


Content

Introduction Page 03-04
What does it take to run software on a spacecraft? Page 05
How is software updated or changed in orbit? Page 06
What type of languages are used for coding flight software? Page 07
Can | run Linux on a satellite? What about Windows? Page 08
What kind of skills are required for doing Flight Software? Page 09

How is Flight Software designed?

What are software-defined satellites?

Page 10



Introduction

Software enjoys a strange reputation in the space industry. On one hand — let’s call it the hero side — software tends
to be the sought-after lifeline when it comes to solving problems on a troubled flying satellite, given that there is
basically nothing else you can do after launch other than trying to fiddle with the on-board software and see if you

can bring things back to normal. On the other hand — the villain side — software is considered the evil of all evils by
outsiders. In any troubled space mission, the fingers naturally tend to point to software as the probable cause of failure
(usually without tangible evidence) — any conversation next to a coffee machine between two non-software engineers
(say, a mechanical and a thermal engineer) would either blame software, or radiation.

What does the evidence say?

In Fault-Tolerant Attitude Control of Spacecraft (Qinglei Hu, Bing Xiao, Bo Li, Youmin Zhang, Elsevier), the authors
collected and analyzed spacecraft data from databases such as the Satellite Encyclopedia (TSE), Satellite News Digest,
Mission and Spacecraft Library, Airclaims Space Trak, Space Systems Engineering Database (SSED), and the Mission
Failure Analysis for NASA AMES Research Center. In terms of percentage of failures per subsystem, it shows that ACS
(Attitude Control Subsystem, or the system in charge of controlling the orientation of the spacecraft in space) accounts
for 32%, followed by Power subsystem. This should not come as a surprisel, since the ACS subsystem is the most complex
subsystem on a spacecraft, therefore it runs against the odds on surprises. Now when it comes to the different types of
spacecraft faults, they can be further classified into four types of failures: mechanical failure, electrical failure, software
failure, and other unknown failures. The mechanical failure mainly refers to the mechanical structure deformation caused
by temperature changes, external force, friction, and pressure. The electrical failure is induced by power overload, short
circuits, and abnormal battery power generation. The software failure mainly consists of incorrect computer instructions
and onboard software abnormalities. As you can see in Figure 1, software faults account for only 6% of the total, whereas
electrical faults account for 45% of them. And in Figure 2, you can see the types of faults for ACS only.

03



Fig. 2 - Types of faults in ACS

Fig.1- Subsystem faults and types of faults (source: Fault-Tolerant
Attitude Control of Spacecraft
(Qinglei Hu, Bing Xiao, Bo Li, Youmin Zhang)

According to the aforementioned source, there is no evidence that software faults are the main causes of mission
losses. Or, put more bluntly, evidence indicates software is seldom the problem. There have been, though, some

software failures which have gone down in history as very resonant, such as the Ariane 5 failure2, Mars Climate
Orbiter?, and others*.

Even if software were the problem, there is no chance a spacecraft can be launched without any software running on it.
Satellites are becoming more and more software intensive and nothing indicates this trend will stop anytime soon. Then,
let's discuss what's so special about making and running software for space missions.

04



What does it take to run
software on a spacecraft?

Well, for sure you need a microprocessor, and some memory.
These can be discrete — as in, individual — devices, or they
can be part of the same integrated circuit. In any case, what
we call software is basically a set of instructions which are
fetched from a memory and interpreted by a microprocessor
and then executed. Such instructions are typically mathe-
matical operations of different kinds and data movements
from one place to another. This doesn'’t really differ from the
software which runs on your laptop. The main difference is
that the computing resources spacecraft have tend to be
more specialized compared to the resources consumer
electronics as laptops have. For example, spacecraft may use
microprocessor architectures which consider reliability
matters by adding voting capabilities in their internal
registers. Because energetic particles can interact with

the electronic devices, we use such as memories or internal
registers of microprocessors, then it means that a particle
may alter the content of a memory cell or a status register.
One single bit being changed by radiation can cause serious
conseqguences to the execution of software. Hence, adding
voting capabilities ensures that, upon the upset of a memory
location or internal content of the processor, still the value
finally used will require that 3 identical registers will show
the same reading. This comes with the penalty of a larger
area of semiconductor used for implementing the voting
scheme. Because bits can be upset at any time while in orbit,
several techniques to mitigate this issue have been devised.

For example, memory scrubbing, which consists of reading
from each computer memory location, correcting bit errors
(if any) with an error-correcting code (ECC) and writing the

corrected data back to the same location, parity bits, check-
sums, and other error detection and correction schemes.

Computing resources on spacecraft have been historically
more modest than resources on ground-based computers,
although this is a gap that has been consistently shrinking
in recent years. On-Board computers are advancing rapidly,
with more resources than ever before: more storage, more
floating-point operations per unit of time (FLOPS), more
millions of instructions per second (MIPS), and the like.
On-board computers still remain close to what are called
‘embedded systems”, which are computers with specific
roles and functionalities. Unlike a laptop — which is sold
without really knowing or caring for what the laptop will
be finally used for, whether it's accounting, graphic design,
or music production — spacecraft computers tend to be
optimized for the specific function they are ought to per-
form: attitude control, thermal control, commmand and data
handling, payload data acquisition, etc. Each one of these
requires specific interfaces, specific libraries, sensors, actu-
ators, etc. For example, attitude control needs to perform
intricate calculations about rotations, matrix operations,
sensor data fusion, and a lot more. And it has to talk to a
variety of sensors with different characteristics, such as sun
sensors, star trackers, gyros, magnetometers, and so forth.

05


https://en.wikipedia.org/wiki/Memory_scrubbing

How is software updated
or changed in orbit?

By means of... software. Yes, software can be coded to help modify software,
including to modify itself. Spacecraft computers are usually equipped with
what is called a bootloader. A bootloader is a program whose sole function

is to fetch a piece of executable code — typically an application — from some
location — for example a memory — and place it in a way the microprocessor
can find it and run it. The bootloader is invoked during the power-up sequence
of the processor, and usually loads and executes all the time the same appli-
cation, over and over. Under special circumstances, the bootloader might be
commanded to load an image from some other location or take a newimage
through some interface such as a serial port or similar. Mind that bootloaders
can also create some headaches. For example, if during the process while a
bootloader is flashing a new application in non-volatile memory something
odd happens and the image gets corrupted, then the application program
will never execute because it is only partially present. This is typically called
“bricking” the poor thing — because the device becomes as useful as a brick
— and it's not exclusive for space. You can brick your smart TV, your Wi-Fi
router or your phone while updating firmware. The key is to ensure the
bootloader can always recover from a failed flashing procedure. Goes
without saying, bootloaders should not be able to overwrite themselves,

at least not the lowest level, critical bootloaders.

06


https://en.wikipedia.org/wiki/Bootloader
https://en.wikipedia.org/wiki/Brick_(electronics)

What type of languages are used
for coding flight software?

In theory, any language can be used for coding flight software. Languages never make it to orbit, only
machine code does (unless the compilation happens in-orbit). Then, if the processor being used has a
compiler which can translate whatever obscure language of your choice to its machine code, you're good

to go. Because flight software has historically stayed quite “embedded” and close to the hardware, compiled
languages have been more popular, notably assembly and C. These languages offer to the programmer the
tightest control of what's happening as the software runs, while paying the penalty of a lower code readabili-
ty, reuse and whatnot. Some other compiled alternatives to improve reusability is to employ Object Oriented
Programming (OOP) techniques, although this claim tends to be disputed by the old guard. For example, in
the book Coders at Work®, Joe Armstrong — creator of Erlang — says on software reusability and OOP:

“l think the lack of reusability comes in object-oriented
languages, not functional languages. Because the problem
with object-oriented languages is they’ve got all this implicit

environment that they carry around with them. You wanted a
banana but what you got was a gorilla holding the banana and
the entire jungle.”

On the other hand, interpreted languages such as Python are possible in spacecraft. Provided the on-
board computer can run an interpreter, all the rest comes reasonably easy. Interpreted languages tend
to be relatively slower and sit on higher abstraction layers (don't ask an interpreted language to handle
hardware interrupts or hard-real time deadlines) but are highly flexible for scripting and automating
non-critical things on-board.

07


https://en.wikipedia.org/wiki/Erlang_(programming_language)

Can |l run Linux on a satellite?
What about Windows?

If you can, then you must. If the spacecraft
computer is capable of handling Linux — this
means, it has a certain number of resources and

a Memory Management Unit, or MMU — then
Linux is your friend. Mind that with great power
comes great responsibility: a full-blown Linux OS
needs to be administered accordingly, and this
may require some sort of shell for accessing and
monitoring the operating system'’s resources.
Since satellites are remote systems —there is a
lousy radio link between the spacecraft and the
ground — this means that such a noisy link will be
the only way to shell the remote operating system.
Therefore, remote shells such as SSH (encrypted)
or Telnet (unencrypted and very basic) have to be
used on top of radio, which calls for using IP stacks
on top of — for example — CCSDS. Not such a big
deal if the link budget is sound, this means, if the
energy per bit sent back and forth is reasonably
higher than the overall noise. For high-latency
links, for example for distant orbits, conversational
protocols such as TCP can be problematic, there-
fore shell access to a remote Linux-based space-
craft can be cumbersome. Once a proper link is
established, then the handling of the remote Linux
system running on board the satellite becomes
more of a sysadmin task. Using Linux and IP based
links blurs the line between operating a satellite
and operating a server on a network.

As for Windows, technically speaking, you could
run it on a satellite. But because Windows is an
operating system which heavily relies on graphical
user interfaces, the only way you could possible use
it is to either use something like VNC to remote
desktop it (although considering the radio link
speeds and the amount of data VNC would gener-
ate would turn it very challenging), or put a screen
on board (which needs to withstand launch and
vacuum) and hook a camera looking at the screen
while you send videos frames at a lower rate to the
ground. We recommend you just discard the idea
for now, but if you insist, don't go without this if
you want to live.

08


https://en.wikipedia.org/wiki/System_administrator#:~:text=A%20system%20administrator%2C%20or%20sysadmin,user%20computers%2C%20such%20as%20servers.
https://www.cygwin.com/

What kind of skills are required
for doing Flight Software?

It does require some level of acquaintance to the typical satellite architectures, interfaces, and
whatnot. But all that can be learned. Granted, switching to flight software will be less of a leap
for those coming from the embedded world. And because a satellite is a physical and dynamical
system, the software developed for it must be designed to be aware of such dynamics. In short,
the (minimal) complexity of software which controls a physical system is given by the complex-
ity of the underlying physical system. It says minimal because of course software engineers can
always overengineer it. And they will if given the chance.

How is Flight Software designed?

It's an incremental work. But, if you take two satellites from two different operators and you somehow
reverse engineer the machine code into source code, those two systems will show similarities. Every
flight software needs some of these modules or building blocks: telemetry handling, telecommand
handling, FDIR (failure detection, isolation and correction), thermal control, power control, etc. Flight
software can be designed and developed from absolute scratch —software engineers will always try to
convince you it's the only way to go, or it can rely on existing software frameworks which already contain
some of the typical building blocks. Some of these frameworks are even flight-proven and open source,
which makes them very attractive for low-budget New Space missions or University projects.

09



What are software-defined satellites?

The software-defined fad has gotten a bit out of hand
lately. It is used too loosely and stretched to levels where
it stops having any meaning. But, in the strict sense of the
term, when we say software-defined anything, we mean
“something which has been done traditionally by means
of mechanical or electrical devices but now is done by
means of software”. Sounds obvious, but it's not. For ex-
ample, take software-defined radio. Historically, modulat-
ing/demodulating, mixing and filtering radio signals has
been done on discrete electronic —active and passive—
devices. With the progress of semiconductor technology
in areas such as analog-to-digital converters and digital
signal processing, now it is possible to move such things
into software. How so? Well, fiddling with signals is ulti-
mately a mathematical problem. Filtering, mathemati-
cally speaking, is done by computing the convolution of
a signal (or, in the discrete jargon, a sequence) with the
step response of the filter. Or, equivalently, multiplying
their frequency responses in the frequency domain. This
means, a superheterodyne receiver is nothing else but a
seguence of mathematical manipulations of the input
signal. So, if you manage to digitize the signal as soon as
possible in the chain (this is, as close to the antenna as
possible), then you can do the math operations fully on
the digital domain. You get the gist of it.

On the same line, spacecraft have had some things “hard-
coded” by hardware elements, for example communi-
cation protocols, namely CCSDS. Traditionally hardwired
in highly specialized ASICs and FPGAs, now the stacks
can sit on software, which adds a lot of flexibility when it
comes to adding security layers and applying patches in
case of cybersecurity threats. Also, software-defined

protocols allow to scale up or down resources depending on
the mission requirements. For data intensive space applica-
tions, software-defined techniques allow to readjust mission
configurations post-launch, providing a more cost-effective
way to optimize operations once the spacecraft faces the
elements.

Although there are some particularities about running soft-
ware inside a metallic box which is orbiting at hundreds of
kilometres above the ground while flying at thousands of
meters per second of velocity, software is still software. Soft-
ware itself remains unaware about the altitude at which it's
executing. The software engineers are the ones in charge of
adding the correct safeguards to make the software execute
seamlessly while flying alone in space. Regardless of where
the software runs, the work follows the same flow: defining
data structures and their relationships. You can over-engi-
neer it by adding fancy methodologies and diagrams, but
space software engineering, at the end of the day, still boils
down to data and how it behaves over time.

Linus Torvalds stated years ago:

“Talking is cheap, show
me the code”.

10


https://en.wikipedia.org/wiki/Software-defined_radio
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Superheterodyne_receiver
https://public.ccsds.org/Pubs/130x2g3.pdf
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://www.goodreads.com/quotes/437173-talk-is-cheap-show-me-the-code

A veteran space engineer once said:

“There are two main reasons why space systems fail:
one is attitude control, the other one is funding”.

http://sunnyday.mit.edu/nasa-class/Ariane5-report.ntml

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

https://en.wikipedia.org/wiki/List_of_software_bugs#Space

https://codersatwork.com/



http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
https://en.wikipedia.org/wiki/List_of_software_bugs#Space
https://codersatwork.com/

re #rbit

At ReOrbit, we develop technologies to make spacecraft platformms modular and configurable. Through a
software-defined architecture, we unlock new functionalities such as built-in autonomous orbital capabilities.

Our main focus in all of this is streamlining data flow, as we deliver timely and flexible missions at any orbit.
With your data being transmitted fast and with it, your mission being executed, while keeping cost and time-to-orbit
low, you can even grow the value of your satellite after launch, as we can reconfigure the software in-orbit.

This transforms technology and enables space applications of our current and future society where efficiency,

sustainability and security are unlocked to their full potential. The solutions to reinforce the mission of helping humans
and machines interact and exchange data seamlessly are ready and waiting for their turn to shoot for the stars.

Connectivity in space. Simplified.



