
Self-Validated Behaviour Trees through Reflective Components ∗

David Llansó, Marco Antonio Gómez-Martín and Pedro A. González-Calero
{llanso,marcoa,pedro}@fdi.ucm.es

Abstract

Developing the AI for non-player characters in a video game
is a collaborative task between programmers and designers.
Most of the times, there is a tension between the freedom
that designers require to include their narrative in the game
and the effort required from programmers to debug faulty AI
specified by good story tellers who are not programmers.
In this paper is presented an architecture for building the
AI of an NPC that extends the component-based approach,
which represents the functionality of an entity as a collection
of functionality-specific components. By associating an ac-
tion in a behaviour tree with a collection of components, and
equipping those components with some reflection capabili-
ties, we are able to identify faulty behaviour trees at design
time.

Introduction

Behaviour trees (BTs) are a new method for creating the arti-
ficial intelligence of NPCs. The framework of BTs provides
us with a set of “bricks” that can be used to create the tree by
adding internal nodes and leafs. Usually the internal nodes
are composite nodes that define the strategy of the execution
of their children. Common composite nodes are sequences,
selectors or parallels.

One of the main advantages of having BTs is that they ex-
plicitly represent the behaviour of the entities. In that sense,
they can be treated as data and therefore they can be anal-
ysed in order to extract information both during design (or
creation) time and during its execution.

As BTs are an intuitive method for describing behaviours,
both programmers and designers are able to build them with
the purpose of creating the AI of the NPCs (Isla 2008). A
BT may be stored in an external file that is read during the
execution of the game, having a data oriented architecture
that reduces the edit-compile-run cycle.

In order for designers to build these files, usually some
support tools are created in the form of tree editors. Usually
these tools provide designers with a set of composite nodes
and basic actions that can be used to create the entire tree. A
designer may create its structure and define the parameters

∗Supported by the Spanish Ministry of Science and Education
(TIN2006-15202-C03-03)
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of every node (such as the failure policy of a composite node
or the number of milliseconds to wait in a Wait action).

During the creation of the game, all these built BTs are
assigned to different races, or concrete NPCs, by using the
map editor. Our proposal is to enhance the tool to check if
this assignment is correct. In this way, designers would have
an extra check that would aid them when creating BTs and
NPCs. By adding reflective capabilities to the components,
which provide an entity behaviour, we are able to detect at
design time if the NPC would be able to perform the selected
behaviour. As the check would be done before the execution
of the BT, designers would be more confident about the cor-
rect link between NPCs and BTs.

The rest of the paper runs as follows. Next Section de-
scribes the two techniques we are extending: component-
based game entities, and behaviour trees. Next Sections
present the core of the contribution by describing the idea
of self-validated behaviour trees, a model of execution of
primitive actions in BTs through collections of components,
and the reflective capabilities required on components. Then
a detailed example is provided before concluding the paper.

Background

Components

Traditional object-management systems are often based on
inheritance hierarchy where all different kinds of entities de-
rive from the same base class. Classes, directly derived from
the base class, are usually also abstract and they represent a
split in the tree between classes with different functionali-
ties. During the game’s development, some decisions are
made about how to split the tree but, due to changeable na-
ture of video games, sometimes those decisions could turn
into bad decisions in the future.

For example, if we had a traditional inheritance tree as in
Figure 1 and we wanted to add a new different type of enemy
called CHumanEnemy, with the same qualities as the player
such as driving vehicles, we would have to botch the tree
to allow it, giving most of the CPlayer class content to
CActor class. This kind of decision would cause that our
tree becomes increasingly top heavy and it would cause also
that classes at the bottom had some unnecessary qualities.

It would be worse if we wanted to allow the
CBreakableDoor class which would be able to be dam-

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

70

Figure 1: Traditional inheritance tree.

< B l u e P r i n t s >
< e n t i t y t y p e ="HumanEnemy">

<component t y p e =" AnimatedGraphic " / >
<component t y p e =" P h y s i c " / >
<component t y p e =" BTExecuter " / >
<component t y p e ="Move−To "/ >
<component t y p e =" DummyBehaviours " / >
<component t y p e =" Car ry " / >
<component t y p e =" S k i l l s " / >
<component t y p e ="Use−V e h i c l e " / >

</ e n t i t y >
. . .

</ B l u e P r i n t s >

Figure 2: CHumanEnemy entity built by components.

aged and to be destroyed like actors. If we wanted to allow it
in the tree we would have to botch the tree again because if
it inherited from CActor class it could not be opened like
regular doors but if it inherited from CDoor class it could
not be attacked and destroyed.

Some of the consequences of this extensive use of class
inheritance are, among others, an increase in the compilation
time (Lakos 1996), a code base difficult to understand and
big base classes. To mention just two examples, the base
class of Half-Life 1 (Valve Software 1998) had 87 methods
and 20 public attributes while Sims 1 ended up with more
than 100 methods.

Due to all these problems developers tend to use a differ-
ent approach, the so called component-based systems (West
2006; Rene 2005; Buchanan 2005; Garcés 2006). Instead
of having entities of a concrete class, which define their
exact behaviour, now each entity is just a component con-
tainer where every functionality, skill or ability that the en-
tity has, is implemented by a component. From the de-
veloper point of view, every component inherits from the
IComponent interface whilst an entity becomes just a list
of IComponents. In this way, the creation of new enti-
ties could be done data-oriented using external files such us
simple XML files.

As an example, the previous CHumanEnemy, which
highlighted the disadvantages of the traditional inheritance
trees, would become an entity (Figure 2) sharing some com-
ponents with the CPlayer entity: those components that
defines the abilities that CPlayer had and we wanted to
reuse through inheritance.

Components may require some external information to

configure themselves at the beginning of their execution.
For example, the AnimatedGraphic component shown
in Figure 2 would need at least the name of the file with the
3D model and animations. All this information is usually
stored in the map file of every game level and it is given to
the components during their initialization.

As the components are now generic objects with a com-
mon interface independent of their functionality, the usual
method invocation is not enough. A piece of code calling a
method like MoveTo() cannot take place, because no such
method even exists. What an entity has now is a compo-
nent (Move-To in Figure 2) that is able to move this en-
tity from one point to another, but externally this is just a
IComponent indistinguishable from other.

The communication must be therefore performed in a dif-
ferent way, using message passing. Every IComponent
is viewed as a communication port that is able to receive
and process messages. A message is just a piece of data
with an identification and some optional parameters . So,
the components have a method like handleMessage()
that is called externally to send the piece of information to
it; depending on the concrete component, the message can
be ignored or processed accordingly. In this scenario, enti-
ties play the role of the broadcaster of messages. Both inter-
nal components and external modules may send messages
to the entity that are automatically distributed among all its
components.

An example of working could be one in which the en-
tity in Figure 2 was attacked. When another entity attacked
this entity the Physic component would be informed by
the Physic engine. Consequently, the Physic component
would send a Collision message with the other collided
entity as a parameter. So the entity would transmit the mes-
sage through their components and the components that have
the ability to carry out that message would accept and store
it. Specifically, in this example, only the Skills compo-
nent can carry out it. Thus then, during the processing time
of the Skills component, it would check if the collision
was referred to an attack and, in this case, the component
would evaluate if the entity was wounded and the degree
of damage taking into account some skills of both entities
such as attack and defence abilities or strengths. If the at-
tack caused any damage the Skills component would up-
date its values (such as the life factor) and it would send a
Wounded (or Death) message through the entity. Then,
other components such as Graphic component would ac-
cept and store it for future processing in which it would play
the corresponding wounded (or death) animation.

Behaviour Trees

According to the number of papers dedicated to the sub-
ject in the editions 3 and 4 of the AI Game Programming
Wisdom (Rabin 2006; 2008), Behaviour Trees (BTs) are
the technology of choice for designing the AI of non-player
characters (NPCs) in the game industry.

BTs are proposed as an evolution for hierarchical fi-
nite state machines (HFSMs) intended to solve its scalabil-
ity problems by emphasizing behaviour reuse (Isla 2005).
Nodes in a BT represent behaviours, where an inner node is

71

a composite behaviour (corresponding to an abstract state in
a HFSM) and a leaf in the tree represents an action (cor-
responding to a concrete state in a HFSM). To promote
reusability, the states in a BT (i.e., the behaviours) do not
include the conditions that lead to transitions. Those con-
ditions are represented as guards for the behaviours so that
the same behaviour can be used in different contexts with
different guards. To further promote reusability, behaviours
may be parametrized, so that in a particular context param-
eters are bound to actual values in the map. In this way, a
node in such a BT is represented through: a behaviour (be it
composite or a primitive action); bindings for the parameters
of that behaviour; and a guard condition that must be true,
during the execution time of that behaviour, to be activated.

From the different models of execution for BTs, we have
chosen one where a BT has an active branch, going from
the root to a leave, of behaviours being executed. Every tick
of the game, some guards may get evaluated and some be-
haviours may finish, be it successfully or with failure, even-
tually leading to the expansion of a new active branch in the
tree.

Although more complex types of composites are de-
scribed in the literature of BTs, for the goals of this paper,
we only require three types of composites: sequences, static
priority list and dynamic priority list. A sequence composite
behaviour executes its children in the order they are defined,
succeeding when every children succeeds and terminating
with failure whenever one of the children fails. The children
behaviours of a sequence are not guarded by conditions. A
static priority list is a composite node that evaluates its chil-
dren guards in order and activates the first child whose guard
is true. A dynamic priority list, in its turn, re-evaluates the
guards of its children with higher priority (the first child be-
ing the one with highest priority) than the active one, and
switches to a higher priority child whenever possible.

Self-Validated Behaviour Trees

As we have described earlier, a BT describes the actions that
an avatar should executed within the environment using a
tree hierarchy. BTs are then assigned to concrete entities
either during design time or once the game is in execution.

Most of the implementations of BTs distinguish between
two different kinds of failures of the basic actions:

• Failures prior to the execution: these errors appear before
the beginning of the execution of the action. The action
ends without having made any changes to the world. A
typical example is the failure of a Move-To action be-
cause there is no path to the target position. Usually, the
solution involves local replanning.

• Failures during execution: before the execution, the action
checks the environment and it establishes that the action
could completely perform the task. However, something
changes in the virtual environment and the task cannot be
completed (i.e. this errors are due to the ever changing
nature of the world). When these failures happen the ac-
tions have already made changes to it. One example is
the failure of a Move-To action because the path is sud-
denly blocked, and there is no other way to reach the tar-

get. When these failures take place, the response usually
looks for other alternative in a different part of the tree.
We can, however, extend the kind of errors that can be

found in a BT. Generally speaking, a BT fails when their
actions cannot be executed (let us assume that the failure
of composite or internal nodes depends on the success or
failure of their children that, in the end, are basic actions).
Therefore, it makes sense to carefully analyse new condi-
tions that may cause an action to fail:
• The NPC assigned to the BT does not have the ability

to execute the action. An example would be an action
that follows a path within the environment but requires
the NPC to fly. If it did not have that ability, the action
would fail. This is an intrinsic limitation of the entity, not
a failure of the action itself because of the environment.

• The NPC has the ability to execute the action but it can-
not do it under the concrete conditions created by the de-
signer. This is related to the parameters of the actions
instead of to its nature. For example, an entity might be
able to carry objects but the particular object specified on
the BT could be too heavy. Once again, the failure is due
to an inherent limitation of the NPC.
So, in general, let us say that there are two kinds of errors:

those due to the intrinsic nature of the entity that would try
to execute the actions (the extended kinds of failures), and
those that are related to the state of the environment (the
previous).

Our proposal is focused on the extended kind of errors
due to the intrinsic nature of the entity that ended up try-
ing to execute the BT.It tries to identify them as soon as
possible in order to check, during the design time, if there
are some guarantees about the success of the execution of
the BT. With this technique, designers would have an extra
check that would aid them when creating BTs and NPCs.
As the check would be done before the execution of the BT,
designers would be more confident about the correct link be-
tween NPCs and BTs.

When a designer assigned a generic BT to an entity, the
first kind of errors can be checked: the association would
success if the NPC has all the abilities required by the BT
actions. Due to the representation of entities as a list of com-
ponents, and having into account that components represents
somehow the abilities of the entity it is easy to know if the
avatar would be able to execute every action: the ability/-
component that was the one responsible for that action must
be looked for.

Though this approach is really easy to implement (see
next section), it is quite coarse-grain and its precision is not
good enough.

Therefore, a fine-grained approach should consider the
general abilities (or general intrinsic limitations) of the enti-
ties but also the limitations due to the parameters of the ac-
tions. This is also possible when the parameters have been
hard coded in the BT during the design time. As it is shown
in the next section, we would need to instantiate the compo-
nent responsible for executing the action and to query it in
order to know if the entity had some limitations that would
prevent it from executing that action.

72

Behaviour Tree Executer

When we think about the implementation of the AI of an
entity using a BT, the obvious approach would be to cre-
ate a new component that was able to execute a given BT
over that entity. In Figure 2 this component was called
BTExecuter.

This new component could be seen as an interpreter of
BTs. It is meant to read the properties of the entity during
initialization time and load the BT file specified on them. It
must be able also to handle different messages for changing
the current BT in execution; this would be useful when de-
signers wanted to hard coded a change on the behaviour for
the sake of the gameplay.

The composite nodes that compound the BT would be ex-
ecuted accordingly by the component. It would track the
branch of the BT being executed and would check the con-
dition of the open nodes periodically. When the flow of ex-
ecution reached a leaf where a basic action resides, it would
have to perform it over the entity it belonged to.

This basic actions (such as a Move-To action) could be
carried out in two different ways. The first approach would
consist on running it autonomously by sending messages in
every tick over the other components of the entity. For ex-
ample, in a Move-To action the BTExecuter component
might send update messages of positions in every tick.

In the second approach the BTExecuter component
would not take the responsibility of executing any of the ba-
sic actions but it would delegate its execution to other com-
ponents that the entity should own. In that sense, the atomic
actions that appear in the leaves of the tree would be carried
out by other components (such as Move-To component or
FollowPath component). Our BTExecuter would be-
come a director of the execution that sent messages with the
action information and waited the confirmation messages in-
dicating that executions of these actions had ended, in order
of having the BT execution moves forward.

Our proposal is based on this second way. As shown in
next sections, if actions were carried out by different com-
ponents, abilities and skills of the entity would be explicit
because BT actions and components that can carry out those
actions could be linked. So it would give us the possibility to
applied inference mechanisms that would help us detecting
possible execution fails of BTs associated to specific entities
during the design time.

let us expose an example in which the BTExecuter
component had to move the entity (Figure 2) from one point
to another. This component would send a Move-To mes-
sage, with some parameter like the target position, to the en-
tity. The entity would transmit the message through their
components and the Move-To component would accept
and store it. Then the Move-To component during its pro-
cessing time would find the correct path for the movement
and it would send ChangePosition messages periodi-
cally, with parameters such as the new position or the move-
ment type, through the entity. Components such as Physic
component or Graphic component would accept and store
it for future processing in which they would change posi-
tions of the physic and the graphic entities and would play
the corresponding animation. Finally, when path was com-

pleted, the Move-To component would send a confirmation
message that the BTExecuter component would receive
to continue the BT execution.

Reflective Components
The implementation of the process of validating the BT is
based on the components. If the entity is specify in terms
of components and bearing in mind that a component can be
seen as an ability that the entity has, it makes sense to try
to identify the failures related to the inherent nature of the
entities using such description. In order to do that, we will
see as starting point the explicit knowledge that is available
both in the list of components and in the BT, which contains
the list of actions needed to execute the behaviour.

According with the classification of failures that is listed
in the previous section, the implementation has to cope with
two different limitations: those inherent to the actions and
those related to the parameters given to it.

For the first ones, and taking into account that every action
is performed by a component, the easy (and naïve) approach
would be to make direct associations between actions in final
nodes of BTs and components which were able to execute
these actions.

As an example, let us suppose a BT that defined a charac-
ter behaviour that consisted of patrolling from one point to
another and, when another character is perceived, it shoots
it with a gun. The final BT would have (together with com-
posite nodes and the condition node related to the percep-
tion of another entity) a Move-To and an Attack action.
The test would check if the entity assigned to the BT had a
Move-To component for the patrol and an Attack com-
ponent for shooting at the enemy.

To implement this idea it would be enough to have a table
of pairs, a BT action with a list of components that carry out
the above-mentioned action. So to validate a BT assignation
would suffice to check that, for each action, the entity had at
least one component of the component list associated with
each action in the table.

Unfortunately, though the idea is easy to implement, it
would not be precise enough, because it would give the
designer false positives. In more specific cases, the entity
would not be able to perform the behaviour while our im-
plementation assured that it would.

There are two different reasons why this could happen.
Some components could be associated to BT actions, but
they were not always able to carry out all these kinds of ac-
tions, either because they needed the collaboration of other
components which would be not in the entity or because the
component was not able to correctly execute the action with
its associated parameters.

For example, if a BT had an action that should make
an entity fly from one point to another, the entity might
have a Move-To component, but at the same time the
AnimatedGraphic component of the same entity could
not be able to play a flight animation. When the Move-To
component broadcast the ChangeAnimation message
with the “flight” parameter, nobody would be able to per-
form the action, and therefore the BT would not be suitable
for the entity which it wanted to be associated with.

73

On the other hand, a component that, let us say, allows the
entity to take other objects may form part of the entity. When
the component was created, it would take some information
from the map, such us the maximum weight that entity could
carry. If the AI of the entity decided to take some object, it
would send a Take message with a parameter specifying
the entity that had to be taken. If the BT sent the message
with an entity whose weight exceeded the maximum load the
entity might carry, the message would not be successfully
handle by any component.

In order to manage both kinds of errors, we have extended
the IComponent interface, so that the components can be
asked about their ability for performing actions in the BT.
Those consults are made by asking the components if they
are able to handle a concrete message according to their con-
figuration. So they will be queried by using the messages
that BT actions generate during execution time to give in-
structions to the entity and they include specific parameters
of BT actions. Considering the previous examples, we will
use these new method to check if there are some component
able to process a Go-To message that requires the entity to
fly, or a Take message with a concrete entity.

The proposed implementation consists of when a BT was
assigned to an entity during the design time, the final BT
actions would be gone through, one by one, asking the en-
tity, through the canEntityCarryOut() method, if an
action, with its parameter, could be executed. The method
would ask the components sequentially about their ability to
execute this action, until a component returned true or the
list had ended.

The specific components would be those responsible for
implementing the canComponentCarryOut() method,
declared in the interface of the component, reporting which
actions can be performed. Depending on the component, it
would automatically return true or it would check if their at-
tributes allowed the action to be executed (for example com-
paring the maximum weight with the one of the entity that is
supposed to take). More complex actions would require the
component to recursively consult other components about
their ability to execute primitive actions such as pick the
flight animation. Figure 3 shows the pseudo-code of the im-
plementation.

It is obvious that components should be initialized to
receive messages and to check their abilities but full ini-
tializations would not be necessary. For example, the
Graphic component, during the execution time, would
create a graphic entity into the graphic engine from the
model specified to the component but it would not be neces-
sary during the design time and the component would only
need the animation names to know which types of anima-
tions would be able to play.

Example
Let us suppose that a game where avatars need wood for
their subsistence is being developed. Designers would create
BTs such as the one shown in Figure 4 that would represent
a behaviour of “wood harvesting”. It would be compounded
by a composite node that executes in sequential order the
actions of its children. Avatars would get in an excavator

c l a s s IComponent {
v i r t u a l bo o l canComponentCarryOut

(Message m) { r e t u r n f a l s e ; }
. . .

} ;

c l a s s E n t i t y {
boo l c a n E n t i t y C a r r y O u t (Message m) {

f o r each Component c i n components {
i f (c . canComponentCarryOut (m))

r e t u r n t r u e ;
}
r e t u r n f a l s e ;

}
. . .

} ;

boo l check (E n t i t y e , BT b t) {
f o r each Ac t i o n a i n b t . a c t i o n s {

Message m = a . getMsg () ;
i f (! e . c a n E n t i t y C a r r y O u t (m))

r e t u r n f a l s e ;
}
r e t u r n t r u e ;

}

Figure 3: Pseudo-code of the implementation

shovel and use it to go to a known wood source, load wood,
drive to camp and unload wood there.

During the design time, this BT could be associated to the
entity described in Figure 2. To validate this association, the
check() method (previous section) would extract all the
basic actions of the BT, find out which messages they would
eventually send to the components and check if they would
be handled by any of the components.

In our example, actions related to excavator shovel,
Get-In and Drive-To, in which the entity tries to
get in the vehicle and to drive, could be carried out us-
ing the Use-Vehicle component listed in Figure 2 and
Move-To action is carried out by Move-To component.

Figure 4: Behaviour Tree 1 of “wood harvesting” type.

74

Figure 5: Behaviour Tree 2 of “wood harvesting” type.

These components would ensure that entity’s Graphic
component was able to play the corresponding animations.

However, Load and Unload wood actions would fail.
These actions could not be carried out by any component of
the entity. Although a Use-Vehicle component existed,
it would be generic for all kinds of vehicles and it would
permit us to execute actions such as driving, but it would
not permit specific actions like how to use a shovel. This
would be the reason why this BT could never be associated
with this entity, if we did not add a new specific component
for the use of an excavator shovel: not all the basic actions
of the BT could be executed (i.e. the entity would not have
some of the abilities required by the basic actions).

In this situation, designer would be warned about the im-
possibility of the entity to execute that behaviour. He could
then think about extending the entity with the new abilities
or using a different BT for the same goal. In that sense,
he could create the new behaviour shown in Figure 5. This
behaviour is a composite of dynamic priority list type with
two nodes: the first one is a sequence that harvests a piece of
wood when there is not enough wood at home, and the sec-
ond one is a dummy behaviour that makes the entity wan-
der around home in other case. As it is explained before, a
dynamic priority list re-evaluates the guards of its children
periodically. In that sense, the first node would have the
condition of not having enough wood at home as its guard,
therefore the BTExecutor would choose this node only
when the condition became true; while it kept on being false,
the Wander node would be selected. This behaviour would
have a parameter that allows the designer to choose the ac-
tual piece of wood that would be fetched. He might decide
to specify it during design time or precede it with another
behaviour that would select it in real time.

To validate the association, Wander, Take, Move-To
and Leave actions, with their parameters, should be
gone through by asking the entity if they can be exe-
cuted, in the same way as it was explained in the pre-
vious example. During the design time the association
could be validated because Take and Leave actions could
be carried out by the Carry component, Wander ac-
tion by DummyBehaviours and Move-To action by the
Move-To component.

If the designer specified the parameter of the behaviour,
i.e. the piece of wood to be taken, the check would move a
step forward. Instead of just test if all the abilities needed
would be available, it can also check if the actions could
be performed with the actual parameters. In that sense the

behaviour could be ruled out because of the piece of wood
specified in the association was too heavy for the entity. Dur-
ing the check of the Take action, the Carry component
would ask the entity if it was able to generate enough force
to pick up the piece of wood. If the piece of wood was too
heavy, both the Skills component which is responsible
for generating forces, and the rest would communicate to
entity the impossibility of producing enough force, so the
Carry component would not be able to execute Take ac-
tion and, because of this, the entity would not be able to
carry out the BT.

Conclusions and Future Work

In this paper we have presented an architecture that com-
bines BTs and components with some reflection capabilities
in order to identify faulty BTs at design time. In this way,
designers will have an extra check that will aid them when
creating the AI for the NPCs. This is becoming important
because designers are more and more involved in the associ-
ation between AIs and entities. For example, using Kismet,
the gameplay editor used in the Unreal Engine, they are able
to assign a concrete behaviour to an entity placed on the
game map.

We envision the use of similar techniques in real time dur-
ing the execution of the game. In that sense, the reflective
components may be used prior to the execution of the BT.
The approach may be useful when the BT is automatically
generated using other mechanisms such as planners or CBR
(Flórez-Puga et al. 2008).

References

Buchanan, W. 2005. Game Programming Gems 5. Charles
River Media. chapter A Generic Component Library.
Flórez-Puga, G.; Gómez-Martín, M. A.; Díaz-Agudo, B.;
and González-Calero, P. A. 2008. Dynamic expansion of
behaviour trees. In Artificial Intelligence and Interactive
Digital Entertainment (AIIDE). Palo Alto, USA: AAAI
Press.
Garcés, S. 2006. AI Game Programming Wisdom III.
Charles River Media. chapter Flexible Object-Composition
Architecture.
Isla, D. 2005. Handling complexity in the Halo 2 ai. In
Game Developers Conference.
Isla, D. 2008. Halo 3 - building a better battle. In Game
Developers Conference.
Lakos, J. 1996. Large Scale C++ Software Design. Addi-
son Wesley.
Rabin, S., ed. 2006. AI Game Programming Wisdom 3.
Charles River Media.
Rabin, S., ed. 2008. AI Game Programming Wisdom 4.
Charles River Media.
Rene, B. 2005. Game Programming Gems 5. Charles River
Media. chapter Component Based Object Management.
Valve Software. 1998. Half life.
West, M. 2006. Evolve your hiearchy. Game Developer
13(3):51–54.

75

	AIIDE09
	Contents
	Index
	AAAI Website

