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Abstract

Crowdsourcing services are often used to collect a large
amount of labeled data for machine learning. Although
they provide us an easy way to get labels at very low
cost in a short period, they have serious limitations. One
of them is the variable quality of the crowd-generated
data. There have been many attempts to increase the re-
liability of crowd-generated data and the quality of clas-
sifiers obtained from such data. However, in these prob-
lem settings, relatively few researchers have tried using
expert-generated data to achieve further improvements.
In this paper, we extend three models that deal with
the problem of learning from crowds to utilize ground
truths: a latent class model, a personal classifier model,
and a data-dependent error model. We evaluate the pro-
posed methods against two baseline methods on a real
data set to demonstrate the effectiveness of combining
crowd-generated data and expert-generated data.

Introduction
Machine learning approaches have become the majority in
various areas, however, it is cumbersome to collect a large
amount of labeled data for the training data sets. To solve
this problem, increasing attention has been given to ways
to collect labeled data via crowdsourcing services, such as
the Amazon Mechanical Turk1 (AMT). Indeed, many ap-
proaches have tried to utilize crowdsourcing to gather labels
in areas such as natural language processing (Snow et al.
2008; Finin et al. 2010), computer vision (Whitehill et al.
2009; Welinder and Perona 2010; Welinder et al. 2010), and
machine learning. Using crowdsourcing to collect labeled
data has both advantages and disadvantages. It is advanta-
geous that we can reduce the time and financial costs be-
cause crowdsourcing services access a large amount of man-
power at low cost, which allows us to construct large data
sets. One of the disadvantages, which is often pointed out, is
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the quality control problem for crowd workers. The quality
of the data obtained from crowd workers varies from person
to person. To make full use of crowdsourcing, we have to
solve the problem of learning from noisy workers.

In the field of machine learning, there are two primary
goals. One is to estimate the ground truth labels and the other
is to learn a classifier directly from noisy data. The problem
of estimating ground truth from noisy labels is a relatively
well-studied problem. The most successful approach is re-
peated labeling (Sheng, Provost, and Ipeirotis 2008). This
approach improves the quality of the labels by querying la-
bels from multiple workers for each instance and aggregat-
ing the labels to estimate the ground truths. To aggregate
multiple labels, majority voting and a wide variety of EM-
style estimation strategies have been used. The EM-style es-
timation strategies set the true labels as latent variables in a
model and estimate them using the EM algorithms, an idea
that dates back to the 1970s (Dawid and Skene 1979).

Recently, the problem of learning a classifier directly
from crowd-generated data has appeared (Dekel and Shamir
2009; Raykar et al. 2010; Yan et al. 2010; Wauthier and
Jordan 2011; Kajino, Tsuboi, and Kashima 2012). The ap-
proach of Raykar et al. (2010) and Yan et al. (2010) con-
structs a classifier from estimated ground truth labels, while
the method of Dekel and Shamir (2009), Wauthier and Jor-
dan (2011), and Kajino, Tsuboi, and Kashima (2012) esti-
mates classifiers directly from the labels obtained from noisy
workers. It is important to study this problem because in
machine learning what we need is a high-quality classifier
rather than a perfect training data set.

These approaches can address the problems of learning
from crowds, but it is still problematic that little existing
work combines crowd-generated data and expert-generated
data, thus exploiting reliable labels obtained from experts
who are known to be highly skilled. Combining crowd-
generated data and expert-generated data is expected to im-
prove the quality of a classifier more than using only crowd-
generated data. In fact, there are many existing data sets that
have ground truths and it is a natural idea to combine them
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with crowd-generated data to improve the quality of the data
sets and classifiers. To the best of our knowledge, only the
work by Tang and Lease (2011) and the work by Wauthier
and Jordan (2011) considered this situation.

In this paper, we extend the personal classifier model
proposed by Kajino, Tsuboi, and Kashima (2012), the la-
tent class model proposed by Raykar et al. (2010), and the
data dependent error model proposed by Yan et al. (2010)
to utilize expert-generated data. The personal classifier
model (Kajino, Tsuboi, and Kashima 2012) assigns a per-
sonal classifier for each worker and these classifiers are
assumed to be generated by perturbing the base classi-
fier (here, the base classifier has no training data). We add
training data to the base classifier and implement an effi-
cient algorithm based on the algorithm of the original per-
sonal classifier model. The latent class model (Raykar et al.
2010) is a model that sets the true labels as latent variables
and jointly estimates the true labels and a classifier using an
EM-style algorithm. We add an expert worker to the model
as a special worker to utilize expert-generated data. The data
dependent error model (Yan et al. 2010) is one variant of the
latent class model. The difference between these models is
that the data dependent error model assumes that the abil-
ity of workers changes depending on instances. In the same
way as the latent class model, we add an expert worker as
a special worker to the model. We compare three proposed
methods and two baseline methods on a real crowdsourced
data set. The experiments show that using expert-generated
data can improve the quality of classifiers.

In summary, our contributions are twofold: (i) we extend
the personal classifier model, the latent class model, and
the data dependent error model to combine expert-generated
data and crowd-generated data, and (ii) we demonstrate the
effectiveness of using expert-generated data on a real crowd-
sourced data set and gain insight to the proposed methods.

Problem Settings
We first define the problem considered in this paper. Let us
assume that there are N problem instances X = {xi}Ni=1

where xi ∈ RD is a D-dimensional real-valued feature
vector, and that each instance i has the ground truth la-
bel yi, which is generally not observed in the problem set-
ting of learning from crowds. We also assume that there are
J workers who can give noisy labels to the instances via
crowdsourcing. For the j-th worker (j ∈ {1, . . . , J} is a
worker ID), let Ij ⊆ {1, . . . , N} be an index set of in-
stances that the j-th worker has labeled, let yi,j ∈ {0, 1}
be a noisy label that the j-th worker gave to the i-th instance
xi, let Yj = {yi,j | i ∈ Ij} be a set of labels given by
the j-th worker, and let Y =

⋃J
j=1 Yj be the set of all of

the labels acquired by using crowdsourcing. Similarly, let
Ji ⊆ {1, . . . , J} be an index set of workers who gave labels
to the i-th instance, and let Yi = {yi,j | j ∈ Ji} be a set of
labels assigned to the i-th instance.

In this paper, we additionally assume that some instances
have much more reliable labels than the crowd-generated la-
bels, called expert-generated labels. The expert-generated
labels are given by an expert worker who are known to be

of high ability. In this paper, we assume that an expert al-
ways gives ground truth labels. Assuming that the expert has
a special worker ID j = 0, let I0 ⊆ {1, . . . , N} be an in-
dex set of instances that the expert labeled, let yi,0 (= yi)
be a label that the expert gave to the i-th instance, and let
Y0 = {yi,0 | i ∈ I0} be the set of expert-generated labels.

Our goal is to estimate a binary classifier f : RD →
{0, 1} given (X ,Y,Y0) as a training set. For simplicity,
we focus on the binary classification problem in this paper.
However, the proposed approaches can be directly applied to
more general cases, including multi-class classification and
regression problems.

Proposed Methods
We first extend the personal classifier model (Kajino,
Tsuboi, and Kashima 2012). We then extend the latent class
model (Raykar et al. 2009), and the data dependent error
model (Yan et al. 2010). For each model, we describe a
model of the labeling process and a parameter estimation al-
gorithm. The significance of the proposed methods is that we
take into account two types of workers: workers whose abil-
ity is not known (crowd workers) and workers whose ability
is given beforehand (experts). Most of the existing methods
consider only the workers whose ability is not known.

Personal Classifier Model (PC Model)
We propose a method to combine crowd-generated data
and expert-generated data based on the personal classifier
model (Kajino, Tsuboi, and Kashima 2012).

Labeling Process. We follow the idea of the personal clas-
sifier model (Kajino, Tsuboi, and Kashima 2012) and intro-
duce personal classifiers for workers. Let us represent the
base classifier as a logistic regression model parameterized
by w0,

p(yi = 1 | xi,w0) = σ(w>0 xi),

where σ(t) = (1 + e−t)−1 denotes the sigmoid function.
We assume that the ground truth labels Y0 are generated
from p(yi | xi,w0). This assumption distinguishes the
proposed model from the model of Kajino, Tsuboi, and
Kashima (2012). We also model the labeling process of each
worker j ∈ {1, . . . , J} as a logistic regression model param-
eterized by wj ,

p(yi,j = 1 | xi,wj) = σ(w>j xi).

Then we relate the parameters {wj}Jj=1 and w0. We assume
that the parameters {wj}Jj=1 are generated from p(wj |
w0, λ) and the parameter w0 is generated from p(w0 | η) (λ
and η are hyperparameters). Specifically, we define them as
Gaussian distributions,

p(w0 | η) = N (0, η−1I),

p(wj | w0, λ) = N (w0, λ
−1I),

where η and λ are positive constants.
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Parameter Estimation. We estimate the model parame-
ters by maximizing their posterior distribution. By denoting
W = {wj | j ∈ {1, . . . , J}}, the posterior distribution of
w0 and W given the training data (X ,Y,Y0) is written as

p(W,w0 | X ,Y,Y0, η, λ)
∝p(Y |W,X )p(Y0 | w0,X )p(W | w0, λ)p(w0 | η).

Let F (w0,W) be the negative log-posterior distribution of
w0 and W (where we omit the constants), which is de-
scribed as

F (w0,W) =−
J∑

j=0

∑
i∈Ij

l(yi,j , σ(w
>
j xi))

+
λ

2

J∑
j=1

‖wj −w0‖2 +
1

2
η‖w0‖2,

where l(s, t) = s log t + (1 − s) log(1 − t). Therefore, the
maximum-a-posteriori (MAP) estimators of W and w0 are
obtained by solving an optimization problem:

minimize F (w0,W) w.r.t. w0 andW.

This is a convex optimization problem.

Algorithm. Noticing the conditional independence rela-
tionships among the model parameters {wj}Jj=0, we can di-
vide the optimization problem into subproblems and devised
the following alternating optimization algorithm, in which
we repeat the two optimization steps, one with respect to w0

and the other with respect to {wj}Jj=1, until convergence.
Step 1. Optimization w.r.t. w0

Given {wj}Jj=1 fixed, the optimal w0 can be obtained by
applying any numerical optimization method. In our im-
plementation, we use the Newton-Raphson update,

wnew
0 = wold

0 − α ·H−10 (wold
0 )g0(w

old
0 ,W),

where α > 0 is a step length, and the gradient g0(w0,W)
and the Hessian H0(w0) are given as

g0(w0,W) =−

(∑
i∈I0

(yi,0 − σ(w>0 xi))xi

)

+ λ
J∑

j=1

(w0 −wj) + ηw0, and

H0(w0) =

[∑
i∈I0

(1− σ(w>0 xi))σ(w
>
0 xi)xikxil

]
k,l

+ (η + Jλ)Id,

respectively, where xik represents the k-th element of xi,
and [ak,l]k,l is a d× d matrix with its (k, l)-element equal
to ak,l.

Step 2. Optimization w.r.t. W
Given w0 fixed, the {wj}Jj=1 are independent of each
other. Therefore, we can work on an independent opti-
mization problem for each j ∈ {1, . . . , J}. Again, we
employ the Newton-Raphson update:

wnew
j = wold

j − α ·H−1(wold
j )g(wold

j ,w0),

where α > 0 is a step length, and the gradient g(wj ,w0)
and the Hessian H(wj) are given as

g(wj ,w0)

= −

∑
i∈Ij

(yi,j − σ(w>j xi))xi

+ λ(wj −w0), and

H(wj)

=

∑
i∈Ij

(1− σ(w>j xi))σ(w
>
j xi)xikxil


k,l

+ λId,

respectively.

Latent Class Model (LC Model)
We extend the latent class model proposed by Raykar et
al. (2010) based on the idea of Tang and Lease (2011). The
difference between our model and the model proposed by
Tang and Lease is the existence of feature vectors.

Labeling Process. Similar to the PC model, Raykar et al.
also assume a logistic regression model for the classification
model as

p(yi = 1 | xi,w0) = σ(w>0 xi).

To model the labeling process of each worker, they introduce
a two-coin model{

αj = p(yi,j = 1 | yi = 1),
βj = p(yi,j = 0 | yi = 0).

(1)

If the true label is 1, the j-th worker gives the true label 1
with probability αj and 0 with probability 1−αj . If the true
label is 0, the j-th worker gives the true label 0 with proba-
bility βj and 1 with probability 1− βj . In our extension, we
assume that the true labels Y0 are given by an expert (j = 0)
who never makes mistakes, i.e., α0 = β0 = 1.

Parameter Estimation. We estimate the parameters by
maximizing the likelihood function. The likelihood function
is written as

p(Y,Y0 | X , θ) =
N∏
i=1

[aipi + bi(1− pi)],

where θ = {w0, {αj}Jj=1, {βj}Jj=1} are model param-
eters, and let pi = σ(w>0 xi), ai =

∏
j∈Ji

α
yi,j

j (1 −
αj)

1−yi,j , bi =
∏

j∈Ji
β
1−yi,j

j (1− βj)yi,j .

Algorithm. Approximations of the maximum-likelihood
estimators of model parameters θ are obtained by using the
EM algorithm, where the following E-step and M-step are
repeated until convergence:

E-step. Update µi = p(yi = 1 | Yi,xi, θ) using

µi =
aipi

aipi + bi(1− pi)
.

Note that µi = yi,0 holds for all i ∈ I0 because we set
α0 = β0 = 1.
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M-step. Update {αj}Jj=1 and {βj}Jj=1 using

αj =

∑
i∈Ij µiyi,j∑

i∈Ij µi
, βj =

∑
i∈Ij (1− µi)(1− yi,j)∑

i∈Ij (1− µi)
,

and update w0 by maximizing the lower bound of the log-
likelihood function using the Newton-Raphson update.
Note that we don’t update α0 and β0 in the M-step.

For initialization, we use the majority voting estimation
µi = 1

|Ji|
∑

j∈Ji
yi,j following the method of Raykar et

al. (2010).

Data Dependent Error Model (DDE Model)
We extend the model proposed by Yan et al. (2010) in a sim-
ilar way to the extension of the latent class model.

Labeling Process. Similar to the previous models, Yan et
al. also assume a logistic regression model for the classifica-
tion model as

p(yi = 1 | xi,w0) = σ(w>0 xi).

To model the labeling process of each worker, they introduce
a two-coin model that additionally considers the difficulty of
the instances for each worker j ∈ {1, . . . , J}:

p(yi,j | xi, yi,uj)

=
(
1− σ(u>j xi)

)|yi,j−yi| · σ(u>j xi)
1−|yi,j−yi|.

This means that the j-th worker gives the true label yi to
an instance xi with probability σ(u>j xi) and gives a flipped
label 1− yi with probability 1−σ(u>j xi). In our extension,
we assume that the worker 0 is an expert who labels as

p(yi,0 | xi, yi,u0) = 1− |yi,0 − yi|.

Parameter Estimation. We estimate the model parame-
ters by maximizing the likelihood function. The likelihood
function is written as

p(Y,Y0 | X , θ)

=
J∏

j=0

∏
i∈Ij

∑
yi

p(yi,j | xi, yi,uj)p(yi | xi,w0).

Algorithm. Approximations of the maximum-likelihood
estimators of model parameters θ = {w0, {uj}Jj=1} are ob-
tained by using the EM algorithm, where the following E-
step and M-step are repeated until convergence:

E-step. Update µi = p(yi = 1 | Yi,xi, θ) for i 6∈ I0 using

µi ∝σ(w>0 xi)
∏
j∈Ji

(1− σ(u>j xi))
1−yi,jσ(u>j xi)

yi,j ,

1− µi ∝(1− σ(w>0 xi))∏
j∈Ji

(1− σ(u>j xi))
yi,jσ(u>j xi)

1−yi,j ,

and update µi using µi = yi,0 for i ∈ I0.

M-step. Update θ by maximizing the objective function
L(θ) using the L-BFGS quasi-Newton method based on
the algorithm proposed by Yan et al. (2010). The objective
function, which is a conditional expectation, is written as

L(θ) =
J∑

j=1

∑
i∈Ij

Ep(yi|xi,Yi)[log p(yi,j , yi | xi)]

=
N∑
i=1

(log(1− σ(w>0 xi)) + µiw
>
0 xi)

+
J∑

j=1

∑
i∈Ij

[
yi,j(log(1− σ(u>j xi)) + µiu

>
j xi)

+(1− yi,j)(log σ(u>j xi)− µiu
>
j xi)

]
,

and its gradients with respect to w0 and uj are given as

∂L

∂w0
=

N∑
i=1

(µi − σ(w>0 xi))xi,

∂L

∂uj
=
∑
i∈Ij

[
yi,j(µi − σ(u>j xi))

+ (1− yi,j)(1− µi − σ(u>j xi))
]
xi.

For initialization, we set w0 = 0 and initialize {uj}Jj=1
randomly from the method of Yan et al. (2010).

Experiments
Our experiments tested the effectiveness of combining the
crowd-generated data and the expert-generated data on a real
data set.

Data Set
We used a data set for a Named Entity Recognition (NER)
task, which deals with the identification of the names of per-
sons, organizations, locations, and similar entities in sen-
tences. Finin et al. (2010) created a Twitter data set where
each token of tweets (texts) was labeled by workers of the
AMT2, and we used this data as a training and test set. Un-
like standard data sets for an NER task, the segment bound-
ary of each entity was not given in the data set. Therefore we
simply considered the task as a binary classification prob-
lem to identify whether each token was in a named entity
(yi = 1) or not (yi = 0). Here, we omitted the named entity
labels for the @usernames3 in the same way as the paper by
Ritter, Clark, and Etzioni (2011), because it was too easy to
identify them.

The number of instances was 212, 720, and 8, 107 of
them had expert-generated labels. The instances with expert-
generated labels were also labeled by more than ten crowd-
workers, and the instances without expert-generated labels
were labeled by two workers. The data set had 269 workers

2The data set is available at http://sites.google.com/site/
amtworkshop2010/data-1

3The @ symbol followed by their unique username is used to
refer to other users.
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in total. The feature representation for each token was the
same as that for the named entity segmentation of tweets in
the previous work (Ritter, Clark, and Etzioni 2011). To re-
duce the number of model parameters, we selected the fea-
tures that appeared more than once in the training set, and we
obtained sparse feature vectors with 161, 901 dimensions.

Setting
We varied the number of expert-generated labels in a train-
ing set to see the change in the performance of the classifiers.
We constructed a basic training set from the instances with-
out expert-generated labels, which consisted of 17, 747 in-
stances and 42 workers. Then we constructed an additional
training and test set from the instances with ground truth
labels. We chose 2, 790 instances as an additional training
set from the instances that have labels given by matching
workers with the basic training set. The remaining 5, 317 in-
stances were used as a test set. All of the noisy labels in
both the basic and the additional training set were used as
a training set, and |I0| expert-generated labels of the ad-
ditional training set were randomly chosen to be used as a
training set. We varied |I0| from 0 to 2, 750 in steps of 250.
Each instance in the training set was labeled by two workers
and the number of labels each worker gave is summarized in
Table .

Classifiers were trained using the training set constructed
above, and evaluated by calculating the precision, recall, and
F-measure against the test set. We repeated the process 10
times and calculated the mean and the standard deviation of
the precisions, recalls, and F-measures.

Competing Methods
We used two baseline methods. One is called the Majority
Voting Method that uses a majority voting strategy to es-
timate the true labels. The other is called the All-in-One-
Classifier Method that abandons all of the worker IDs and
merges all of the acquired labels into one classifier.

Majority Voting Method (MV method). This is a typical
heuristic in the context of learning from crowds. Given noisy
labels {yi,j}Jj=1 for an instance xi, the true label yi for the
instance xi is estimated using majority voting as

yi =


1 if

∑
j∈Ji

yi,j > |Ji|/2,
0 if

∑
j∈Ji

yi,j < |Ji|/2,
random otherwise.

For an instance xi with an expert-generated label yi,0, we
used the yi,0 as a true label without doing majority voting.

All-in-One-Classifier Method (AOC method). This is
also a popular heuristic that considers (X ,Y) as training
data for one classifier, i.e., we forget the worker IDs and use
all labels to learn one classifier. In this method, the ground
truth data were considered as one worker and added to the
anonymized training data.

Results
The averages and standard deviations of the precisions, re-
calls, and F-measures are summarized in Figures 1, 2, and 3,

|I0| = 1000 |I0| = 0
j |Ij | αj βj αj βj
0 1000 1 1 ∗ ∗
1 16684 0.542 1 0.538 1
2 7212 0.909 0.998 0.912 1
3 3960 0.518 0.997 0.531 0.998
4 2937 0.66 0.999 0.655 1
5 2407 0.909 0.997 0.963 1
6 1266 0.684 0.998 0.672 1
7 1210 0.767 0.99 0.763 0.992
8 809 0.789 0.993 0.742 0.999
9 708 0.75 0.987 0.765 0.991

10 634 0.723 0.996 0.728 1
11 518 0.609 0.993 0.631 0.998
12 468 0.747 1 0.661 1
13 462 0.802 0.995 0.833 1
14 273 0.624 1 0.62 1
15 237 0.975 0.956 0.974 0.963
16 218 0.915 0.994 0.919 1
17 214 0.312 1 0.312 1
18 189 0 1 0 1
19 180 0.416 0.971 0.439 0.970
20 165 0.797 1 0.796 1
21 164 0.877 1 0.872 1
22 146 0 1 0 1
23 144 0.828 0.907 0.693 0.902
24 133 0.997 0.992 0.884 1
25 123 0.363 0.785 0.369 0.785
26 122 1 0.949 1 0.949
27 112 1 0.898 1 0.910
28 109 0 1 0 1
29 104 1 0.187 1 0.187
30 101 1 1 1 1
31 98 0.87 0.976 0.898 1
32 95 0 1 0 1
33 94 1 0.965 1 0.976
34 92 1 0.945 1 0.945
35 90 1 0.971 1 0.971
36 88 0.63 0.488 0.626 0.488
37 86 0.674 0.79 0.767 0.811
38 81 1 0.984 1 0.971
39 78 0 1 0 1
40 78 0.686 0.804 0.692 0.804
41 76 1 1 1 1
42 74 0 1 0 1

Table 1: The model parameters estimated on a training set
with 1, 000 expert-generated labels (middle columns), and a
training set without expert-generated labels (right columns).

respectively, and the estimated parameters of the LC model
on a crowd-generated data set (|I0| = 0) and a combined
data set (|I0| = 1000) are summarized in Table .

We deduced four findings from these experimental results.
First, the performance of the PC model and the AOC method
measured by the F-measure was improved as the number of
expert-generated labels increased. Second, the performance
of the DDE model and the MV method measured by the
F-measure seemed to be improved, but the variance was
large. Third, the performance of the LC model was invari-
ant with respect to the number of expert-generated labels.
Forth, the estimated parameters of the LC model are almost
the same regardless of the number of expert-generated labels
in a training set.

These findings reflect the characteristics of these models.
The first finding shows that the PC model can improve its
ability by combining noisy labels and ground truth labels.
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Figure 1: Precision versus the number
of expert-generated labels.

Figure 2: Recall versus the number of
expert-generated labels.

Figure 3: F-measure versus the num-
ber of expert-generated labels.

The second finding shows that the DDE model and the MV
method are unstable. This is because each instance had only
a small number of labels (in this experiment, each instance
had only two labels), and the estimation algorithms of these
models have some randomness. The MV method estimates
ground truth labels randomly when the majority voting strat-
egy doesn’t work, and the DDE model initializes some vari-
ables randomly. The third and forth findings show that the
LC model can estimate model parameters well even without
expert-generated labels if we have a sufficient number of la-
bels or the ability of the workers is not too low. In contrast,
Kajino, Tsuboi, and Kashima (2012) reported that if there
were too few labels or the ability of the workers was too
low, then the LC model sometimes performed poorly.

Conclusion
In this paper, we extended three models to combine crowd-
generated data and expert-generated data. A model proposed
by Kajino, Tsuboi, and Kashima (2012) was extended by in-
troducing a training set to the base classifier. A model pro-
posed by Raykar et al. (2010) and a model proposed by Yan
et al. (2010) were extended based on the idea proposed by
Tang and Lease (2011). The experimental results on real data
showed both improved and invariant performance and re-
vealed several characteristics of the models.
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