
Analyzing the Computational Complexity of Abstract
Dialectical Frameworks via Approximation Fixpoint Theory

Hannes Strass
Computer Science Institute

Leipzig University, Germany

Johannes Peter Wallner
Institute of Information Systems

Vienna University of Technology, Austria

Abstract

Abstract dialectical frameworks (ADFs) have recently been
proposed as a versatile generalization of Dung’s abstract ar-
gumentation frameworks (AFs). In this paper, we present a
comprehensive analysis of the computational complexity of
ADFs. Our results show that while ADFs are one level up in
the polynomial hierarchy compared to AFs, there is a useful
subclass of ADFs which is as complex as AFs while arguably
offering more modeling capacities. As a technical vehicle, we
employ the approximation fixpoint theory of Denecker, Marek
and Truszczyński, thus showing that it is also a useful tool for
complexity analysis of operator-based semantics.

Introduction
Formal models of argumentation are increasingly being recog-
nized as viable tools in knowledge representation and reason-
ing (Bench-Capon and Dunne 2007). A particularly popular
formalism are Dung’s abstract argumentation frameworks
(AFs) (1995). AFs treat arguments as abstract entities and
natively represent only attacks between them using a binary
relation. Typically, abstract argumentation frameworks are
used as a target language for translations from more concrete
languages. For example, the Carneades formalism for struc-
tured argumentation (Gordon, Prakken, and Walton 2007) has
been translated to AFs (Van Gijzel and Prakken 2011); Cami-
nada and Amgoud (2007) and Wyner et al. (2013) translate
rule-based defeasible theories into AFs. Despite their popu-
larity, abstract argumentation frameworks have limitations.
Most significantly, their limited modeling capacities are a
notable obstacle for applications: arguments can only attack
one another. Furthermore, Caminada and Amgoud (2007)
observed how AFs that arise as translations of defeasible
theories sometimes lead to unintuitive conclusions.

To address the limitations of abstract argumentation frame-
works, researchers have proposed quite a number of gen-
eralizations of AFs (Brewka, Polberg, and Woltran 2013).
Among the most general of those are Brewka and Woltran’s
abstract dialectical frameworks (ADFs) (2010). ADFs are
even more abstract than AFs: while in AFs arguments are
abstract and the relation between arguments is fixed to attack,
in ADFs also the relations are abstract (and called links). The

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

relationship between different arguments (called statements
in ADFs) is specified by acceptance conditions. These are
Boolean functions indicating the conditions under which a
statement s can be accepted when given the acceptance status
of all statements with a direct link to s (its parents). ADFs
have been successfully employed to address the shortcomings
of AFs: Brewka and Gordon (2010) translated Carneades
to ADFs and for the first time allowed cyclic dependen-
cies amongst arguments; for rule-based defeasible theories
we (Strass 2013b) showed how to deal with the problems
observed by Caminada and Amgoud (2007).

There is a great number of semantics for AFs already, and
many of them have been generalized to ADFs. Thus it might
not be clear to potential ADF users which semantics are ad-
equate for a particular application domain. In this regard,
knowing the computational complexity of semantics can be
a valuable guide. However, existing complexity results for
ADFs are scattered over different papers, miss several se-
mantics and some of them present upper bounds only. In
this paper, we provide a comprehensive complexity analysis
for ADFs. In line with the literature, we represent accep-
tance conditions by propositional formulas as they provide a
compact and elegant way to represent Boolean functions.

Technically, we base our complexity analysis on the ap-
proximation fixpoint theory (AFT) by Denecker, Marek and
Truszczyński (2000; 2003; 2004). This powerful framework
provides an algebraic account of how monotone and non-
monotone two-valued operators can be approximated by
monotone three- or four-valued operators. (As an example
of an operator to be approximated, think of the two-valued
van Emden-Kowalski consequence operator from logic pro-
gramming.) AFT embodies the intuitions of decades of KR
research; we believe that this is very valuable also for rel-
atively recent languages (such as ADFs), because we get
the enormously influential formalizations of intuitions of
Reiter and others for free. (As a liberal variation on Newton,
we could say that approximation fixpoint theory allows us
to take the elevator up to the shoulders of giants instead
of walking up the stairs.) In fact, approximation fixpoint
theory can be and partially has already been used to de-
fine some of the semantics of ADFs (Brewka et al. 2013;
Strass 2013a). There, we generalized various AF and logic
programming semantics to ADFs using AFT, which has pro-
vided us with two families of semantics, that we call – for rea-

101

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

sons that will become clear later – approximate and ultimate,
respectively. Intuitively speaking, both families approximate
the original two-valued model semantics of ADFs, where the
ultimate family is more precise in a formally defined sense.
The present paper employs approximating operators for com-
plexity analysis and thus shows that AFT is also well-suited
for studying the computational complexity of formalisms.

Along with providing a comparison of the approximate
and ultimate families of semantics, our main results can be
summarized as follows. We show that: (1) the computational
complexity of ADF decision problems is one level up in the
polynomial hierarchy from their AF counterparts (Dunne and
Wooldridge 2009); (2) the ultimate semantics are as complex
as the approximate semantics, with the notable exception of
two-valued stable models; (3) there is a certain subclass of
ADFs, called bipolar ADFs (BADFs), which is of the same
complexity as AFs. Intuitively, in bipolar ADFs all links
between statements are supporting or attacking. To formalize
these notions, Brewka and Woltran (2010) gave a precise
semantical definition of support and attack. In our work, we
assume that the link types are specified by the user along
with the ADF. We consider this a harmless assumption since
the existing applications of ADFs produce bipolar ADFs
where the link types are known (Brewka and Gordon 2010;
Strass 2013b). This attractiveness of bipolar ADFs from a
KR point of view is the most significant result of the paper:
it shows that BADFs offer – in addition to AF-like and more
general notions of attack – also syntactical notions of support
without any increase in computational cost.

Previously, Brewka, Dunne and Woltran (2011) translated
BADFs into AFs for two-valued semantics and suggested
indirectly that the complexities align. Here we go a direct
route, which has more practical relevance since it immedi-
ately affects algorithm design. Our work was also inspired
by the complexity analysis of assumption-based argumenta-
tion by Dimopoulos, Nebel and Toni (2002) – they derived
generic results in a way similar to ours.

The paper proceeds as follows. We first provide the back-
ground on approximation fixpoint theory, abstract dialectical
frameworks and the necessary elements of complexity theory.
In the section afterwards, we define the relevant decision
problems, survey existing complexity results, use examples
to illustrate how operators revise ADF interpretations and
show generic upper complexity bounds. In the main sec-
tion on complexity results for general ADFs, we back up the
upper bounds with matching lower bounds; the section after-
wards does the same for bipolar ADFs. We end with a brief
discussion of related and future work. An earlier version of
this paper with more details and all proofs is available as a
technical report (Strass and Wallner 2013).

Background
A complete lattice is a partially ordered set (A,v) where
every subset of A has a least upper and a greatest lower
bound. In particular, a complete lattice has a least and a
greatest element. An operator O : A→ A is monotone if for
all x v y we find O(x) v O(y). An x ∈ A is a fixpoint of
O if O(x) = x; an x ∈ A is a prefixpoint of O if O(x) v x
and a postfixpoint of O if x v O(x). Due to a fundamental

result by Tarski and Knaster, for any monotone operator O
on a complete lattice, the set of its fixpoints forms a complete
lattice itself (Davey and Priestley 2002, Theorem 2.35). In
particular, its least fixpoint lfp(O) exists.

In this paper, we will be concerned with more general al-
gebraic structures: complete partially ordered sets (CPOs).
A CPO is a partially ordered set with a least element where
each directed subset has a least upper bound. A set is di-
rected iff it is nonempty and each pair of elements has an
upper bound in the set. Clearly every complete lattice is a
complete partially ordered set, but not necessarily vice versa.
Fortunately, complete partially ordered sets still guarantee
the existence of (least) fixpoints for monotone operators.

Theorem 1 ((Davey and Priestley 2002, Theorem 8.22)).
In a complete partially ordered set (A,v), any v-monotone
operator O : A→ A has a least fixpoint.

Approximation Fixpoint Theory
Denecker, Marek and Truszczyński (2000) introduce the im-
portant concept of an approximation of an operator. In the
study of semantics of knowledge representation formalisms,
elements of lattices represent objects of interest. Operators
on lattices transform such objects into others according to the
contents of some knowledge base. Consequently, fixpoints of
such operators are then objects that are fully updated – infor-
mally, the knowledge base can neither increase nor decrease
the amount of information in a fixpoint.

To study fixpoints of operators O, DMT study their ap-
proximation operators O. When O operates on a set A, its
approximation O operates on pairs (x, y) ∈ A×A. Such a
pair (x, y) can be seen as representing a set of lattice elements
by providing a lower bound x and an upper bound y. Conse-
quently, (x, y) approximates all z ∈ A such that x v z v y.
We will restrict our attention to consistent pairs – those where
x v y, that is, the set of approximated elements is nonempty;
we denote the set of all consistent pairs over A by Ac. A pair
(x, y) with x = y is called exact – it “approximates” a single
element of the original lattice.

It is natural to order approximating pairs according to their
information content. Formally, for x1, x2, y1, y2 ∈ A define
the information ordering (x1, y1) ≤i (x2, y2) iff x1 v x2

and y2 v y1. This ordering and the restriction to consis-
tent pairs leads to a complete partially ordered set (Ac,≤i),
the consistent CPO. For example, the trivial pair (⊥,>)
consisting of v-least ⊥ and v-greatest lattice element >
approximates all lattice elements and thus contains no infor-
mation – it is the least element of the CPO (Ac,≤i); exact
pairs (x, x) are the maximal elements of (Ac,≤i).

To define an approximation operatorO : Ac → Ac, one es-
sentially has to define two functions: a functionO′ : Ac → A
that yields a revised lower bound (first component) for a
given pair; and a function O′′ : Ac → A that yields a re-
vised upper bound (second component) for a given pair.
Accordingly, the overall approximation is then given by
O(x, y) = (O′(x, y),O′′(x, y)) for (x, y) ∈ Ac. The oper-
ator O : Ac → Ac is approximating iff it is ≤i-monotone
and it satisfies O′(x, x) = O′′(x, x) for all x ∈ A, that is,
O assigns exact pairs to exact pairs. Such an O then ap-

102

Kripke-Kleene semantics lfp(O) grounded pair
admissible/reliable pair (x, y) (x, y) ≤i O(x, y) admissible pair
three-valued supported model (x, y) (x, y) = O(x, y) complete pair
M-supported model (x, y) (x, y) ≤i O(x, y) and (x, y) is ≤i-maximal preferred pair
two-valued supported model (x, x) (x, x) = O(x, x) model
two-valued stable model (x, x) x = lfp(O′(·, x)) stable model

Table 1: Operator-based semantical notions (and their argumentation names on the right) for a complete lattice (A,v) and an
approximating operator O : Ac → Ac on the consistent CPO. While an approximating operator always possesses three-valued
(post-)fixpoints, two-valued fixpoints need not exist. Clearly, any two-valued stable model is a two-valued supported model is a
preferred pair is a complete pair is an admissible pair; furthermore the grounded semantics is a complete pair.

proximates an operator O : A→ A on the original lattice iff
O′(x, x) = O(x) for all x ∈ A.

The main contribution of Denecker, Marek and
Truszczyński (2000) was the association of the stable op-
erator to an approximating operator. Their original defini-
tion was four-valued; in this paper we are only interested
in two-valued stable models and simplified the definitions.
For an approximating operator O on a consistent CPO, a
(two-valued) pair (x, x) ∈ Ac is a (two-valued) stable model
ofO iff x is the least fixpoint of the operatorO′(·, x) defined
by w 7→ O′(w, x) for w v x. This general, lattice-theoretic
approach yields a uniform treatment of the standard seman-
tics of the major nonmonotonic knowledge representation
formalisms – logic programming, default logic and autoepis-
temic logic (Denecker, Marek, and Truszczyński 2003).

In subsequent work, Denecker, Marek and
Truszczyński (2004) presented a general, abstract
way to define the most precise – called the ultimate –
approximation of a given operator O. Most precise here
refers to a generalisation of ≤i to operators, where for
O1,O2, they define O1 ≤i O2 iff for all (x, y) ∈ Ac
it holds that O1(x, y) ≤i O2(x, y). Denecker, Marek
and Truszczyński (2004) show that the most precise
approximation of O is UO : Ac → Ac that maps (x, y) to(l

{O(z) | x v z v y} ,
⊔
{O(z) | x v z v y}

)
where u denotes the greatest lower bound and t the least
upper bound in the complete lattice (A,v).

In recent work, we defined new operator-based semantics
inspired by semantics from logic programming and abstract
argumentation (Strass 2013a).1 An overview is in Table 1.

Abstract Dialectical Frameworks
An abstract dialectical framework (ADF) is a directed graph
whose nodes represent statements or positions which can
be accepted or not. The links represent dependencies: the
status of a node s only depends on the status of its parents
(denoted par(s)), that is, the nodes with a direct link to s. In
addition, each node s has an associated acceptance condition
Cs specifying the exact conditions under which s is accepted.
Cs is a function assigning to each subset of par(s) one of
the truth values t, f . Intuitively, if for some R ⊆ par(s) we

1To be precise, we used a slightly different technical setting
there. The results can however be transferred to the present set-
ting (Denecker, Marek, and Truszczyński 2004, Theorem 4.2).

have Cs(R) = t, then s will be accepted provided the nodes
in R are accepted and those in par(s) \R are not accepted.

Definition 1. An abstract dialectical framework is a tuple
Ξ = (S,L,C) where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a collection of total functions
Cs : 2par(s) → {t, f}, one for each statement s. The
function Cs is called acceptance condition of s.

It is often convenient to represent acceptance conditions
by propositional formulas. In particular, we will do so
for the complexity results of this paper. There, each Cs
is represented by a propositional formula ϕs over par(s).
Then, clearly,Cs(R ∩ par(s)) = t iffR |= ϕs. Furthermore,
throughout the paper we will denote ADFs by Ξ and tacitly
assume that Ξ = (S,L,C) unless stated otherwise.

Brewka and Woltran (2010) introduced a useful subclass of
ADFs called bipolar: Intuitively, in bipolar ADFs (BADFs)
each link is supporting or attacking (or both). Formally, a link
(r, s) ∈ L is supporting in Ξ iff for all R ⊆ par(s), we have
that Cs(R) = t implies Cs(R ∪ {r}) = t; symmetrically, a
link (r, s) ∈ L is attacking in Ξ iff for all R ⊆ par(s), we
have that Cs(R ∪ {r}) = t implies Cs(R) = t. An ADF
Ξ = (S,L,C) is bipolar iff all links in L are supporting or
attacking or both; we use L+ to denote all supporting and
L− to denote all attacking links of L in Ξ. For an s ∈ S
we define attΞ (s) = {x | (x, s) ∈ L−} and suppΞ(s) =
{x | (x, s) ∈ L+}.

The semantics of ADFs can be defined using approximat-
ing operators. For two-valued semantics of ADFs we are
interested in sets of statements, that is, we work in the com-
plete lattice (A,v) = (2S ,⊆). To approximate elements of
this lattice, we use consistent pairs of sets of statements and
the associated consistent CPO (Ac,≤i) – the consistent CPO
over S-subset pairs. Such a pair (X,Y) ∈ Ac can be re-
garded as a three-valued interpretation where all elements in
X are true, those in Y \X are unknown and those in S\Y are
false. (This allows us to use “pair” and “interpretation” syn-
onymously from now on.) The following definition specifies
how to revise a given three-valued interpretation.

Definition 2 ((Strass 2013a, Definition 3.1)). Let Ξ be an

103

ADF. Define an operator GΞ : 2S × 2S → 2S × 2S by

GΞ(X,Y) = (G′Ξ(X,Y),G′Ξ(Y,X))

G′Ξ(X,Y) = {s ∈ S | B ⊆ par(s), Cs(B) = t, B ⊆ X,
(par(s) \B) ∩ Y = ∅}

Intuitively, statement s is included in the revised lower
bound iff the input pair provides sufficient reason to do so,
given acceptance condition Cs. Although the operator is
defined for all pairs (including inconsistent ones), its re-
striction to consistent pairs is well-defined since it maps
consistent pairs to consistent pairs. This operator defines
the approximate family of ADF semantics according to Ta-
ble 1. Based on the three-valued operator GΞ, a two-valued
one-step consequence operator for ADFs can be defined by
GΞ(X) = G′Ξ(X,X). The general result of Denecker, Marek
and Truszczyński (2004) (Theorem 5.6) then immediately
defines the ultimate approximation of GΞ as the operator UΞ
given by UΞ(X,Y) = (U ′Ξ(X,Y),U ′′Ξ (X,Y)) with
• U ′Ξ(X,Y) = {s ∈ S | for all X ⊆ Z ⊆ Y,Z |= ϕs} and
• U ′′Ξ (X,Y) = {s ∈ S | for some X ⊆ Z ⊆ Y, Z |= ϕs}.
Incidentally, Brewka and Woltran (2010) already defined
this operator, which was later used to define the ultimate
family of ADF semantics according to Table 1 (Brewka et
al. 2013).2 In this paper, we will refer to the two families of
three-valued semantics as “approximate σ” and “ultimate σ”
for σ among admissible, grounded, complete, preferred and
stable. For two-valued supported models (or simply models),
approximate and ultimate semantics coincide.

Finally, for a propositional formula ϕ over vocabulary P
and X ⊆ Y ⊆ P we define the partial valuation of ϕ by
(X,Y) as ϕ(X,Y) = ϕ[p/t : p ∈ X][p/f : p ∈ P \ Y]. This
partial evaluation takes the two-valued part of (X,Y) and re-
places the evaluated variables by their truth values. Naturally,
ϕ(X,Y) is a formula over the vocabulary Y \X .

Complexity theory
We assume familiarity with the complexity classes P, NP
and coNP, as well as with polynomial reductions and hard-
ness and completeness for these classes. We also make use
of the polynomial hierarchy, that can be defined (using or-
acle Turing machines) as follows: ΣP0 = ΠP

0 = ∆P
0 = P,

ΣPi+1 = NPΣP
i , ΠP

i+1 = coNPΣP
i , ∆P

i+1 = PΣP
i for i ≥ 0.

As a somewhat non-standard polynomial hierarchy com-
plexity class, we use DPi , a generalisation of the complexity
class DP to the polynomial hierarchy. A language is in DP
iff it is the intersection of a language in NP and a language in
coNP. Generally, a language is in DPi iff it is the intersection
of a language in ΣPi and a language in ΠP

i . The canoni-
cal problem of DP = DP1 is SAT-UNSAT, the problem to
decide for a given pair (ψ1, ψ2) of propositional formulas
whether ψ1 is satisfiable and ψ2 is unsatisfiable. Obviously,
by definition ΣPi ,Π

P
i ⊆ DPi ⊆ ∆P

i+1 for all i ≥ 0.

2Technically, Brewka et al. (2013) represented interpretations
not by pairs (X,Y) ∈ Ac but by mappings v : S → {t, f ,u} into
the set of truth values t (true), f (false) and u (unknown or unde-
cided). Clearly the two representations are interchangeable.

Preparatory Considerations
We first introduce some notation to make precise what deci-
sion problems we will analyze. For a set S, let
• (Ac,≤i) be the consistent CPO of S-subset pairs,
• O an approximating operator on (Ac,≤i),
• σ ∈ {adm, com, grd, pre, 2su, 2st} a semantics among

admissible, complete, grounded, preferred, two-valued
supported and two-valued stable semantics, respectively.

In the verification problem we decide whether (X,Y) ∈ Ac
is a σ-model/pair of O, denoted by VerOσ (X,Y). In the exis-
tence problem we ask whether there exists a σ-model/pair of
O which is non-trivial, that is, different from (∅, S), denoted
by ExistsOσ . For query reasoning and s ∈ S we consider
the problem of deciding whether there exists a σ-model/pair
(X,Y) of O such that s ∈ X , denoted by CredOσ (s) (credu-
lous reasoning) and the problem of deciding whether in all
σ-models/pairs (X,Y) of O we have s ∈ X , denoted by
SkeptOσ (s) (skeptical reasoning). Note that it is no restriction
to check only for truth of a statement s ∈ S, since checking
for falsity can be modeled by introducing a new statement
s′ that behaves like the logical negation of s, by setting its
acceptance condition to ϕs′ = ¬s.

Existing results
We briefly survey – to the best of our knowledge – all existing
complexity results for abstract dialectical frameworks. For
general ADFs Ξ and the ultimate family of semantics, Brewka
et al. (2013) have shown the following:

• VerUΞ
2su is in P, ExistsUΞ

2su is NP-complete (Proposition 5)

• VerUΞ

adm is coNP-complete (Proposition 10)

• VerUΞ

grd and VerUΞ
com are DP-complete (Theorem 6, Cor. 7)

• VerUΞ
2st is in DP (Proposition 8)

• ExistsUΞ
2st is ΣP2 -complete (Theorem 9)

For bipolar ADFs, Brewka and Woltran (2010) showed that
VerUΞ

grd is in P (Proposition 15). So particularly for BADFs,
this paper will greatly illuminate the complexity landscape.

Relationship between the operators
Since UΞ is the ultimate approximation of GΞ it is clear that
for any X ⊆ Y ⊆ S we have GΞ(X,Y) ≤i UΞ(X,Y). In
other words, the ultimate revision operator produces new
bounds that are at least as tight as those of the approx-
imate operator. More explicitly, the ultimate new lower
bound always contains the approximate new lower bound:
G′Ξ(X,Y) ⊆ U ′Ξ(X,Y); conversely, the ultimate new upper
bound is contained in the approximate new upper bound:
U ′′Ξ (X,Y) ⊆ G′′Ξ (X,Y). Somewhat surprisingly, it turns out
that the revision operators for the upper bound coincide.
Lemma 2. Let Ξ = (S,L,C) be an ADF and X ⊆ Y ⊆ S.

G′′Ξ (X,Y) = U ′′Ξ (X,Y)

The operators for computing a new lower bound are
demonstrably different, since we can find Ξ and (X,Y) with
U ′Ξ(X,Y) 6⊆ G′Ξ(X,Y), as the following ADF shows.

104

Example 1. Consider the ADF D = ({a} , {(a, a)} , {ϕa})
with one self-dependent statement a that has acceptance
formula ϕa = a ∨ ¬a. In Figure 1, we show the relevant
CPO and the behavior of approximate and ultimate operators:
we see that GD(∅, {a}) <i UD(∅, {a}), which shows that in
some cases the ultimate operator is strictly more precise.

So in a sense the approximate operator cannot see beyond
the case distinction a∨¬a. As we will see shortly, this differ-
ence really amounts to the capability of tautology checking.
Example 2. ADF E = ({a, b} , {(b, a), (b, b)} , {ϕa, ϕb})
has acceptance formulas ϕa = b ∨ ¬b and ϕb = ¬b. So b
is self-attacking and the link from b to a is redundant. In
Figure 1 on the next page, we show the relevant CPO and the
behavior of the operators UE and GE on this CPO.

The examples show that the approximate and ultimate fam-
ilies of semantics really are different, save for one straight-
forward inclusion relation in case of admissible.
Corollary 3. For any ADF Ξ, we have the following:

1. An approximate admissible pair is an ultimate admissible
pair, but not vice versa.

2. With respect to their sets of pairs, the approximate and ul-
timate versions of preferred/complete/grounded semantics
are ⊆-incomparable.

Operator complexities
We next analyze the computational complexity of deciding
whether a single statement is contained in the lower or upper
bound of the revision of a given pair. This then leads to the
complexity of checking whether current lower/upper bounds
are pre- or postfixpoints of the revision operators for comput-
ing new lower/upper bounds, that is, whether the revisions
represent improvements in terms of the information ordering.
Intuitively, these results describe how hard it is to “use” the
operators and lay the foundation for the rest of the complexity
results.
Proposition 4. Let Ξ be an ADF, s ∈ S and X ⊆ Y ⊆ S.

1. Deciding s ∈ G′Ξ(X,Y) is in P.
2. Deciding G′Ξ(X,Y) ⊆ X is in P.
3. Deciding X ⊆ G′Ξ(X,Y) is in P.
Now let O ∈ {GΞ,UΞ}.
4. Deciding s ∈ O′′(X,Y) is NP-complete.
5. Deciding O′′(X,Y) ⊆ Y is coNP-complete.
6. Deciding Y ⊆ O′′(X,Y) is NP-complete.
Proof. We only show 1 and 4 as the rest follows suit.

1. Since X ⊆ Y , we have that whenever there exists a B ⊆
X ∩ par(s) with Cs(B) = t and (par(s) \ B) ∩ Y = ∅,
we know that B = X ∩ par(s). Thus s ∈ G′Ξ(X,Y) iff
Cs(X ∩ par(s)) = t and (par(s) \X) ∩ Y = ∅. For ac-
ceptance functions represented by propositional formulas,
both conditions can be checked in polynomial time.

4. Deciding s ∈ G′′Ξ (X,Y) is NP-complete:
in NP: By definition, G′′Ξ (X,Y) = G′Ξ(Y,X). To verify
s ∈ G′Ξ(Y,X), we can guess a set M ⊆ S and verify
that M ⊆ Y , par(s) \M ⊆ S \X and M |= ϕs.

NP-hard: For hardness, we provide a reduction from SAT.
Let ψ be a propositional formula over vocabulary P .
Define an ADF Ξ = (S,L,C) with S = P ∪{z} where
z /∈ P , ϕz = ψ and ϕp = p for all p ∈ P . Observe
that par(z) = P , and set X = ∅ and Y = P . Now
z ∈ G′′Ξ (X,Y) iff z ∈ G′Ξ(Y,X) iff z ∈ G′Ξ(P, ∅) iff
there is an M ⊆ P with P \M ∩ ∅ = ∅ and M |= ϕz
iff there is an M ⊆ P with M |= ψ iff ψ is satisfiable.
�

These results can also be formulated in terms of partial
evaluations of acceptance formulas: We have s ∈ G′Ξ(X,Y)

iff the partial evaluationϕ(X,Y)
s is a formula without variables

that has truth value t. Similarly, we have s ∈ G′′Ξ (X,Y) iff
the partial evaluation ϕ(X,Y)

s is satisfiable. Under standard
complexity assumptions, computing a new lower bound with
the ultimate operator is harder than with the approximate
operator. This is because, intuitively, s ∈ U ′Ξ(X,Y) iff the
partial evaluation ϕ(X,Y)

s is a tautology.

Proposition 5. Let Ξ be an ADF, s ∈ S and X ⊆ Y ⊆ S.

1. Deciding s ∈ U ′Ξ(X,Y) is coNP-complete.
2. Deciding U ′Ξ(X,Y) ⊆ X is NP-complete.
3. Deciding X ⊆ U ′Ξ(X,Y) is coNP-complete.

Proof. We only show the first item since the remaining proofs
work along the same lines. The hardness proof uses the ADF
from Proposition 4.

in coNP: To decide that s /∈ U ′Ξ(X,Y), we guess a Z with
X ⊆ Z ⊆ Y and verify that Z 6|= ϕs.

coNP-hard: Set X = ∅ and Y = P . Now z ∈ U ′Ξ(X,Y) iff
z ∈ U ′Ξ(∅, P) iff for all Z ⊆ P , we have Z |= ϕz iff for
all Z ⊆ P , we have Z |= ψ iff ψ is a tautology. �

The next result considerably simplifies the complexity
analysis of deciding the existence of non-trivial pairs.

Lemma 6. Let (A,v) be a complete lattice and O an ap-
proximating operator on Ac. The following are equivalent:

1. O has a non-trivial admissible pair.
2. O has a non-trivial preferred pair.
3. O has a non-trivial complete pair.

Proof. “(1)⇒ (2)”: Let (⊥,>) <i (x, y) ≤i O(x, y). We
show that there is a preferred pair (p, q) ≥i (x, y). De-
fine D = {(a, b) | (x, y) ≤i (a, b)}, then the pair (D,≤i)
is a CPO on which O is an approximating operator.
(Obviously (a, b) ∈ D implies (x, y) ≤i (a, b) whence
by presumption and ≤i-monotonicity of O we get
(x, y) ≤i O(x, y) ≤i O(a, b) and O(a, b) ∈ D.) Now
any sequence (a, b) ≤i O(a, b) ≤i O(O(a, b)) ≤i . . . is
a non-empty chain in D and therefore has an upper bound
in D. By Zorn’s lemma, the set of all O-admissible pairs
in A has a maximal element (p, q) ≥i (x, y) >i (⊥,>).

“(2)⇒ (3)”: By (Strass 2013a, Theorem 3.10), every pre-
ferred pair is complete.

“(3)⇒ (1)”: Any complete pair is admissible (Table 1). �

105

operator visualization:
approximate

ultimate
both

(∅, {a})

(∅, ∅) ({a} , {a})

(∅, {a, b})

(∅, {b})(∅, {a}) ({a} , {a, b}) ({b} , {a, b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a, b} , {a, b})

Figure 1: Hasse diagrams of consistent CPOs for the ADFs from Example 1 (left) and Example 2 (right). Solid lines represent the
information ordering ≤i. Directed arrows express how revision operators map pairs to other pairs. For pairs where the revisions
coincide, the arrows are densely dashed and violet. When the operators revise a pair differently, we use a dotted red arrow for the
ultimate and a loosely dashed blue arrow for the approximate operator. Exact (two-valued) pairs are the ≤i-maximal elements.
For those pairs, (and any ADF Ξ) it is clear that the operators UΞ and GΞ coincide since they approximate the same two-valued
operator GΞ. In Example 1 on the left, we can see that the ultimate operator maps all pairs to its only fixpoint ({a} , {a}) where a
is true. The approximate operator has an additional fixpoint, (∅, {a}), where a is unknown. In Example 2 on the right, the major
difference between the operators is whether statement a can be derived given that b has truth value unknown. This is the case for
the ultimate, but not for the approximate operator. Since there is no fixpoint in the upper row (showing the two-valued operator
GE), the ADF E does not have a two-valued model. Each of the revision operators has however exactly one three-valued fixpoint,
which thus constitutes the respective grounded, preferred and complete semantics.

This directly shows the equivalence of the respective deci-
sion problems, that is, ExistsOadm = ExistsOpre = ExistsOcom.

Regarding decision problems for querying, skeptical rea-
soning w.r.t. admissibility is trivial, i.e. (∅, S) is always an
admissible pair in any ADF. Further credulous reasoning w.r.t.
admissibility, complete and preferred semantics coincides.

Lemma 7. Let Ξ be an ADF, O ∈ {GΞ,UΞ} and s ∈ S.
Then CredOadm(s) iff CredOcom(s) iff CredOpre(s).

Proof. Assume (X,Y) with s ∈ X is admissible w.r.t. O,
then there exists a (X ′, Y ′) with (X,Y) ≤i (X ′, Y ′) which
is preferred with respect to O and where s ∈ X ′, see proof
of Lemma 6. Since any preferred pair is also complete and
any complete pair is also admissible the claim follows. �

Generic upper bounds
We now show generic upper bounds for the computational
complexity of the considered problems. This kind of analy-
sis is in the spirit of the results of Dimopoulos, Nebel and
Toni (2002) (Section 4). The first item is furthermore a
straightforward generalization of Theorem 6.13 in (Denecker,
Marek, and Truszczyński 2004).

Theorem 8. Let S be a finite set, defineA = 2S and letO be
an approximating operator on (Ac,≤i), the consistent CPO
of S-subset pairs. For a pair (X,Y) ∈ Ac and an s ∈ S, let
the problem of deciding whether s ∈ O′(X,Y) be in ΠP

i ;

let the problem of deciding s ∈ O′′(X,Y) be in ΣPi . For
(X,Y) ∈ Ac and a statement s ∈ S, we have:

1. The least fixpoint of O can be computed in polynomial
time with a polynomial number of calls to a ΣPi -oracle.

2. VerOadm(X,Y) is in ΠP
i ; CredOadm(s) is in ΣPi+1;

3. VerOcom(X,Y) is in DPi ; CredOcom(s) is in ΣPi+1;

4. VerOpre(X,Y) is in ΠP
i+1; CredOpre(s) is in ΣPi+1;

SkeptOpre(s) is in ΠP
i+2.

Proof. 1. For any (V,W) ∈ Ac we can use the oracle to
compute an application of O′ by simply asking whether
z ∈ O′(V,W) for each z ∈ S. This means we can
compute with a linear number of oracle calls the sets
O′(V,W) and O′′(V,W), thus the pair O(V,W). Hence
we can compute the sequence (∅, S) ≤i O(∅, S) ≤i
O(O(∅, S)) ≤i . . . which converges to the least fixpoint
of O after a linear number of operator applications.

2. We can decideO′(X,Y) ⊆ X and Y ⊆ O′′(X,Y) in ΣPi ,
X ⊆ O′(X,Y) and O′′(X,Y) ⊆ Y in ΠP

i ; all by com-
bining independent guesses. Then VerOadm(X,Y) is in ΠP

i .
For CredOadm(s), we guess a pair (X1, Y1) with s ∈ X1

and check if it is admissible.

3. VerOcom(X,Y) is in DPi by the same method as for admis-
sibility. CredOcom(s) = CredOadm(s) by Lemma 7.

106

4. For VerOpre(X,Y), consider the co-problem, i.e. deciding
whether (X,Y) is not a preferred pair. We first check if
(X,Y) is a complete pair, which is in DPi . If this holds,
we guess an (X1, Y1) with (X,Y) <i (X1, Y1) and check
if it is complete. CredOpre(X,Y): coincides with credulous
reasoning w.r.t. admissibility, see Lemma 7. SkeptOpre(s):
Consider the co-problem, i.e. deciding whether there exists
a preferred pair (X1, Y1) with X1 ∩ {a} = ∅. We guess
such a pair (X1, Y1) and check if it is preferred. �

Naturally, the capability of solving the functional problem
of computing the grounded semantics allows us to solve the
associated decision problems.

Corollary 9. Under the assumptions of Theorem 8, the prob-
lems VerOgrd and ExistsOgrd are in ∆P

i+1.

Complexity of General ADFs
Due to the coincidence of G′′Ξ and U ′′Ξ , the computational com-
plexities of decision problems that concern only the upper
bound operator also coincide. This will save both work and
space in the subsequent developments. Additionally, for all
containment results (except for the grounded semantics), we
can use Theorem 8 and need only show hardness.

Proposition 10. Let Ξ be an ADF, X,Y ⊆ S and consider
any O ∈ {GΞ,UΞ}. VerOadm(X,Y) is coNP-complete.

Proof. Hardness follows from Proposition 4, item 5. �

Recall that a pair (X,Y) is an approximate/ultimate com-
plete pair iff it is a fixpoint of the corresponding (approxi-
mate/ultimate) operator. Given the complexities of operator
computation, it is straightforward to show the following.

Proposition 11. Let Ξ be an ADF, X ⊆ Y ⊆ S and con-
sider any O ∈ {GΞ,UΞ}. VerOcom(X,Y) is DP-complete.

Next, we analyze the complexity of verifying that a given
pair is the approximate (ultimate) Kripke-Kleene semantics
of an ADF Ξ, that is, the least fixpoint of GΞ (UΞ). Although
interesting, the proof is lengthy and technical, so we unfortu-
nately have to omit it due to space constraints. Interestingly,
the membership part is the tricky one, where we encode the
steps of the operator computation into propositional logic.

Theorem 12. Let Ξ be an ADF, X ⊆ Y ⊆ S and consider
any operator O ∈ {GΞ,UΞ}. VerOgrd(X,Y) is DP-complete.

We next ask whether there exists a non-trivial admissible
pair, that is, if at least one statement has a truth value other
than unknown. Clearly, we can guess a pair and perform the
coNP-check to show that it is admissible. The next result
shows that this is also the best we can do. Again, the proof is
lengthy and technical and we could not include it here.

Theorem 13. Let Ξ be an ADF and consider any operator
O ∈ {GΞ,UΞ}. ExistsOadm is ΣP2 -complete.

Lemma 6 implies the same complexity for the existence of
non-trivial complete and preferred pairs.

Corollary 14. Let Ξ be an ADF, σ ∈ {com, pre} and con-
sider any operator O ∈ {GΞ,UΞ}. ExistsOσ is ΣP2 -complete.

By corollary to Theorem 12, the existence of a non-trivial
grounded pair can be decided in DP by testing whether the
trivial pair (∅, S) is (not) a fixpoint of the relevant operator.
The following result shows that this bound can be improved.
We cannot present the proof here but can say that intuitively,
half of the usual subset checks can be left out due to using
the trivial pair.

Proposition 15. Let Ξ be an ADF and consider any operator
O ∈ {GΞ,UΞ}. ExistsOgrd is coNP-complete.

Using the result for existence of non-trivial admissible
pairs, the verification complexity for the preferred seman-
tics is straightforward to obtain, similarly as in the case of
AFs (Dimopoulos and Torres 1996).

Proposition 16. Let Ξ be an ADF, X ⊆ Y ⊆ S and con-
sider any O ∈ {GΞ,UΞ}. VerOpre(X,Y) is ΠP

2 -complete.

Considering query reasoning we now show that on general
ADFs credulous reasoning with respect to admissibility is
harder than on AFs. By Lemma 7, the same lower bound
holds for complete and preferred semantics.

Proposition 17. Let Ξ be an ADF, O ∈ {GΞ,UΞ} be an op-
erator and s ∈ S. CredOadm(s) is ΣP2 -complete.

For credulous and skeptical reasoning with respect to the
grounded semantics, we first observe that the two coincide
since there is always a unique grounded pair. Furthermore,
a statement s is true in the approximate grounded pair iff s
is true in the least fixpoint (of GΞ) iff s is true in all fixpoints
iff there is no fixpoint where s is unknown or false. This
condition can be encoded in propositional logic and leads to
the next result. For the ultimate operator we can use results
for the verification problem (Brewka et al. 2013, Theorem 6).
Briefly put, the problem is in coNP since the NP-hardness
comes from verifying that certain arguments are undefined in
the ultimate grounded pair, which is not needed for credulous
reasoning. For coNP-hardness the proof of (Brewka and
Woltran 2010, Proposition 13) can be easily adapted.

Proposition 18. Let Ξ be an ADF, O ∈ {GΞ,UΞ}, s ∈ S.
Both CredOgrd(s) and SkeptOgrd(s) are coNP-complete.

Regarding skeptical reasoning for the remaining semantics
we need only show the results for complete and preferred
semantics, in all other cases the complexity coincides with
credulous reasoning or is trivial. For complete semantics it is
easy to see that skeptical reasoning coincides with skeptical
reasoning under grounded semantics, since the grounded pair
is the ≤i-least complete pair.

Corollary 19. Let Ξ be an ADF, O ∈ {GΞ,UΞ} and s ∈ S.
SkeptOcom(s) is coNP-complete.

Similar to reasoning on AFs, we step up one level of the
polynomial hierarchy by changing from credulous to skep-
tical reasoning with respect to preferred semantics, which
makes skeptical reasoning under preferred semantics particu-
larly hard. We apply proof ideas by (Dunne and Bench-Capon
2002) to prove ΠP

3 -hardness.

Theorem 20. Let Ξ be an ADF, O ∈ {GΞ,UΞ} and s ∈ S.
SkeptOpre(s) is ΠP

3 -complete.

107

Two-valued semantics
The complexity results we have obtained so far might lead
the reader to ask why we bother with the approximate oper-
ator GΞ at all: the ultimate operator UΞ is at least as precise
and for all the semantics considered up to now, it has the
same computational costs. We now show that for the verifica-
tion of two-valued stable models, the operator for the upper
bound plays no role and therefore the complexity difference
between the lower bound operators for approximate (in P)
and ultimate (coNP-hard) semantics comes to bear.

For the ultimate two-valued stable semantics, Brewka et
al. (2013) already have some complexity results: model ver-
ification is in DP (Proposition 8), and model existence is
ΣP2 -complete (Theorem 9). We will show next that we can
do better for the approximate version.
Proposition 21. Let Ξ be an ADF and X ⊆ Y ⊆ S. Verify-
ing that X is the least fixpoint of G′Ξ(·, Y) is in P.
Proof sketch. Roughly, we construct the sequence defined
by X0 = ∅ and Xi+1 = G′Ξ(Xi, Y) for i ≥ 0, as long as
Xi ⊆ Y . By ≤i-monotonicity of GΞ, this sequence is mono-
tonically ⊆-increasing and so the procedure terminates after
a linear number of steps. We then check if Xi+1 = Xi = X ,
that is, the right fixpoint was reached. �

In particular, the procedure can decide whether Y is the
least fixpoint of G′Ξ(·, Y), that is, whether (Y, Y) is a two-
valued stable model of GΞ. This yields the next result.

Theorem 22. Let Ξ be an ADF andX ⊆ S. 1. VerGΞ
2st(X,X)

is in P. 2. ExistsGΞ
2st is NP-complete.

The hardness direction of the second part is clear since the
respective result from stable semantics of abstract argumen-
tation frameworks carries over.

Brewka et al. (2013) showed that VerUΞ
2st is in DP (Proposi-

tion 8). As one of the most surprising results of this paper,
we can improve that upper bound to coNP. The proof is not
at all trivial, but basically the operator for the upper bound
(contributing the NP part) is not really needed. Using the
complexity of the lower revision operator U ′Ξ, we can even
show completeness for coNP.
Proposition 23. Let Ξ be an ADF and X ⊆ S.
VerUΞ

2st(X,X) is coNP-complete.
We now turn to the credulous and skeptical reasoning

problems for the two-valued semantics. We first recall that a
two-valued pair (X,X) is a supported model (or model for
short) of an ADF Ξ iff GΞ(X,X) = (X,X). Thus it could
equally well be characterized by the two-valued operator by
saying that X is a model iff GΞ(X) = X . Now since UΞ is
the ultimate approximation of GΞ, also UΞ(X,X) = (X,X)
in this case. Rounding up, this recalls that approximate and
ultimate two-valued supported models coincide. Hence we
get the following results for reasoning with this semantics.
Corollary 24. Let Ξ be an ADF, O ∈ {GΞ,UΞ} be an oper-
ator and s ∈ S. The problem CredO2su(s) is NP-complete;
SkeptO2su(s) is coNP-complete.

For the approximate two-valued stable semantics, the fact
that model verification can be decided in polynomial time
leads to the next result.

O GΞ,UΞ GΞ,UΞ GΞ UΞ

σ adm com pre grd 2su 2st 2st

VerOσ coNP-c DP-c ΠP2 -c DP-c in P coNP-c

ExistsOσ ΣP2 -c ΣP2 -c ΣP2 -c coNP-c NP-c ΣP2 -c

CredO
σ ΣP2 -c ΣP2 -c ΣP2 -c coNP-c NP-c ΣP2 -c

SkeptOσ trivial coNP-c ΠP3 -c coNP-c coNP-c ΠP2 -c

Table 2: Complexity results for semantics of ADFs.

Corollary 25. Let Ξ be an ADF and s ∈ S. CredGΞ
2st(s) is

NP-complete; SkeptGΞ
2st(s) is coNP-complete.

For the ultimate two-valued stable semantics, things are
bit more complex. The hardness reduction in the proof of
Theorem 9 in (Brewka et al. 2013) makes use of a statement
z that is false in any ultimate two-valued stable model. This
can be used to show the same hardness for the credulous
reasoning problem for this semantics: we introduce a new
statement x that behaves just like ¬z, then x is true in some
model if and only if there exists a model.

Proposition 26. Let Ξ be an ADF and s ∈ S. The problem
CredUΞ

2st(s) is ΣP2 -complete.

A similar argument works for the skeptical reasoning
problem: Given a QBF ∀P∃Qψ, we construct its negation
∃P∀Q¬ψ, whose associated ADF D has an ultimate two-
valued stable model (where z is false) iff ∃P∀Q¬ψ is true
iff the original QBF ∀P∃Qψ is false. Hence ∀P∃Qψ is true
iff z is true in all ultimate two-valued stable models of D.

Proposition 27. Let Ξ be an ADF and s ∈ S. The problem
SkeptUΞ

2st(s) is ΠP
2 -complete.

Complexity of Bipolar ADFs
We first note that since BADFs are a subclass of ADFs, all
membership results from the previous section immediately
carry over. However, we can show that many problems will
in fact become easier. Intuitively, computing the revision
operators is now P-easy because the associated satisfiabil-
ity/tautology problems only have to treat restricted accep-
tance formulas. In bipolar ADFs, by definition, if in some
three-valued pair (X,Y) a statement s is accepted by a re-
vision operator (s ∈ O′(X,Y)), it will stay so if we set its
undecided supporters to true and its undecided attackers to
false. Symmetrically, if a statement is rejected by an oper-
ator (s /∈ O′′(X,Y)), it will stay so if we set its undecided
supporters to false and its undecided attackers to true. This is
the key idea underlying the next result.

Proposition 28. Let Ξ be a BADF with L = L+ ∪ L−,
O ∈ {GΞ,UΞ}, s ∈ S and X ⊆ Y ⊆ S.

1. Deciding s ∈ O′(X,Y) is in P.

2. Deciding s ∈ O′′(X,Y) is in P.

108

Using the generic upper bounds of Theorem 8, it is now
straightforward to show membership results for BADFs with
known link types.
Corollary 29. Let Ξ be a BADF with L = L+ ∪ L−,
consider any operator O ∈ {GΞ,UΞ} and semantics
σ ∈ {adm, com}. For X ⊆ Y ⊆ S and s ∈ S, we find that
• VerOσ (X,Y) and VerOgrd(X,Y) are in P;

• VerOpre(X,Y) is in coNP;

• ExistsOσ , ExistsOpre, CredOσ (s) and CredOpre(s) are in NP;

• ExistsOgrd, CredOgrd(s), SkeptOgrd(s), SkeptOcom(s) are in P;

• SkeptOpre(s) is in ΠP
2 .

Proof. Membership is due to Theorem 8 and the complexity
bounds of the operators in BADFs in Proposition 28, just
note that ΣP0 = ΠP

0 = P. VerOgrd(X,Y) is in PP = P by
Corollary 9. For the existence of non-trivial pairs we can
simply guess and check in polynomial time for admissible
pairs and thus also for complete and preferred semantics. �

Hardness results straightforwardly carry over from AFs.
Proposition 30. Let Ξ be a BADF with L = L+ ∪ L−,
consider any operator O ∈ {GΞ,UΞ} and semantics
σ ∈ {adm, com, pre}. For X ⊆ Y ⊆ S and s ∈ S:
• VerOpre(X,Y) is coNP-hard;

• ExistsOσ and CredOσ (s) are NP-hard;
• SkeptOpre(s) is ΠP

2 -hard.
Proof. Hardness results from AFs for these problems carry
over to BADFs as for all semantics AFs are a special case of
BADFs (Brewka et al. 2013; Strass 2013a). The complexities
of the problems on AFs for admissible and preferred seman-
tics are shown by (Dimopoulos and Torres 1996), except for
the ΠP

2 -completeness result of skeptical preferred semantics,
which is shown by (Dunne and Bench-Capon 2002). The
complete semantics is studied by (Coste-Marquis, Devred,
and Marquis 2005). �

We next show that there is no hope that the existence
problems for approximate and ultimate two-valued stable
models coincide as there are cases when the semantics differ.
Example 3. Consider the BADF F = (S,L,C) with state-
ments S = {a, b, c} and acceptance formulas ϕa = t,
ϕb = a ∨ c and ϕc = a ∨ b. The only two-valued supported
model is (S, S) where all statements are true. This pair is also
an ultimate two-valued stable model, since U ′F (∅, S) = {a},
and both ϕ

({a},S)
b = t ∨ c and ϕ

({a},S)
c = t ∨ b are tau-

tologies, whence U ′F ({a} , S) = S. However, (S, S) is
not an approximate two-valued stable model: although
G′F (∅, S) = {a}, then G′F ({a} , S) = {a} and we thus cannot
reconstruct the upper bound S. Thus F has no approximate
two-valued stable models.

So approximate and ultimate two-valued stable model se-
mantics are indeed different. However, we can show that the
respective existence problems have the same complexity.
Proposition 31. Let Ξ be a BADF with L = L+ ∪ L−,
O ∈ {GΞ,UΞ} an operator and semantics σ ∈ {2su, 2st}.
For X ⊆ S, VerOσ (X,X) is in P; ExistsOσ is NP-complete.

σ adm com pre grd 2su 2st

VerOσ in P in P coNP-c in P in P in P

ExistsOσ NP-c NP-c NP-c in P NP-c NP-c

CredO
σ NP-c NP-c NP-c in P NP-c NP-c

SkeptOσ trivial in P ΠP2 -c in P coNP-c coNP-c

Table 3: Complexity results for semantics of bipolar Abstract
Dialectical Frameworks for O ∈ {GΞ,UΞ}.

Proof. Membership carries over – for supported models from
(Brewka et al. 2013, Proposition 5), for approximate stable
models from Theorem 22. For membership for ultimate
stable models, we can use Proposition 28 to adapt the decision
procedure of Proposition 21. In any case, hardness carries
over from AFs (Dimopoulos and Torres 1996). �

For credulous and skeptical reasoning over the two-valued
semantics, membership is straightforward and hardness again
carries over from argumentation frameworks.

Corollary 32. Let Ξ be a BADF with L = L+ ∪ L−;
consider any operator O ∈ {GΞ,UΞ} and semantics
σ ∈ {2su, 2st}. For s ∈ S, CredOσ (s) is NP-complete;
SkeptOσ (s) is coNP-complete.

Discussion
In this paper we studied the computational complexity of
abstract dialectical frameworks using approximation fixpoint
theory. We showed numerous novel results for two families
of ADF semantics, the approximate and ultimate semantics,
which are themselves inspired by argumentation and AFT.
We showed that in most cases the complexity increases by
one level of the polynomial hierarchy compared to the cor-
responding reasoning tasks on AFs. A notable difference
between the two families of semantics lies in the stable se-
mantics, where the approximate version is easier than its
ultimate counterpart. For the restricted, yet powerful class of
bipolar ADFs we proved that for the corresponding reason-
ing tasks AFs and BADFs have the same complexity, which
suggests that many types of relations between arguments can
be introduced without increasing the worst-time complexity.
On the other hand, our results again emphasize that arbitrary
(non-bipolar) ADFs cannot be compiled into equivalent Dung
AFs in deterministic polynomial time, unless the polynomial
hierarchy collapses to the first level. Under the same assump-
tion, ADFs cannot be implemented directly with methods
that are typically applied to AFs, for example answer-set
programming (Egly, Gaggl, and Woltran 2010).

Our results lay the foundation for future algorithms and
their implementation, for example augmenting the ADF sys-
tem DIAMOND (Ellmauthaler and Strass 2013) to support
also the approximate semantics family, as well as devising
efficient methods for the interesting class of BADFs.

For further future work several promising directions are
possible. Studying easier fragments of ADFs as well as pa-
rameterized complexity analysis can lead to efficient decision

109

procedures, as is witnessed for AFs (Dvořák et al. 2014;
Dvořák, Ordyniak, and Szeider 2012). We also deem it auspi-
cious to use alternative representations of acceptance condi-
tions, for instance by employing techniques from knowledge
compilation (Darwiche and Marquis 2002).

A detailed complexity analysis of other useful AF se-
mantics would also reveal further insights, e.g. semi-stable
semantics (Caminada, Carnielli, and Dunne 2012), naive-
based semantics, such as cf2 (Baroni, Giacomin, and Guida
2005), or a recently proposed extension-based semantics for
ADFs (Polberg, Wallner, and Woltran 2013). For semantical
analysis, it would be useful to consider principle-based eval-
uations for ADFs (Baroni and Giacomin 2007). Furthermore
it appears natural to compare (ultimate) ADF semantics and
ultimate logic programming semantics (Denecker, Marek,
and Truszczyński 2004) in approximation fixpoint theory, in
particular with respect to computational complexity.

Acknowledgements. Thanks to an anonymous reviewer
for pointing out a notational issue in our usage of the com-
plexity classes DPi . This research was supported by DFG
(project BR 1817/7-1) and FWF (project I1102).

References
Baroni, P., and Giacomin, M. 2007. On principle-based evaluation
of extension-based argumentation semantics. Artificial Intelligence
171(10-15):675–700.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. SCC-recursiveness:
a general schema for argumentation semantics. Artificial Intelli-
gence 168(1-2):162–210.
Bench-Capon, T. J. M., and Dunne, P. E. 2007. Argumentation in
Artificial Intelligence. Artificial Intelligence 171(10-15):619–641.
Brewka, G., and Gordon, T. F. 2010. Carneades and Abstract
Dialectical Frameworks: A Reconstruction. In Proceedings of
COMMA 2010, volume 216 of FAIA, 3–12. IOS Press.
Brewka, G., and Woltran, S. 2010. Abstract Dialectical Frameworks.
In Proceedings of KR 2010, 102–111. AAAI Press.
Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and Woltran,
S. 2013. Abstract Dialectical Frameworks Revisited. In Proceedings
of IJCAI 2013, 803–809. IJCAI/AAAI.
Brewka, G.; Dunne, P. E.; and Woltran, S. 2011. Relating the
Semantics of Abstract Dialectical Frameworks and Standard AFs.
In Proceedings of IJCAI 2011, 780–785. IJCAI/AAAI.
Brewka, G.; Polberg, S.; and Woltran, S. 2013. Generalizations
of Dung frameworks and their role in formal argumentation. IEEE
Intelligent Systems PP(99). Special Issue on Representation and
Reasoning. In press.
Caminada, M. W., and Amgoud, L. 2007. On the evaluation of
argumentation formalisms. Artificial Intelligence 171(5–6):286–
310.
Caminada, M. W.; Carnielli, W. A.; and Dunne, P. E. 2012. Semi-
stable Semantics. Journal of Logic and Computation 22(5):1207–
1254.
Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005. Symmetric
Argumentation Frameworks. In ECSQARU, volume 3571 of LNCS,
317–328. Springer.
Darwiche, A., and Marquis, P. 2002. A Knowledge Compilation
Map. Journal of Artificial Intelligence Research 17:229–264.

Davey, B., and Priestley, H. 2002. Introduction to Lattices and
Order. Cambridge University Press, second edition.
Denecker, M.; Marek, V. W.; and Truszczyński, M. 2000. Ap-
proximations, Stable Operators, Well-Founded Fixpoints and Ap-
plications in Nonmonotonic Reasoning. In Logic-Based Artificial
Intelligence. Kluwer Academic Publishers. 127–144.
Denecker, M.; Marek, V. W.; and Truszczyński, M. 2003. Uniform
Semantic Treatment of Default and Autoepistemic Logics. Artificial
Intelligence 143(1):79–122.
Denecker, M.; Marek, V. W.; and Truszczyński, M. 2004. Ultimate
approximation and its application in nonmonotonic knowledge rep-
resentation systems. Information and Computation 192(1):84–121.
Dimopoulos, Y., and Torres, A. 1996. Graph Theoretical Structures
in Logic Programs and Default Theories. Theoretical Computer
Science 170(1-2):209–244.
Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On the computa-
tional complexity of assumption-based argumentation for default
reasoning. Artificial Intelligence 141(1/2):57–78.
Dung, P. M. 1995. On the Acceptability of Arguments and its Fun-
damental Role in Nonmonotonic Reasoning, Logic Programming
and n-Person Games. Artificial Intelligence 77(2):321–358.
Dunne, P. E., and Bench-Capon, T. J. M. 2002. Coherence in Finite
Argument Systems. Artificial Intelligence 141(1/2):187–203.
Dunne, P. E., and Wooldridge, M. 2009. Complexity of abstract
argumentation. In Simari, G., and Rahwan, I., eds., Argumentation
in Artificial Intelligence. Springer. 85–104.
Dvořák, W.; Järvisalo, M.; Wallner, J. P.; and Woltran, S. 2014.
Complexity-Sensitive Decision Procedures for Abstract Argumenta-
tion. Artificial Intelligence 206:53–78.
Dvořák, W.; Ordyniak, S.; and Szeider, S. 2012. Augmenting
tractable fragments of abstract argumentation. Artificial Intelligence
186:157–173.
Egly, U.; Gaggl, S. A.; and Woltran, S. 2010. Answer-set pro-
gramming encodings for argumentation frameworks. Argument and
Computation 1(2):147–177.
Ellmauthaler, S., and Strass, H. 2013. The DIAMOND System for
Argumentation: Preliminary Report. In Proceedings of ASPOCP,
97–107.
Gordon, T. F.; Prakken, H.; and Walton, D. 2007. The Carneades
model of argument and burden of proof. Artificial Intelligence
171(10–15):875–896.
Polberg, S.; Wallner, J. P.; and Woltran, S. 2013. Admissibility in
the Abstract Dialectical Framework. In Proceedings of CLIMA XIV,
volume 8143 of LNAI, 102–118. Springer.
Strass, H., and Wallner, J. P. 2013. Analyzing the Computational
Complexity of Abstract Dialectical Frameworks via Approximation
Fixpoint Theory. Technical Report 2, Computer Science Insti-
tute, Leipzig University. http://nbn-resolving.de/urn:nbn:de:bsz:15-
qucosa-129614.
Strass, H. 2013a. Approximating operators and semantics for
abstract dialectical frameworks. Artificial Intelligence 205:39–70.
Strass, H. 2013b. Instantiating knowledge bases in abstract dialec-
tical frameworks. In Proceedings of CLIMA XIV, volume 8143 of
LNAI, 86–101. Springer.
Van Gijzel, B., and Prakken, H. 2011. Relating Carneades with
abstract argumentation. In Proceedings of IJCAI 2011, 1113–1119.
IJCAI/AAAI.
Wyner, A.; Bench-Capon, T. J. M.; and Dunne, P. E. 2013. On the
instantiation of knowledge bases in abstract argumentation frame-
works. In Proceedings of CLIMA XIV, volume 8143 of LNAI, 34–50.
Springer.

110

