
Cost-Sensitive Concurrent Planning Under Duration
Uncertainty for Service-Level Agreements

Amanda Coles and Andrew Coles
Dept. of Computer and Information Sciences,

University of Strathclyde, Glasgow, UK
email: {amanda,ac}@cis.strath.ac.uk

Allan Clark and Stephen Gilmore
School of Informatics,

University of Edinburgh, UK
email: {a.d.clark,stephen.gilmore}@ed.ac.uk

Abstract
This paper brings together work in stochastic modelling, us-
ing the process algebra PEPA, and work in automated plan-
ning. Stochastic modelling has been concerned with verifi-
cation of system performance metrics for some time: given
a model of a system, determining whether it will meet a
service-level agreement (SLA). For example, whether a given
sequence of transitions on a network will complete within 5
seconds 80% of the time. The problem of deciding how to
reconfigure the system most cost-effectively when the SLA
cannot be met has not been widely explored: it is currently
solved manually. Inspired by this, we consider how planning
can be used to automate the configuration of service-oriented
systems. Configuring these stochastic systems presents new
challenges to planning: building plans that meet SLAs, but
also have low cost. To this end, we present a domain-
independent planner for planning problems with action costs
and stochastic durations, and show how this can be used
to solve both traditional planning domains, and within the
framework of configuring a larger process algebra model.

1 Introduction
In this paper we bring together two established areas of com-
puter science research to solve the problem of system con-
figuration to meet service-level agreements (SLAs). SLAs
give guarantees about service time for a system (e.g. com-
pletion within 10 seconds 90% of the time), given that there
is uncertainty in the execution time of each component.

SLAs have wide applicability, for example a large online
retailer may wish to offer a delivery service with a guaran-
teed deadline (paying a penalty if the deadline is missed);
but there is uncertainty in the time taken to select, pack and
send items. SLAs are also important in Internet and network
service provision, where guarantees are sought on the per-
formance of a larger system that are combinations of smaller
ones. For example, an online travel agent may need to search
flight, hotel and taxi systems. Expected system performance
here is key: customers will leave if response is slow.

Work on stochastic modelling, using process algebras, has
long considered the question of whether a system will meet
an SLA. The strength of process algebra models is their abil-
ity to model uncertainty accurately in potentially large sys-
tems, with looping behaviour and many concurrent users.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We use the process algebra PEPA (Hillston 1996) because
it, uniquely, has a differential equation semantics which can
be applied to modelling large-scale systems without the need
for complete state space enumeration. A range of techniques
including model-checking, discrete and continuous simula-
tion can be used to determine whether a given system meets
an SLA. If the SLA is met, the system can be deployed with
the desired performance guarantee. The difficulty arises,
however, when the SLA is not met: the techniques used
are designed for measuring properties of models; rather than
creating such systems. For example, there may be the oppor-
tunity to upgrade parts of the system (at some cost) and the
challenge is to find a low cost (ideally the lowest cost) set of
upgrades that achieve some SLA. Currently this is done by
manual generation of different models, followed by the use
of PEPA to determine if they satisfy the SLAs.

In contrast, the traditional strength of planning is in au-
tomated decision making. This provides an opportunity to
apply planning, in combination with PEPA, to the task of
system configuration. We begin by considering the problem
of configuring large systems, illustrating relationships be-
tween PEPA models and stochastic planning problems with
action costs. In small systems, with non-complex interac-
tions, it is possible to create a planning problem capturing
the whole system. But, as PEPA can be used to model sys-
tems much larger than those planners can reason with, and
with complex interactions between components, we develop
a system that iterates between planning and PEPA analysis.
The automatic configuration of large systems is made pos-
sible by this iteration: neither approach can achieve this in
isolation.

Within this framework, two key challenges are posed to
the planner: reasoning about uncertainty in action dura-
tions in highly concurrent systems (a relatively young field);
whilst optimising with respect to some plan metric. Thus,
we present a new planner stochastic-popf capable of solving
such problems effectively, using a combination of anytime
search and a novel temporal-and-cost-sensitive heuristic.

2 Context
In this work, we build on the PDDL2.1 (Fox & Long 2003)
representation of temporal planning. Here, the start and end
of a durative action A can be considered as two instanta-
neous snap actions, A` and Aa. These are temporally sep-

34

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

arated according to a duration constraint: an upper- and
lower-bound on the time between them. Each snap-action
a has preconditions pre(a) that must hold prior to its exe-
cution, and effects that occur upon execution: del(a), the
facts deleted; add(a), the facts added; and num(a), effects
on state numeric variables. Additionally, there may be con-
ditions inv(A) that must hold throughout the action’s execu-
tion. A goal state is one satisfying some constraints on facts
and numeric variables, in which no action is executing.

We extend this model to stochastic durations by in-
troducing new keywords to PDDL. Stochastic durations
are represented by the function keywords exponential
or stochastic-gaussian-mean. Written thus, for a dura-
tion constraint (= ?duration (exponential ?r)) (where ?r
is an action parameter), the initial value of the func-
tion is taken as the mean value of the action’s dura-
tion. Gaussian distributions further require a definition of
(stochastic-gaussian-standarddeviation ?r) specifying the
standard deviation. Although not relevant to this paper, the
syntax can be trivially extended to other types of distribu-
tion, e.g. stochastic-erlang-mean. Note also that a deter-
ministic planner can parse and run on domains described
thus, using the given mean values as (fixed) action durations.
SLAs are either given as a command-line parameter, for all
goals, or through the use of the (within) syntax borrowed
from PDDL3 (Gerevini et al. 2009). We change the meaning
of this: (within 10 p) specifies p must hold from time 10,
subject to the given (command-line) confidence bound.

2.1 Deterministic Planning with Deadlines
Planning to meet deadlines has received limited specific at-
tention. Deadlines can be modelled explicitly through timed
initial literals (TILs), introduced in PDDL2.2, by deleting a
fact that makes achieving the goal possible. Alternatively,
using required concurrency (Fox, Long, & Halsey 2004;
Cushing et al. 2007), a fixed-length action can be used to
restrict the time available in which other actions can be ap-
plied, indirectly enforcing the deadline. Required concur-
rency is supported by few planners, e.g. (Gerevini, Saetti, &
Serina 2010; Coles et al. 2008; 2010); whereas TILs are ex-
plicitly supported by a number of planners e.g. (Kavuluri &
Senthil 2004; Gerevini, Saetti, & Serina 2006) from IPC4.

Although TILs and required concurrency can model dead-
lines, they have many other uses, and planners to date have
typically focussed on general-purpose mechanics, rather
than guidance specifically for deadlines. An exception to
this is the planner CRIKEY3 (Coles et al. 2008), which uses
techniques within its heuristic to note when facts will no
longer be available. Its successor POPF (Coles et al. 2010)
exploits reduced commitment through expansion of a partial
order making search particularly effective in problems with
deadlines in two key ways. First, it avoids unnecessary se-
quential orderings, favouring concurrent execution, thus im-
proving the temporal efficiency of considered plans. Second,
the partial order informs a modified temporal RPG heuristic
of the earliest points at which facts can be added/deleted, un-
der the restriction that the partial order is always expanded
forwards. This favours construction of relaxed plans whose
actions can be added earlier in the plan.

2.2 Temporal Planning Under Uncertainty

Planning under uncertainty in domains with time has re-
ceived much attention in recent years. There is a great deal
of variation, however, in the precise nature of the uncertainty
different systems reason with. The level of temporal ex-
pressivity varies widely: some planners handle actions with
durations (some fixed, others stochastic); others deal with
actions occurring in parallel but do not consider durations.
Further, some consider uncertainty in action outcomes. We
consider stochastic action durations; but not uncertainty in
action outcomes. The most common existing optimisation
metric is a weighted sum of cost and makespan. However,
the challenge we wish to address is different: to meet a fixed
SLA (deadline with a confidence bound) with a plan of min-
imal cost. These are very different, we do not wish to min-
imise makespan, simply meet the SLA; indeed the lowest
cost plan will often be the longest that meets the SLA.

FPG (Buffet & Aberdeen 2009) focusses mainly on the
issue of generating plans in the face of uncertain action
outcomes with some support for concurrency, using a ma-
chine learning approach to generate MDP policies. Two
other planners consider uncertainty in action outcomes,
Prottle (Little, Aberdeen, & Thiébaux 2005) and Temptas-
tic (Younes & Simmons 2004); both can also reason with
uncertainty in action durations. Prottle builds a policy by
searching through a space of and/or trees, using MDP algo-
rithms to produce plans that meet a deadline whilst minimis-
ing probability of plan failure. Temptastic builds an initial
plan ignoring uncertainty and then builds a semi-MDP pol-
icy around this, achieving the goal by a deadline with a spec-
ified confidence level (it does not optimise cost). The ex-
pressivity of both of these planners extends that of our plan-
ner to support outcome uncertainty (although neither solves
the precise problem we are tackling). Our model of uncer-
tainty, however, requires only uncertainty in durations, not
in outcomes, so we can hope to build more scalable systems
for these problems, without the need for policies and MDPs.

A difficulty in using MDP-based approaches for temporal
planning is the need to discretize time, making it difficult to
handle concurrency efficiently, limiting scalability. Mausam
& Weld (2008) and Rachelson et. al. (2008) explored several
techniques for reducing the blow-up caused by this. The
scalability of MDPs is still not comparable to that expected
of non-MDP-based planners; but they can offer guarantees
that such planners cannot. The model of uncertainty used by
Mausam & Weld is, like ours, concerned with uncertainty in
action durations but not outcomes; however they optimize a
weighted sum of makespan and cost.

The final approach we note, the planner RTU (Beaudry et
al. 2010), is perhaps the most closely related, using forward-
chaining search for planning under resource and time un-
certainty. A Bayesian network is used to manage stochastic
temporal constraints. Our framework is similar, but we focus
on a different optimisation criterion (they use the weighted
sum of makespan and cost). RTU uses a heuristic based on
that of Sapa to attempt to minimise plan cost; we place much
greater emphasis on guidance to optimise cost in this setting,
introducing powerful heuristic pruning and anytime search.

35

BL
def
= (requestLender,>).BLreq

BLreq
def
= (transferToLender, rBL).BLwait

BLwait
def
= (transferFromLender,>).BLresp

BLresp
def
= (responseLender, rBL).BL

LE
def
= (transferToLender,>).LE think

LE think
def
= (transferFromLender, rLE).LE

(BL BC
L
LE), L={transferToLender, transferFromLender}

Figure 1: Example PEPA Model (from GetLoan)

2.3 Performance Modelling Using PEPA
Process algebras provide an effective means for modelling
and reasoning with the performance of a system, and share
with planning the idea of domain independence. We work
with the algebra PEPA (Hillston 1996), one application of
which in the literature is the GetLoan system (Bocchi et al.
2009). GetLoan models the stages of a loan enquiry, pass-
ing data from a customer (CR) over a network (CB) to a
broker (BR); then on a network (BL) to a lender (LE); then
back, returning a decision. The inner stages are shown in
Figure 1. The first four lines define the four states of the
network BL, and transitions between them. For instance,
transferToLender takes it from BLreq to BLwait at rate rBL

(where 1/rBL is the mean of an exponential distribution).
As can be seen, BL has looping behaviour: the transition out
of BLresp returns it to BL. The definition of LE , the lender,
is simpler, alternating between being ready and thinking.

The final line of the figure notes that BL and LE cooper-
ate over the transitions in L, i.e. the transition can be made
iff both are in appropriate states. Thus, transferToLender
can only occur if the positions of the components are BLreq

and LE . The transition rate is the slower of the two: rBL

as LE has the (infinite) top rate > (hence the other compo-
nent in the cooperation is slower). Intuitively, this means the
network speed, rBL, is the factor limiting the rate of data
transfer to the lender. In the full GetLoan model, such coop-
eration occurs between all adjacent stages of the transaction.

PEPA can be used to measure whether an SLA is met, e.g.
the customer receives a response within 5 seconds, 80% of
the time; this is done by running execution simulations. Sup-
pose that an SLA is not met but several system components
could be upgraded to work at faster rates (at some cost), e.g.
investing in network infrastructure. If, for example, each
component has four possible rates, there is a large space of
rate combinations to search to find cost-effective combina-
tions of upgrades: this is where planning can be used.

PEPA is suitable for use on much larger models than this,
for instance process arrays can be used to duplicate com-
ponents, with BL[100] denoting that the network link to
the lender is duplicated a hundred times. This has impor-
tant consequences because in PEPA a given transition oc-
curs probabilistically at the specified rate if its conditions are
satisfied. If several BL components are ready to make the
transition transferToLender, but only one LE is ready, then
there is a probabilistic choice of which BL gets to make the
transition. We refer to such cases as race conditions.

PEPA semantics consider states to have a residence time
and transitions to be instantaneous; whereas planning has

action durations and instantaneous states. The duration of
an action in planning is analogous to state residence time in
the state before that activity occurred in PEPA. For each state
of a PEPA component we can compute, through simulation,
the state residence time in that state (e.g. in Figure 1 we
expect BLreq to remain for n units before transferToLender
fires and it becomes BLwait). This is not necessarily the
reciprocal of the rate, as the transition may have to await
another component. Transition times are calculated using
Little’s law: the average time spent in a state, S, (the average
transition time out of S) is equal to the proportion of all users
in S on average divided by the rate at which S is entered.

3 Integrating Planning and PEPA
In this section we explore how stochastic planning can be
combined with PEPA models to configure large systems.
Each approach has its respective strengths: a planner can
automatically search the space of possible system configura-
tions, producing a plan representing system structure; whilst
PEPA can effectively scale to large systems, thousands of
components, and accurately model performance.

3.1 Common Ground between PEPA and PDDL
To configure sections of PEPA models using a planner we
define a mapping from PEPA to PDDL. Intuitively both lan-
guages are concerned with states and the transitions between
them. In the PEPA model in Figure 1, transitions have im-
plied preconditions and effects. A PDDL action derived
from transferToLender can be written:
(:durative-action transferToLender
:parameters (?r - rate)
:duration (= ?duration (exponential ?r))
:condition (and (at start (BL-req))

(at start (LE))
(at start (rateset transferToLender ?r)))

:effects (and
(at start (not (BL-req))) (at end (BL-wait))
(at start (not (LE))) (at end (LE-think))))

Note the parameter ?r: as we are concerned with mak-
ing decisions about PEPA model configuration, we use the
predicate rateset to record the rate assigned to each tran-
sition. These are set by additional dummy actions, which
increase plan cost, and irreversibly fix the rate to one from
those specified as available (in the problem file).

The key difference between the semantics of PEPA and
this PDDL form is where there are multiple actions with
equivalent preconditions but different effects and/or dura-
tions. The planner can dictate which of these actions is ‘ap-
plied’; however, in PEPA, which of these actions ‘occurs’ is
a stochastically-timed race: the action whose stochastic de-
lay finishes first gets to make the transition, instantaneously
(rather than being temporally separated into start and end).
Thus, we can define a direct mapping from PEPA to PDDL
only if no such race conditions exist; i.e. the actions cho-
sen in the plan will definitely happen, and the ordering con-
straints between them will be respected.

3.2 Representing Plans in PEPA
We now describe translation of a plan into a PEPA model
that captures its execution semantics. A plan consists of a se-

36

r

−r

TTLs TTLe

3− 3−

TFLsRLe

BL

BL

Figure 2: Portion of the STN for GetLoan
Ei,j

def
= (Oaj ,>).Ereadyi,j

Ereadyi,j
def
= (E,>).Eposti,j

Eposti,j
def
= (Ibi,>).Edonei,j

(Oaj BCL1
Ei,j) L1 = {Oaj }

(E BC
L2
Ei,j) L2 = {E }

(Ibi BCL3
Ei,j) L3 = { Ibi }

Figure 3: Components Added to PEPA Model

ries of snap actions, with ordering constraints between them
due to action durations (separating the start and end of an
action) or to ensure that preconditions are met and conflicts
are avoided. Such constraints can be represented as a Sim-
ple Temporal Network (STN). Without loss of generality, we
assume vertices with no outgoing edges have a zero-weight
edge back to a vertex denoting time zero; and vertices with
no incoming edges have an incoming zero-weight edge back
from a vertex denoting that execution has finished.

Each STN edge E, of the form b
w−→ a,w ≤ 0, denotes

a transition E from a to b, with rate −1/w. For instance,
Figure 2 shows part of the STN for a solution to GetLoan.
The vertices TTLs and TTLe are the start- and end-points of
transferToLender, with the edge labelled−rBL denoting the
duration of this transition. In the general case, for an edge E
with weight w, this translates to a basic PEPA component:

E
def
= (E,−1/w).Efin (1)

We must ensure the transition E can only be performed
after its predecessors; and following its execution, its
successors can execute. For instance, in Figure 2, the
transferToLender edge must follow the small gap (duration
ε) back to RLe (the end of requestLender) and precede the ε
before TFLs (the start of transferFromLender). In general,
for an E represented by edge b w−→ a,w ≤ 0 we need:
• O, the edges out of a to predecessor vertices; and,
• I , the edges into b from successor vertices.

For each edge in O and I , we create a basic component,
as Equation 1. Then, to enforce the correct placement of E,
for each pair of edges (Ii, Oj) ∈ (I × O) we add the com-
ponents in Figure 3. By synchronizing the Ereadyi,j →
Eposti,j transition with the component E over E, we en-
sure that E cannot occur until after all such predecessor
edges Oaj have been traversed; and, similarly, until E has
occurred, we block the traversal of the successor edges Ibi.
With this formulation, a solution plan to a planning problem
can be represented as a PEPA model, where the execution
traces corresponds to a non-deterministic topological-order
traversal over the partial order.

Returning to Figure 2, consider (TTLe,TTLs),
for transferToLender. Here, O={(TTLs,RLe)}) and
I={(TFLs,TTLe)}), so there is only one pair (Oi, Ij).
Thus, to sequence transferToLender correctly, Figure 3 is
instantiated once. The transition to Ereadyi,j occurs along-
side the transition inO, at which point transferToLender can

occur; after which, Eposti,j is reached, allowing the transi-
tion in I to occur (the ε gap before transferFromLender).

3.3 Configuring Systems with Planning & PEPA
For more complex systems, with race conditions or many
hundreds or thousands of components, the planner cannot
accurately capture the model structure, or scale to the extent
needed to meet SLAs. In these cases, we alternate between
PEPA and planning to solve the problem.

We identify two types of race condition. In the first the
race affects only execution duration, this is generally a result
of contention: e.g. in GetLoan, if two customers are waiting
for one broker, both eventually follow the same path through
the system. The second is where a race determines the path
taken through the system, for example if the customer could
use one of several asymmetric brokers, with each following
a different system trajectory to different lenders. Such out-
come uncertainty is modelled in PEPA using different rates:
from state A a transition is made either at rate r1 to state A′,
or at rate r2 to state A′′. The ratio between the rates deter-
mines the likelihood of each occurring (winning the race).

We focus on the first of these race conditions in this paper,
demonstrating iteration between planning and PEPA to con-
figure systems that planning alone could not scale to. The
second we leave to future work, extending the planner to
consider multiple trajectories. The techniques to allow scal-
ability will be important for both cases. We characterise the
subset of PEPA models amenable to our current iteration
approach as being trajectory safe, an interesting subset of
PEPA leading to challenging configuration problems.

A PEPA model is trajectory safe iff for each component
state there is only one transition out of that state and there
is no choice over the component(s) definitions with which
to interact over it. Note that arrays of processes are permit-
ted under this definition, e.g. there may be several identical
copies of the customer, lender and/or broker. Race condi-
tions can therefore arise; e.g. in GetLoan, several customers
may be ready to be served but no broker available. We call a
trajectory safe model with no process arrays a linear model
(e.g. GetLoan with a single customer, broker and lender).
Such models can be configured using planning alone, using
the translation described above, without iteration.

A trajectory safe model can be relaxed to a linear model
by ignoring process arrays, i.e. assuming there is only one
of each component. Clearly this relaxed model no longer
accurately represents the real system, but we can directly
build a planning model from it. We obtain more accurate
estimates for the average (of the exponentially distributed)
action durations, under contention in the non-relaxed model,
by performing numerical integration with PEPA and setting
them according to the average time for each transition.

Transition times are no longer simply 1/r for transitions
at rate r due to contention. Consider a narrow bridge (pass-
able slowly) with a (fast) road approaching it. Increasing
the speed limit at which cars can drive down the road would
appear to have a significant effect on meeting an SLA (on
arrival at the other side of the bridge) in the presence of only
1 car; but, in the presence of 100 cars this will simply in-
crease the arrival rate at the bridge, generating a queue. In

37

the PEPA model this queuing time will be included in the
average transition time from the start of the road, to being
ready to cross the bridge. In planning this corresponds to
extending the duration of the drive action to include time
spent queueing. Counter-intuitively, this means that the du-
ration of the drive action may in fact be more dependent on
the bridge crossing speed than the road’s speed limit.

As a result of contention, we must consider the effect of
rate changes on the whole model. For each rate r with up-
grade options [r1...rn], we use sensitivity analysis on the
PEPA model. The other rates are fixed to nominal (initially,
non-upgraded) values, and the model is evaluated with r=ri
(for each i ∈ [1..n]) giving average response times corre-
sponding to action durations [dr=r1

j ..dr=rn
j] for each action

aj . This process is automated, and much cheaper than solv-
ing the configuration problem as it considers changing only
one rate at a time. When this has been done for all rates, we
identify a rate R such that for each transition t, varying R
had the greatest impact on the average response time for t.
For the aj corresponding to t (with duration dr=r1

j when r is
r1), we select the R that maximises |dR=R1

j -dR=Rn
j |. Then,

aj has n possible durations, [dR=R1
j ..dR=Rn

j], the duration
being fixed when the choice to use R=Ri is made during
search. In our example, the time to drive along the road may
well be taken from the average values in the sensitivity anal-
ysis for upgrading the bridge crossing rate.

Another possibility, if a single pair of rates affects the du-
ration of one action is to consider these rates as a pair and run
the sensitivity analysis with each combination of upgrades to
get the average transition times. Clearly the decision about
when to combine rates is important since if we reduce to all
combinations of rates we are not using an approximation and
have not made a saving on enumerating all models.

The resulting planning model approximates how the sys-
tem performs, but only around the baseline configuration
evaluated by PEPA (i.e. with nominal rates). If multiple
rates are upgraded, the approximation becomes less accu-
rate, thus we need to iterate. The planner generates a plan
assuming the durations from the first sensitivity analyses;
the rates in the PEPA model are then set based on this plan;
and average transition times (i.e. action durations) are re-
calculated again. This gives a better approximation of model
performance in solutions close to the last plan found. The
planner plans, again, with the new durations, until a plan is
produced that PEPA confirms meets the SLA. Due to ap-
proximations we cannot guarantee optimality; however, the
results are adequate for our test problems, and further, using
anytime search returns a number of candidate solutions.

4 Temporal Uncertainty and SLAs in POPF
Having now considered the nature of the planning models
arising through integration with PEPA, we extend the ap-
proach of POPF to accommodate uncertainty in the duration
of actions. We augment the forwards partial order expansion
with estimates of the time to attain effects, using these with
a temporal RPG heuristic to find temporally efficient relaxed
plans, and prune states from which SLAs cannot be met.

4.1 Forwards Partial-Order Expansion
Forwards partial-order expansion in POPF requires a number
of annotations for each fact p and each state variable v, these
record information relating p and/or v to steps of the plan.
For full details, we refer to (Coles et al. 2010), in summary:
• F+(p) (F−(p)) gives the index of the step in the plan

that most recently added (deleted) p;
• FP(p) is a set of pairs, each 〈i, d〉, recording conditions

on p. Here, i denotes the index of a step in a plan, and d is
either 0 or ε. If d = 0, then p can be deleted in parallel to
step i: this corresponds to the end of a PDDL over all
condition. If d = ε, then p can only be deleted epsilon
after i: the end of an at start or at end condition.

• V eff (v) gives the index of the step in the plan that most
recently had an effect upon variable v;
• VP(v) is a set, containing the indices of steps in the plan

depending on v. A step depends on v if it either has a
precondition on v; an effect needing an input value of v;
or is the start of an action with a duration depending on v.
These annotations are updated as each step is added to the

plan, and are used as the basis of the ordering constraints
added to the partial order. To meet its preconditions, or-
dering constraints are added to the relevant F+ entries for
propositions, or V eff (v) values for numeric preconditions
(ensuring the value is known and defined, and thus the pre-
condition is met). To ensure its effects do not conflict with
steps already in the plan, it is ordered after previous steps
depending on the affected facts or variables. Finally, when
ending an action, the interval between its start and its end is
set to obey its duration constraint.

If durations are deterministic, the ordering constraints
over the plan steps take the form of a Simple Temporal
Problem (STP). In the weighted digraph analogue of an
STP, a Simple Temporal Network (STN), each constraint
lb ≤ B−A ≤ ub is encoded as a pair of edges: oneA→ B
with weight ub; and one B → A with weight -lb. The STP
is inconsistent, i.e. the interleaving of plan steps is tempo-
rally infeasible, if, between two points, the minimum time
exceeds the maximum. Within the digraph, inconsistency
appears as negative-cost cycles from a node back to itself.

Inconsistencies cause additional issues in the presence of
stochastic durations. As a simple example, if the execution
of action A was ordered within the execution of another, B,
then even if the expected duration of B exceeds that of A,
there is a chance that B could finish first. As we are con-
cerned with plan performance and cost, rather than likeli-
hood of success, we forbid such cases, insisting that in the
STNs for the plans we produce, the only permissible cycles
of non-infinite length are those from a start/end of an ac-
tion back to itself via the end/start of the action, respectively.
Following (Cushing et al. 2007), this subset of problems is
known to be sufficient for almost all standard benchmarks1.

4.2 Outcome Time Estimation
Within our supported subset of partial-order STPs, a
Bayesian network can be used to estimate the time by which

1Excepting domains containing TILs (or their compilation).

38

each step will have completed. This can be performed using
an adaptation of the approach of (Beaudry et al. 2010) to ac-
tions with distinct start–end points. For each STP variable
ti ∈ [t0..tn] we add a variable ti to the Bayesian network,
representing the time at which it can occur. Then, for each
pair ti and tj representing the start and end of action A, re-
spectively, we add a variable di,j , constrained to obey the
stochastic duration constraint of A. Finally, we constrain
each ti according to the STN. If step i is the start point of an
action, then ti = ts(i) where:
ts(i) = max{tb − w | ∃ an STN edge i w−→ b ∧ w ≤ 0}
Simply, an action cannot start until its predecessors finish.

If step j ends an action beginning at i, then, tj = te(j):
te(j) = max(ts(j), ts(i) + di,j)

Thus, as well as requiring its predecessors to finish, the
time since the start of the action must have elapsed. Now,
during search, each time we extend the plan, the ordering
constraints are updated (as in Section 4.1), and the Bayesian
network updated to reflect this extension of the STP.

For each SLA to be met with y% confidence, we must
estimate the yth percentiles of the distributions of the time-
step variables. We store these time-step estimates for each
step. As F+(p) and V eff (v) refer to the step that provides
fact p or the current value of variable v, we can use these
to estimate when that fact/value is available. We considered
two methods of time-step estimation: sampling, to estimate
the distribution, and then taking the appropriate percentile;
or, if y ≥ 50%, assuming each action takes its expected du-
ration. The former approach gives more accurate estimates;
the latter is cheaper, and guaranteed to be admissible, so can
therefore be used for pruning. In practice we discovered the
most efficient approach is to use expected durations during
search; then perform sampling when the goal is achieved to
ensure the SLA is met to the required confidence. Note that
the definition of a goal state is extended in the presence of
uncertainty: for a goal with SLA of x time units y% of the
time, the yth percentile of the earliest time-step from which
the goal persists cannot be greater than x.

4.3 A TRPG for Stochastic POPF
In the TRPG of POPF, each fact appears in the fact layer
whose timestamp corresponds to when it becomes available
(timestamp F+(p) for propositions and V eff (v) for numeric
conditions on v). As a result of this, TRPG actions requiring
these facts are delayed to the time corresponding to the ear-
liest point at which the actions could be added to the plan.
These modifications preserve the admissibility of the times-
tamps at which facts become true and thus can be used to
prune the search space. They are, in part, responsible for the
success of POPF in deterministic domains with deadlines.

We modify this TRPG to support stochastic durations, and
goal SLAs. First, the layer in which a fact appears is now
derived from the estimated times determined as described in
Section 4.2, rather than from the STP. For heuristic purposes,
we assume the duration of each action is its expected dura-
tion; which, as noted earlier, is optimistic if the percentage
criterion on all SLAs is at least 50%. We can then build the
TRPG as before, adding successive fact and action layers.

0.1

1

10

100

1000

0.1 1 10 100 1000

N
o

n
-C

o
st

ed
 H

eu
ri

st
ic

Costed Heuristic

Costed vs Non-Costed Heuristic: Time to Same Quality

Pipes-NT
Zeno

Satellite

Figure 4: Performance of the Costed Heuristic

In the deterministic case, TRPG expansion terminates
successfully if each goal fact g required by time x appears
in the TRPG no later than fact layer x. If TRPG expansion
does not terminate successfully, the state being evaluated is
a dead end. Pruning such dead-end states is completeness-
preserving in the stochastic case iff the timestamp variable
estimates are guaranteed to be admissible. As noted in Sec-
tion 4.2, we can only strictly make this claim if expected du-
rations are used for these estimates; otherwise, if the upper-
bound on the sampling error exceeds the gap between when
a goal can be reached in the TRPG and its deadline, the state
may incorrectly be deemed to be a dead-end.

5 Cost-Sensitive Planning
Using planning to configure PEPA models is useful only if
the decisions made are cost-effective. But, likewise, there
is a trade-off between cost and temporal performance: any
SLAs must still be met. In this section, we extend stochastic-
POPF to any-time search, and modify the heuristic to prune
states from which meeting the SLA is too expensive.

5.1 Any-Time Search
In its default configuration, POPF adopts the approach taken
by Metric-FF (Hoffmann 2003). It first attempts to find a
plan using Enforced Hill Climbing (EHC), a variant of local
search; if this fails, it attempts to find a plan using WA*.
It returns the first solution found, and then terminates. To
extend this approach to perform any-time search, we make a
relatively minor modification, searching as follows:

1. Attempt to find a plan using EHC; if one is found, record
it; regardless of whether a solution is found, proceed to 2;

2. Attempt to find a plan using WA* search, pruning states
whose cost exceeds that of the best solution found thus
far; recording any new best plans; and terminating only
when the search space has been exhausted.
This search approach is similar to that taken by MIPS-XXL

(Edelkamp et al. 2006), where WA* is used repeatedly to
find solutions bounded to be better than the last found. The
key differences are the inclusion of an EHC phase, to pri-
oritise finding a solution; and not restarting WA* from the
initial state when each new best solution is found. We also
modify the heuristic, to prune states using admissible cost
and time bounds: this is not done in MIPS-XXL.

39

5.2 A Cost-Sensitive TRPG Heuristic
In this section we improve the stochastic TRPG of Sec-
tion 4.3 to allow stronger cost-based pruning. We aim to
exclude actions from the TRPG whose application would
result in a plan that is more expensive than the previous so-
lution, and in doing so discover earlier when SLAs cannot
be met within a cost bound. We consider PDDL 2.1 metric
cost functions, specified over the values of the state vari-
ables in the goal state reached. We refer to the variables in
the cost function as metric-tracking variables (MTVs). For
our heuristic modification, we consider a subset of these:

Definition 5.1 — Simple Metric-Tracking Variables
A vector of variables v with associated weights w are simple
metric tracking variables iff:

1. The plan metric M can be written as minimize v.w
(where . denotes the vector dot-product);

2. Each v ∈ v holds a known value in the initial state, and
each coefficient in w is positive;

3. The effects on all v ∈ v are to increase one or more such v
by a constant (i.e. the effect does not depend on the values
of other state variables, or the duration of the action);

4. No v ∈ v appears as a condition on an action; but there
may optionally be a goal of the form v.w < ub.

Following 3 we can define the metric cost for each action,
cost(a), as the weighted sum of its increase effects on the
variables in v. From 4, we can insist that if we already have
a solution with metric value m, new solutions have lower
cost, i.e. ub = m. This is effectively implicitly adding a
new goal to the problem requiring a lower metric value.

In its standard form, the metric RPG heuristic disregards
effects on simple MTVs when expanding the RPG. If v.w <
ub in the state evaluated, effects on any v (which necessarily
worsen plan cost) are relaxed, i.e. ignored. Thus, if there is
no path to the goal without exceeding ub, this only becomes
apparent when ub has already been reached before heuristic
evaluation; from which point the quality goal cannot be met.

The planner Sapa (Do & Kambhampati 2003) introduced
a technique for admissibly estimating the costs of facts based
on the costs of the the actions that add them, and that of their
preconditions. Using pcost(p, t) to denote the cost of fact p
in fact layer t, if snap-action a in action layer t adds f , it is
reachable at the next layer t+ ε with cost:

pcost(f, t+ ε) = cost(a) + max
p∈pre(a)

pcost(p, t)

The lowest cost way to achieve f at layer t+ε is the mini-
mum across all such pcost(f, t+ε) values for actions adding
f in t. In Sapa, these estimates serve to favour relaxed plans
with lower-cost actions. Here, we use the cost estimates to
delay the point at which actions appear in the TRPG to the
layer in which their effects can be obtained without neces-
sarily exceeding the incumbent bound on solution cost, ub.
Thus, the earliest action layer t in which action a can appear
is after a fact layer t satisfying its preconditions, where:

cost(a) + max
p∈pre(a)

pcost(p, t) < ub

If every goal can be reached with cost < ub, a solution
is extracted from the TRPG, using the relevant achievers.
To refine our cost estimates further, we consider goals with

direct-achievement costs: goals that never appear in action
preconditions; and are added by actions with one add effect
(the goal fact), and numeric effects only on simple MTVs.
For the subset of such goals G′ not true in the state being
evaluated, the minimum cost of achievement is:∑

g∈G′

min
g∈add(a)

cost(a)

The cost of achieving all goals by layer t+ε is then at least
(g† denotes the goal in G′ with the largest pcost value):

pcost(g†, t+ ε) +
∑

g∈G′,g 6=g†

min
g∈add(a)

cost(a)

This is an admissible estimate of the cost of reaching G,
using actions applicable by TRPG layer t. (Proof sketch: re-
duction to additive hmax (Haslum, Bonet, & Geffner 2005),
one operator partition Oi for each gi ∈ G with direct-
achievement costs (containing operators adding gi); one op-
erator partition O′ containing any other operators.)

This exploitation of costs in the TRPG leads to two types
of state pruning. First, if reaching a goal can be seen to
require excessive cost, it never appears in the TRPG, and
the state will be considered a dead-end; whereas previously,
search would continue with a heuristic estimate based on a
too-expensive relaxed plan. Second, delaying facts to later
layers pushes goals closer to their SLA deadlines. Thus,
states are pruned where goals are reachable, but the time to
reach them with a sufficiently low cost exceeds the SLA.

6 Evaluation
Our evaluation considers the use of stochastic-POPF on plan-
ning benchmarks, and then the integration with PEPA.

6.1 Evaluation on Costed Planning Domains
To determine whether the heuristic in stochastic-POPF is
effective, we compare to the non-cost-modified heuristic.
Variants of three benchmark domains were used (using com-
petition problem sets), with limits of 1.5GB of RAM and
1800s of CPU, recording in each case the quality of the
best solution found, and CPU time taken to reach that so-
lution. Enabling the cost modifications, we ran stochastic-
POPF again, recording the time taken to find a solution of
equivalent (or better) quality than that found by the control.
The results are shown in Figure 4. As can be seen, the new
heuristic can vastly improve performance. Cases where it
did not, correspond to large problems, where finding any so-
lution is difficult; so optimisation was not possible with the
approach used.

6.2 Combination with PEPA
We now evaluate the integration of planning and PEPA to
make cost-effective configuration decisions. We consider
two models. First, our running example, GetLoan, described
in Section 2.3. We can choose whether to invest in each
step — slow, medium or fast — with the slow rate carrying
zero cost, and medium and fast carrying increasing costs but
reducing the transition’s duration by 20% and 40% respec-
tively. The customer must receive a response in 5s, 80%
of the time. Second, we consider a retail scenario typical
of pharmacy suppliers or take-away food shops, where the

40

investment choice is in staffing levels — how many times
system components should be duplicated — rather than in-
vestment changing the rates directly.

GetLoan, in its most basic form — with a single cus-
tomer, broker and lender — is a linear model, so can be
converted to PDDL: each transition maps to one action; and
the plan directly maps to a PEPA model with the desired
performance. A solution to this problem (having exhausted
the search space and thus shown optimality) is obtained in
1s; automated configuration of even such small systems is a
breakthrough in the PEPA community.

More challenging is the case with contention: 1000 cus-
tomers and brokers, but only 100 lenders. A model of
this size is beyond the capabilities of planning, but within
those of PEPA. We employ our iterative approach: the plan-
ner considers a single customer, and action durations are
set according to PEPA sensitivity analysis, as discussed in
Section 3.3. As might be expected, the action affected by
1000:100 broker–lender contention is transferToLender, the
broker–lender network transfer step shown in Figure 1. Its
duration increases because of the implicit queue for lenders.
Under the contention, two investment choices have a notable
impact on the time of this transfer: network latency, and the
time lenders spend processing queries. Thus, for each pair of
investment choices available for this network and the lender,
we determine the average time for the broker–lender step
in the PEPA model, this becomes the mean of the (expo-
nentially distributed) action duration of broker–lender in the
planning model for each upgrade pair.

To converge on a suitable model configuration, we follow
the process set out in Section 3.3: alternating between du-
ration approximation for different investment choices, using
sensitivity analyses; and using the planner to decide which
investment options to use to meet the 5s/80% SLA. The in-
vestment decisions made by the planner then set the rates
in the PEPA model, and the process repeats until the PEPA
model, when validated, meets the SLA. In this situation,
the process alternates three times; each call to the planner
takes around 1s, and sensitivity analysis using PEPA taking
between < 1s and 10s, depending on the rates used. In-
specting the action durations obtained by sensitivity analy-
sis, prior to the solution validating, we observe that the dura-
tion of transferToLender is optimistic, increasing each time
the planner is called until there is only a small gap between
the time taken for transferToLender in the solution model,
and that used by the planner.

Moving on to our second domain, the structure of the
model is as follows. Over the course of an hour, 20 cus-
tomers make orders online (SLA: delivery 60 mins, 70%),
processed by a member of back-room staff, a packer, and
then be delivered. A further 20 make orders in person (SLA:
items ready 30 mins, 70%), processed by a cashier and a
member of back-room staff. The challenge is to minimise
staffing levels to meet the SLAs, given the hourly wage for
staff and the (fixed) rates at which each person performs
each task. The planning model consists of two essentially
separate, linear problems: one of each class of customer. To
reflect the contention over staff, the durations for each step
at given staffing levels are derived from sensitivity analyses.

Thus, even though the plan does not explicitly coordinate the
activities of the two customer classes, or model all 20, these
are approximated in action durations. Three lots of sensitiv-
ity analyses (40s each) and three calls to the planner (∼1s
each) happen before convergence. The resulting plan meets
the respective SLAs in 27.3 min/52.5 min with cost 84 (the
most expensive solution has cost 156). When looking at the
intermediate solutions, and the durations used, the key con-
tention in the system shifts as staffing levels change. As each
sensitivity analysis is based on the rate settings from the last
plan (or nominal values, for the initial analyses), the effect
of changing a given staffing level parameter differs at each
iteration. One simple example is that if there is one packer,
increasing the number of delivery staff barely reduces the
time to deliver an order, as delivery staff are not the bottle-
neck: they are starved of packed orders to deliver.

Acknowledgements
This work was supported by SICSA, and EPSRC fellowship
EP/H029001/1.

References
Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning witn concurrency
under resources and time uncertainty. In ECAI ’10.
Bocchi, L.; Fiadeiro, J.; Gilmore, S.; Abreu, J.; Solanki, M.; and Vankayala,
V. 2009. A Formal Approach to Modelling Time Properties of Service-
Oriented Systems. http://www.scientificcommons.org/53566945.
Buffet, O., and Aberdeen, D. 2009. The factored policy-gradient planner.
Artificial Intelligence 173(5-6):722–747.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Planning with
problems requiring temporal coordination. In AAAI 08.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-chaining
partial-order planning. In ICAPS.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. 2007. When is
temporal planning really temporal planning? In IJCAI ’07, 1852–1859.
Do, M. B., and Kambhampati, S. 2003. Sapa: Multi-objective Heuristic
Metric Temporal Planner. JAIR 20:155–194.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-Scale Optimal PDDL3
Planning with MIPS-XXL. In IPC5 booklet, ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension of PDDL for Ex-
pressing Temporal Planning Domains. JAIR 20:61–124.
Fox, M.; Long, D.; and Halsey, K. 2004. An investigation into the expressive
power of PDDL2.1. In ECAI’04.
Gerevini, A. E.; Long, D.; Haslum, P.; Saetti, A.; and Dimopoulos, Y.
2009. Deterministic Planning in the Fifth International Planning Compe-
tition: PDDL3 and Experimental Evaluation of the Planners. AIJ.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An Approach to Temporal
Planning and Scheduling in Domains with Predictable Exogenous Events.
JAIR 25:187–231.
Gerevini, A.; Saetti, A.; and Serina, I. 2010. Temporal planning with
problems requiring concurrency through action graphs and local search. In
ICAPS.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admissible Heuristics
for Domain-Independent Planning. In Proc. AAAI, 1343–1348.
Hillston, J. 1996. A Compositional Approach to Performance Modelling.
Cambridge University Press.
Hoffmann, J. 2003. The Metric-FF Planning System: Translating Ignoring
Delete Lists to Numeric State Variables. JAIR 20.
Kavuluri, B., and Senthil, U. 2004. Timed initial literals using sapa. In IPC
4 Booklet, ICAPS 04.
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A probabilistic
temporal planner. In AAAI05, 1181–1186.
Mausam, and Weld, D. S. 2008. Planning with Durative Actions in Stochas-
tic Domains. JAIR 31:38–82.
Rachelson, E.; Quesnel, G.; Garcia, F.; and Fabiani, P. 2008. A simulation-
based approach for solving temporal markov problems. In ECAI ’08.
Younes, H., and Simmons, R. 2004. Policy generation for continuous-time
stochastic domains with concurrency. In ICAPS.

41

