered networks will
be (as a side-effect we will have more networks, for a given
database, than with a lower threshold).

When the algorithm predicts, given a current window, a
model mt different from the model mt−1 (i.e. mt would be
a newly created DBN or an already existing DBN), this pre-
diction is not only about the change of behaviors but also
about the time τ of this change ; the change point. In ex-
periments, Figure 6 shows how a badly - fixed - sized win-
dow can mislead the learning with inaccurate change points.
We propose to investigate more exactly the value of this
point by looking at the distribution of the likelihood within
w[τ − r, τ + r]. Figure 3 shows the cumulative value of
P (X) and log P (X) for a window with a change point at
c = 100 000. In order to estimate a correct value for c, we
could rely on the change of slope in the cumulative of P (X).
To be more accurate, we choose to maximize, over c, the
likelihood of a model where c separates two different Gaus-
sian processes. With the optimized change point c∗ we then
update mt−1 on w[τ − r, τ − r+ c∗] and update - or learn -
mt on w[τ − r + c∗, τ + r].

If the set of models in Equation 6 is empty, the algorithm
will learn a new DBN from the window and select it. We

Figure 3: Cumulative P (X) and log P (X) for a window
overlapping two different underlying models. The vertical
red line is a transition between models, and horizontal red
lines are Gaussian with 99% confidence interval.

use a non-informative Dirichlet prior, making the assump-
tion that parameters and structure evolve without correla-
tions from one model to another. We then use Gibbs sam-
pling (Casella and George 1992) to produce a first estimate
of LLtr.

If an existing model m is selected, its parameters and
eventually its structure are updated with the new data. In-
deed, as models get more observations, their structures will
need to be reevaluated : at each order of magnitude, we re-
estimate the network structures.

During the evolution of the non-stationary process, the set
of observed variables and/or their modalities may change, as
seen in Figure 2. This change does not have to always rep-
resent a change point, even more so as outliers are always
present in real world data. If variable Xe is in Gm but not in
the database, we use inference to estimate P (Xi | Ui \Xe)
and then compute the likelihoods. On the other hand, if Xe

is in the database but not in Gm, those informations are not
exploitable for this model and are simply discarded. Such a
model will not be selected for the current window. If vari-
ables domains ΩXi

differs, we add the missing states using
the (non-informative) Dirichlet priors αijk parameters and
then compute the likelihoods.

While the next section will investigate our experiments,
it is noteworthy that the complexity of our algorithm does
not depend of the size of the database but only of the size of
the window and the number of known models which is an
important quality for online learning.

Experiments and Results

Our experiment consists in modeling simulated non-
stationary processes. The idea is to generate several net-
works, more or less close to each others, before sampling
a database for each one and merging their content, using dif-
ferent epochs sizes to see the impact of sample size against
network distance. To do so, we used the aGrUM library
(http://agrum.lip6.fr), to generate a first DBN of 10 nodes
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epoch
window

FN FP TP avg. error std. deviation min max precision recall
size

2500 1000 1.0 0.0 0.0 NA NA NA NA 0.2 1.0

2500 1000 0.0 0.0 1.0 251.046 249.998 0.0 500.0 0.829 0.875

2500 2000 0.602 0.0 1.0 521.052 361.644 0.0 1000.0 0.5 0.952

5000 1500 0.101 0.035 0.965 351.216 258.546 0.0 1000.0 0.833 0.935

5000 3000 0.0 0.06 0.94 752.1 579.236 0.0 2000.0 0.856 0.854

10000 1500 0.0 0.131 0.869 381.356 295.694 0.0 1000.0 0.961 0.96

10000 3000 0.1017 0.0083 0.992 772.81 601.843 0.0 2000.0 0.833 0.929

15000 2000 0.0 0.204 0.795 512.82 499.835 0.0 1000.0 0.963 0.958

Table 1: Results for static windows, false negatives FN , false positives FP and true positives TP for transitions. For cuts,
minimal, average and maximal error in events, with variance. For discovered networks, precision and recall over events.

by time-step of average domain size 7 (�3, 10�) and average
node degree 3. The structure and parameters of the model
are perturbed using the Hellinger distance (Beran 1977) be-
tween all models as stopping criterion. We used multiple
thresholds to see how far apart two networks have to be so
they are recognized as two independent models . The use of
different resolutions of the sliding window allows us to see
how the system performs when overlapping datasets from
two distinct models (i.e. the epoch is not a multiple of the
window size). We ran each experiment with and without
looking at a change point. It is important to note that our
algorithm have no prior information about the number of
networks, their variables and variables domains or the num-
ber / frequency of transitions.

The (fictive) figure 4 explains how to read experiments’
figures and tables, where FN stands for transitions false neg-
atives (percentage of missed transitions over all true tran-
sitions), FP stands for transitions false positives (percent-
age of false transitions over all discovered transitions) and
TP stands for transitions true positives (percentage of true
transitions over all discovered transitions). Also, tp is the
number of (true) events learned by correct networks, fp the
number of (false) events learned by incorrect networks and
fn the number of (true) missed events by networks that are
learned by others. Adaptive windows (change points) can be
seen with curves being extended either on the left (for the
current matching model moving the window) or the right
(non matching models that do not move the window).

We show in tables cuts average, minimal and maximal er-
rors with standard deviation. Finally, precision tp/(tp+fp)
and recall tp/(tp + fn) for events are also shown, that
is average precision and recall over discovered networks.
Recall is the percentage of correct events found for all cor-
rect events that should have been found. Precision is in-
versely proportional to noise (events generated from another
model used to update the current model). Results were av-
eraged for all thresholds of Hellinger distance due to pages
restriction. We show a best case (Figure 5) and worst case
(Figure 6, 7) scenario with and without looking for change
points. The results for static and adaptive windows are pre-
sented in Tables 1 and 2, respectively.

Figure 4: How to read figures.

Figure 5: Results for epochs of 5K observations,
Hellinger < 0.8, fixed window size

Static windows

When the epoch is a multiple of the window size the slid-
ing window always contains observations from one model
at a time. In such cases, correct transition times and models
are always identified, with and without looking for a change
point, as in Figure 5. However, errors arise when using ar-
bitrary window sizes without looking for a change point as
shown in Table 1 and Figures 6 and 7.

In Table 1, two issues explain the poor precision and
recall for some experiments. The first issue arises when
transitions were missed and some models start averaging
several other true models, increasing noise and making fur-
ther transitions harder and harder to detect, hence increas-
ing FN of transitions and decreasing precision and recall
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epoch window size FN FP TP average error std. deviation min max precision recall

2500 1000 0.0 0.0 1.0 4.399 18.045 0.0 254.0 0.998 0.998

2500 2000 0.0 0.0 1.0 2.435 4.683 0.0 38.5 0.999 0.999

5000 1500 0.0 0.0 1.0 3.0966 7.784 0.0 62.5 0.999 0.999

5000 3000 0.0 0.0 1.0 8.702 43.383 0.0 390.5 0.998 0.998

10000 1500 0.0 0.0 1.0 32.923 80.526 0.0 311.5 0.997 0.996

10000 3000 0.0 0.0 1.0 19.559 103.199 0.0 778.0 0.998 0.998

15000 2000 0.0 0.0 1.0 8.551 32.423 0.0 202.5 0.999 0.999

Table 2: Results for adaptive windows, with columns as in table 1.

Figure 6: Results for epochs of 2K5 observations,
Hellinger < 0.8, fixed window size

over events. We discovered fewer networks than we should
have. Such a case is highlighted by Figure 6 and by the
first two rows of Table 1, with the first row and figure 6
showing results for close true networks and the second row
results for distinct true networks. The second issue arises
when networks are made in excess as the window overlaps
events from two true networks, thus modeling the transition
itself (the next window matches or creates another model,
the true one), such as in Figure 7 (the brown network). We
discovered more networks than we should have. Most of the
time we have two transitions instead of one, increasing FP
for transitions. Precision and recall are less affected by
those FP since only a few transitions give rise to very spe-
cific models, slightly reducing the recall of other discov-
ered (true) networks, but increasing their precision (reduc-
ing noise) at the same time.

Adaptive windows

Table 2 shows the results when looking for a change point
and reveals that the size of the window has little effect on
the correct identification of transitions and models, which
should hold as long as the window size is lower than the
epoch. Surprisingly, results are stable for small epochs given
the domain size of the network. Both previous issues are
solved by looking for a change point, as in Figures 8 and
9 : in the first case, we do not learn from overlapping win-
dows which reduces noise, making future transitions easier
to discover. In the second case, looking for a change point
itself avoids the creation of a network to represent the tran-
sition alone.

Figure 7: Results for epochs of 10K observations,
Hellinger < 0.8, fixed window size

Figure 8: Results for epochs of 2K5 observations,
Hellinger < 0.8, dynamic window size

Figure 9: Results for epochs of 10K observations,
Hellinger < 0.8, dynamic window size
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The ability of the algorithm to add modalities to known
variables avoids the creation of unnecessary networks in
both settings, thus reducing FP for transitions, and is of cru-
cial importance for outliers that happen every now and then
and do not have to create change points and new models.

Conclusions and Future Work

We built a framework to learn and select Dynamic Bayesian
Networks in a continuous manner as a representation of
non-stationary processes. The framework is designed to be
fast and accurate. Nonetheless, several enhancements comes
to mind. We mentioned a dynamical threshold on the log-
likelihood ratio to take into account convergence, as well as
the need for merging and deleting models, since we expect
results to be poorer the closer the original networks are from
each other. While a naive deleting scheme could consists of
using a parameter decreasing as the model is unobserved, the
merging of models require to compare their joint probabil-
ity distributions which involves heavy computations. A more
robust change point detection algorithm could also be de-
vised. The most important enhancement and our next work
would be to model transitions from behavior to behavior, and
predict to some extent the next one as well as key behaviors
and critical events. Finally, we will apply this work to detect
anomalies in a host and network intrusion detection system.
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