The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence

Knowledge-Graph Driven
Information State Approach to Dialog

Svetlana Stoyanchev, Michael Johnston
Interactions Corporation
25 Broadway, New York, NY

Abstract

A modular conversational dialog system, in contrast to end-
to-end, includes natural language understanding, dialog man-
agement, and natural language generation components. A di-
alog system framework simplifies development and mainte-
nance of modular dialog systems. We propose a knowledge-
graph driven framework (KGD) based on the Information
State Update (ISU) approach and adapted for practical task-
oriented applications. With the proposed framework, a system
is defined declaratively by describing the information struc-
ture of a domain. We demonstrate the effectiveness of the ap-
proach in enabling rich conversational dialog in food ordering
domain.

Introduction

We propose a knowledge-graph driven dialog management
framework (KGD) derived from the Information State Up-
date (ISU) approach (Traum and Larsson 2003). A key prop-
erty of an information state-based theory is that the dia-
log “information” is encoded in the state itself. Unlike ap-
proaches commonly used in many commercial dialog sys-
tems, where possible dialog patterns are explicitly laid out
by a dialog designer as a series of pre-determined dialog
states or nodes with fixed transitions among them, in an
ISU system the set of dialog states and possible transitions
among states are not authored directly, rather the dialog flow
emerges from the application of a series of rules operating
over a structured data representation capturing the current
dialog state at each point in the interaction. This allows for
a more compact implementation of mixed initiative dialog
functionality. For example, in an information gathering task
(e.g. capturing a hotel reservation), a user may specify pieces
of required information (e.g. dates, number of guests, prop-
erty) all together in a single turn or in multiple turns and
in any order, not necessarily directly responding to system
prompts. An ISU-based system defined by a small set of
rules can handle mixed initiative dialogs of this type, how-
ever implementing this functionality with a finite-state ap-
proach would involve significantly more complexity. To en-
code mixed initiative with a finite-state approach, we would
need a state for each combination of inputs and transitions
between all of them.

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

735

Our motivation is to provide a framework enabling rapid
authoring and easy maintenance of robust and flexible mixed
initiative dialog systems that can be deployed commercially.
The ISU formalism has the flexibility to support these needs.
It also allows for potential incorporation of research compo-
nents based on machine learning and reasoning into ISU-
based systems. We want this flexibility in commercially de-
ployed systems to evaluate research questions with real users
narrowing the gap between research and commercial dialog
systems without compromising the user experience. How-
ever, authoring, debugging, and maintaining an ISU system
requires specialized Al expertise. We propose several mod-
ifications to the ISU approach which, we believe, will sim-
plify system development and maintenance and improve di-
alog system’s robustness to errors and ambiguities in the nat-
ural language input.

First, we change the dialog system authoring method. An
ISU system is defined as a set of rules with pre- and post-
conditions. A dialog engine selects and executes the rules
based on the match between the state and the pre-condition.
In contrast, a KGD-based dialog system is authored declar-
atively by specifying its domain-specific information struc-
ture. A domain information structure of an application, such
as airline reservation, banking, or food ordering may be de-
fined by a domain expert. It corresponds to the type of in-
formation that can be exchanged between a user and a sys-
tem. For example, in the food ordering domain, information
structure corresponds to a restaurant menu, augmented with
constraints regarding special combinations or promotions.
This domain definition initializes the system with capabili-
ties to add, remove, or modify menu items.

Second, we change the representation of move. In the ISU
approach, move corresponds to a dialog act, such as ask
and answer. We shift the meaning of the move away from
language and closer to the domain functions. A move in
the KGD approach defines an unambiguous single symbolic
modification of the information state. At each turn, a set of
possible user moves is generated based on the current infor-
mation state and (static) domain knowledge graph. A move
is context specific: ‘add peppers to the 0’th pizza item’ will
only be generated if there is at least one pizza item in the
information state.

Third, we change the method of move selection. In the
ISU approach, being able to execute a correct set of moves

relies on a match between an utterance interpretation and
a rules’s pre-conditions. This potentially suffers from error
propagation: if utterance interpretation result is incorrect,
the error will be propagated to the move selection. In the
KGD approach, we score the automatically generated possi-
ble moves with a scoring function which can be rule-based
or learned from data. It can take into account N-best hy-
potheses from the interpretation module, confidence scores,
domain-specific prior probabilities, etc. The move scoring
serves as a contextual disambiguation making the dialog
manager more resilient to errors in recognition and interpre-
tation components.

We will demonstrate a capability of creating and modi-
fying declarative domain representation and deploying the
system in real-time on an AWS server.

System Architecture

1 U: whatdoihave so far

2 S: Your order is empty. What can I get for you?

3 U: alarge pizza with pepperoni

4 S: Added a large pepperoni pizza, Anything else dear?

5 U: ialso want a pizza with mushrooms and onions

6 S: Added a mushroom and onion pizza. What size do you
want?

7 U: show the menu

8 S: [MENU] What is the size for the mushroom and onion
pizza?

9 U: small

10 S: OK, I set the size of mushroom and onion pizza to small.
What else can I get for you?

11U: remove onions from the small

12S: Removed onions from the small mushroom and onion
pizza. Anything else dear?

13 U: whatdoi have so far

14 S: You ordered 2 Pizzas: large pepperoni pizza, and a small

mushroom pizza. What else can I get for you?

Table 1: Example Dialog with the PizzaOrdering KGD sys-
tem.

Figure 1 illustrates KGD system architecture. A domain-
specific NLU component labels intents and entities in a user
utterance. NLG generates system utterance from a template
and includes a domain-specific code for generating referring
expressions. All other system components are generic.

We implement the proposed framework with the support
for the data collection functionality. The framework func-
tionality may be extended by adding new node types to sup-
port other agendas such as query and response navigation.

Next, we describe KGD domain and state representations,
and the generic system components.

Domain Representation

A dialog system author defines the domain information
structure in a graph (represented in json) that is used to ini-
tialize a domain-independent dialog manager. In food or-
dering, a KGD-domain description can be derived from a
restaurant menu. Table 1 shows an example dialog between
a user and KGD dialog system initialized with the Pizza-
Ordering domain definition (Figure 2).

736

Each node in the KGD language is either a decision, a
form, or a leaf node. A set of type-specific properties, in-
cluding NLU and NLG templates, is associated with each
node. During move selection, the intent and entity types as-
signed by the NLU component are matched with the NLU
templates from the domain representation. A root decision
node in Figure 1 is ORDER. Its N LG _request property de-
fines templates for a generic system request “Anything else,
dear?”, “What else can I get for you?”.

Form nodes (e.g. PIZZA and DRINK) are the lowest non-
leaf nodes representing domain information that can be ex-
changed between a user and a system and stored in the in-
formation state. A list is a special case of a form. Multiple
instances of a /ist node type may be added to the information
state. In food ordering, /ist nodes corresponds to the menu
items. List-specific properties are NLU and NLG templates
for adding and removing an item.

A leaf node is a child of a form node. Each leaf node cor-
responds to an individual property of an item (e.g. TOP-
PING, SIZE, or CRUST). A leaf node is associated with
an entity type N LU _entity that matches entity label as-
signed by the NLU to the user text. The type : mult: in
the TO P PI N G node indicates that the node can take multi-
ple values. NLU _set/ NLU -rm and N LG_set/ NLG_rm
specify intents and response templates for setting or remov-
ing a property of the TOPPING node. The user utterance on
line 11 triggers an instantiation of the N LG_rm template of
the TOPPING node on line 12 where _VAL is resolved to
‘onions’ and _REF, to ‘small mushroom and onion pizza’.

State Representation

Information state in a dialog system corresponds to the com-
mon ground, the information exchanged between a system
and a user. To represent information state, we follow the
ISU approach modifying the dialog game board initially pro-
posed by (Ginzburg 1996). KGD information state stores a
set of shared beliefs and dialog history, including last move
and question under discussion. We assume that the system
agenda is static and derived from the domain knowledge
graph. The shared beliefs are stored as json object corre-
sponding to the form nodes in the knowledge graph. In a Piz-
zaOrdering domain, an information state represents the cur-
rent order (see Sy and S7 in Figure 3). A move in the KGD
approach defines an unambiguous single symbolic modifica-
tion of the information state represented with json structure.
A move may be adding a new pizza item using one of the
attributes or adding/removing a topping on an existing pizza
item, or changing a pizza size. We implement an ‘execute-
move’ operator that takes as input a state Sy and a set of
moves { M} and generates a new state Sp. Figure 3 shows
an example move execution: Sy with two pizza items (one
large pepperoni and mushrooms and one pepperoni) is mod-
ified with two dialog moves { M} (adding onions and pep-
pers topping to the first pizza item) and the resulting state
Si.

Dialog Manager

KGD dialog manager consists of the domain independent
components: MoveGenerator, Encoder, MoveScorer,

KG: Domain

Knowledge Graph (json)

—

User Input
(text)

NL json (text,
intent, entities

l—% Sys Move

®
o

Move Gen
Encoder Encoded NL {
I———— vector
Selected Moves

NL Template

Encoded Moves
(vector)

Moves

Encoder

Move Scorer

Scored Moves
(json)

System Output

. (Text/Image))

NLG

Figure 1: System Architecture

Type: multi

NLU_entity: _PIZZA_TOPPING

NLG_request: “what topping would you like for _REF?”
NLU_set: add(topping)

NLU_rm: remove(topping)

NLG_set_confirm: “Added _VAL to _REF”
NLG_rm_confirm: “Removed_VAL from _REF”

Options: pepperoni, olives, onions, mushrooms, peppers

Type: list

NLU_add: order(items)

NLU_rm: remove(item)

NLG_add: “added _REF”

NLG_rm: “removed _REF”
TMPLT_add: _WANT_SIZE _TOPPING

AY
\

\ ~
AY s E—
\ 3 .
v — __TOPPING) | pqyes

PIzzA el
pecson /" rorms
(_ ORDER D
-\,T,,/\(\ DRINK

4 - i

.

Type: decision

NLG_request: “Anything else, dear?”,
“What else can | get for you?”

NLU_query_form : req_info(menu)

NLU_query_data : req_info(order) ——

Figure 2: Pizza ordering domain

Selector, Executor, and SystemM ove. Figure 1 outlines
the components and processing sequence:

1. Move Generator (MGQG) is initialized with the static do-
main knowledge graph and current information state (.Sp).
MG deterministically generates a set of possible user moves.
The algorithm enumerates all legal modifications of the cur-
rent state based on the domain definition. For example, in
a pizza ordering domain, when an information state (cor-
responding to an order) contains two pizza items, the set
of possible moves includes: adding a new item from the
menu, removing or modifying one of the pizza item. The
types of possible modifications are based on the domain de-
scription of a particular item (e.g. add/remove a topping,
change size). Each generated move has a _sem and an _act
parts. _sem represents semantics of a user utterance (e.g.
{Add(onions), mention(SIZE : large, TOPPING
pepperoni, mushroom)}. The _act part encodes the action
to be performed on the information state if this move is se-
lected.

2. Encoder (ENC) converts the _sem part of a move and a

737

user’s NLU-processed input into a vector representation. We
implement an NLU-based encoder that uses domain-specific
intents, labels, and values as vector dimensions.

3. Move Scorer (MSC) assigns a score to each move by
computing the likelihood that a move matches utterance se-
mantics. In our experiments, we use dot product to compute
the score of each potential move. Move scorer estimates a
probability of a match between an utterance and a move.
Moves that have closer semantics to the utterance NL will
receive higher score. If NLU output contains errors, a correct
move may still get the highest score based on the context.
4. Move Selector (MSEL) identifies a set of moves to be
executed based on their scores. Since a user utterance may
contain multiple moves (e.g. add multiple items, or mod-
ify multiple toppings), multiple top moves may be selected.
We implement a TOP-ITEM heuristics: select all moves that
correspond to the same item.

5. Move Executor (EX) executes the _act part of the se-
lected moves and generates a new state illustrated on Fig-
ure 3.

6. System Move (SYS) ensures that there is an open ques-
tion in the system’s turn. SYS finds an ‘incomplete’ node
in the information state and adds its N LG _request to the
agenda. On line 5, a user adds a pizza item by specifying
two toppings. Because the size of this item is unspecified,
the system requests the size for this item on lines 6 and 8 in
Table 1. If all items in the information state are ‘complete’,
SYS backs off to a N LG _request of the root ORDER node
(lines 2, 4, 10, and 12).

Evaluation

Using KGD domain specification language, we define two
dialog systems in FoodOrdering domain: pizza and burger
ordering. The NLU component is trained on synthetic data
generated from expert-authored templates'. The application-
specific part of the NLG component consists of 50 lines of a

"We reuse the NLU model trained for a pizza ordering demo
system developed without the KGD framework.

SO0: Initial Info State

{M} : two dialog moves adding toppings to pizza item 0

S1: Resulting Info State

{ pOrderSkill_Pizza: [
{pOrderSkill_Pizza_pTopping: [pepperoni, mushrooms],
pOrderSkill_Pizza_pSize: large},
{ pOrderSkill_Pizza_pTopping: [pepperoni] }]}

[{index: 0, sysUtt: {CONFIRM: Added _VAL to _REF},
id: pOrderSkill_Pizza_pTopping, val: onions},
{index: 0, sysUtt: {CONFIRM: Added _VAL to _REF},
id: pOrderSkill_Pizza_pTopping, val: peppers}]

{ pOrderSkill_Pizza: [
{pOrderSkill_Pizza_pTopping: [pepperoni, mushrooms
onions, peppers],
pOrderSkill_Pizza_pSize: large},
{ pOrderSkill_Pizza_pTopping: [pepperoni] }]}

Figure 3: Move execution operation Sy + {M} = S

python code to resolve _REF template into a reference for a
menu item.

Ten colleagues not involved in the project interacted with
the pizza ordering web chat interface. The users follow a
loosely defined script by adding, removing, and modifying
menu items using natural language sentences. The users self-
reported errors in system responses. We manually analyzed
the system action marked as incorrect by the uses. On 169
user utterances, we observed 7% of error where some of the
errors were caused by an error in the NLU component or a
user speaking out of domain.

Conclusions and Future Work

In this paper, we described a framework for authoring
knowledge-graph driven dialog systems. KGD extends the
idea of system generation from a form (Stoyanchev, Lison,
and Bangalore 2016) to a more general task of system gener-
ation from a knowledge graph. Our approach is motivated by
the previous dialog management frameworks that simplify
task-oriented dialog system authoring and facilitate reuse
of generic components across domains (Allen et al. 2000;
Xu and Rudnicky 2000; Bos et al. 2003; Bohus and Rud-
nicky 2003; Lison and Kennington 2016). KGD diverges
from these frameworks in the method of system author-
ing: by describing domain information structure in a knowl-
edge graph, drawing motivation from ontology-based sys-
tems (Sonntag et al. 2009; Wessel et al. 2017).

We demonstrate the effectiveness on the proposed ap-
proach on a food ordering data collection task. With the
KGD framework and using mostly generic code base, a fully
functional dialog manager is created declaratively in min-
utes. In the future work, we will extend the KBD framework
to support other types of agenda, including query and result
navigation.

Hybrid methods that combine complementary strengths
of knowledge-driven and statistical approaches (Mittal,
Joshi, and Finin 2017; Williams, Asadi, and Zweig 2017)
requre significantly less training data in comparison with
the pure end-to-end methods (Bordes and Weston 2016). We
will develop a hybrid KGD with a data driven move scoring
and move selection components.

References

Allen, J.; Byron, D.; Dzikovska, M.; Ferguson, G.; Galescu,
L.; and Stent, A. 2000. An architecture for a generic dia-
logue shell. Nat. Lang. Eng. 6(3-4):213-228.

Bohus, D., and Rudnicky, A. 2003. Ravenclaw: Dialog
management using hierarchical task decomposition and an
expectation agenda. In Proceedings of Eurospeech.

738

Bordes, A., and Weston, J. 2016. Learning end-to-end goal-
oriented dialog. CoRR abs/1605.07683.

Bos, J.; Klein, E.; Lemon, O.; and Oka, T. 2003. DIPPER:
Description and Formalisation of an Information-State Up-
date Dialogue System Architecture. In SIGDIAL Workshop,
115-124.

Ginzburg, J. 1996. Dynamics and the semantics of dialogue.
In Seligman, J., and Westerstahl, D., eds., Logic, Language
and Computation, volume 1. Stanford: CSLI.

Lison, P., and Kennington, C. 2016. OpenDial: A toolkit
for developing spoken dialogue systems with probabilistic
rules. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Demonstrations),
67-72.

Mittal, S.; Joshi, A.; and Finin, T. 2017. Thinking, Fast and
Slow: Combining Vector Spaces and Knowledge Graphs.
arXiv:1708.03310 [cs]. arXiv: 1708.03310.

Sonntag, D.; Nesselrath, R.; Sonnenberg, G.; and Herzog,
G. 2009. Supporting a rapid dialogue system engineering
process. In Proceedings of the 1st IWSDS.

Stoyanchev, S.; Lison, P.; and Bangalore, S. 2016. Rapid
prototyping of form-driven dialogue systems using an open-
source framework. In Proceedings of the 17th Annual Meet-
ing of the Special Interest Group on Discourse and Dia-
logue.

Traum, D., and Larsson, S. 2003. The Information State
Approach to Dialogue Management. In Current and New
Directions in Discourse and Dialogue. 325-353.

Wessel, M.; Acharya, G.; Carpenter, J.; and Yin, M. 2017.
An Ontology-Based Dialogue Management System for Vir-
tual Personal Assistants. In Proceedings of the 8th IWSDS.

Williams, J. D.; Asadi, K.; and Zweig, G. 2017. Hybrid
Code Networks: practical and efficient end-to-end dialog
control with supervised and reinforcement learning. arXiv
preprint arXiv:1702.03274.

Xu, W., and Rudnicky, A. I. 2000. Task-based dialog
management using an agenda. In Proceedings of the 2000
ANLP/NAACL Workshop on Conversational Systems - Vol-
ume 3, ANLP/NAACL-ConvSyst "00, 42—47.

