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Abstract— A novel offline signature modeling is introduced 
and evaluated which attempts to advance a grid based feature 
extraction method uniting it with the use of an ordered 
powerset. Specifically, this work represents the pixel 
distribution of the signature trace by modeling specific 
predetermined paths having Chebyshev distance of two, as 
being members of alphabet subsets-events. In addition, it is 
proposed here that these events, partitioned in groups, are 
further explored and processed within an ordered set context. 
As a proof of concept, this study progresses by counting the 
events’ first order appearance (in respect to inclusion) at a 
specific powerset, along with their corresponding distribution. 
These are considered to be the features which will be employed 
in a signature verification problem. The verification strategy 
relies on a support vector machine based classifier and the 
equal error rate figure. Using the new scheme verification 
results were derived for both the GPDS300 and a proprietary 
data set, while the proposed technique proved quite efficient in 
the handling of skilled forgeries as well.  
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I.  INTRODUCTION 

Automated handwritten signature verification systems 
(ASVS) remain up to now an accepted way for humans to 
declare their identity in many application areas including 
civilian ones [1], [2], [3], [4]. ASVS are separated into two 
major categories based on the method that the signature is 
obtained. Both online and offline ASVS must cope with the 
evidence that the process of creating handwritten signatures, 
even when they originate from a well trained genuine writer, 
will carry natural variations, defined as intra-writer 
variability [5]. It is adopted that the online ASVS are 
generally more efficient when compared to offline. A 
commonly used figure of merit which is employed in order 
to characterize the efficiency of ASVS is the equal error rate 
(EER) which is calculated from the ROC or DET plots of 
both types of error rates. 

The goal of an offline ASVS is to efficiently transform 
an image into a mathematical measurable space where it will 
be represented by means of its corresponding features [6]. 
Next, the features are feeding computational intelligence 
techniques and pattern recognition classifiers which will 
decide, after appropriate training and testing procedures, if a 
signature under query belongs to a claimed writer [7], [8]. 

According to the experimental protocol followed, there are 
two major approaches which have been applied to off-line 
ASVS; writer dependent (WD) and writer-independent (WI). 
The WD approach uses an atomic classifier for each writer. 
The WI approach uses a classifier to match each input 
questioned signature to one or more reference signatures, and 
a single classifier is trained for all writers [9], [10].  

Feature extraction is considered to be one of the most 
challenging tasks when ASVS are designed. An important 
feature extraction philosophy which attracts increasing 
interest, exploits the signature using a coarse or fine detail 
grid which is imposed upon the image. Among others, 
examples of grid based feature extraction can be found in the 
work provided by references [10], [11], [12], [13], [14], [15], 
[16], [17], [18] and [19].  

In another work provided by Tselios, Zois, Nassiopoulos 
and Economou [20], a grid based feature extraction method 
was developed which represents the signature trace by taking 
into account the histogram of specific pixel path transitions 
along predefined paths within pre-confined Chebyshev 
distances of two (FCB2 feature). The feature extraction 
concepts have been advanced by describing these paths in a 
way in which they can be viewed as symbols transmitted by 
a discrete space random source. The combination of the 
produced FCB2 symbols defines the message or event that the 
random source sends out when a certain sequence of 
signature pixels is accounted. They are treated according to 
the event concept, reported in standard set and information 
theory and they are complemented along with their 
corresponding probabilistic moments [21]. In this work and 
in order to further increase our signature discriminating 
capability the potential messages-events of the FCB2 paths are 
organized in sub-groups of independent tetrads. Each tetrad 
is organized according to its ordered powerset with respect to 
inclusion [22]. The outcome of this procedure provides an 
attempt to model the handwriting process in concordance 
with basic elements of information and coding theory.  

The distributions of the now ordered transition paths in 
the new feature space are used to code the signature image. 
In the case study presented here a WD verification scheme is 
followed which comprises of the training and testing phase. 
Verification results have been drawn with the use of two 
databases, the GPDS300 and a proprietary one by means of 
the false acceptance, false rejection and the equal error rate 
(EER) figure of merit. The rest of this work is organized as 



follows: Section 2 provides the database details and the 
description of the feature extraction algorithm. Section 3 
presents the experimental verification protocol which has 
been applied. Section 4 presents the comparative evaluation 
results while section 5 draws the conclusions. 

II. DATABASE AND FEATURE EXTRACTION PROCEDURE 

A. Database Description 

The proposed feature extraction modeling has been 
studied with the use of two databases of 8-bit grey scale 
signatures: a Greek signers’ database (CORPUS1) [20] and 
GPDS-300 (CORPUS2) [12]. CORPUS1 comprises of a 
domestic Greek collection of 105 genuine and 21 simulated 
forgery signature samples for each of the 69 signers of the 
database. Genuine samples were acquired in a one month 
time frame. CORPUS2 contains 24 genuine signatures and 
30 simulated forgeries for each of the 300 signers of the 
database and is publicly available. During the experimental 
process, two schemes of randomly selected training and 
testing samples were used for comparison with the outcomes 
of contemporary research in the field. In the first scheme, 12 
genuine and 12 simulated-forgery reference samples per 
writer are used, while in the second scheme 5 genuine and 5 
simulated forgery reference samples are used. The remaining 
samples are used for testing.  

B. Preprocessing 

In order to produce the binary form of the acquired 
signatures the following preprocessing steps have been 
carried out: thresholding using Otsu’s method [6], 
skeletonization, cropping and segmentation. This procedure 
is expected to reduce a number of side effects of the writing 
instruments variations. The result is the generation of the 
most informative window (MIW) of the image. The features 
are extracted either from the whole MIW of the signature or 
from segments of signature’s MIW with the use of the 
equimass sampling grid method [14]. Equimass sampling 
grid segmentation provides strips of the signature with 
uniform size of signature pixels instead of the trivial distance 
grid segmentation which provides segments of equal area. 
The result is depicted in Fig. 1. In this work the feature 
vector is generated from the ‘S2’ scheme used in [20]. 

C. Alphabet Description 

Fig. 2 depicts the alphabet which is defined as a set of 
symbols, emerging from the FCB2 description according to 
[12]. To be more specific, FCB2 alphabet is the set of 
transition paths of three consecutive pixels under the 
constraint of having the first and third pixels restrained to a 
Chebyshev distance equal to two.  

 
Figure 1.  Signature image with equimass made segments 

Since, in offline signatures, signature-pixel ordering is 
unknown, the ordered sequence of the pixels cannot be 
estimated. This note diminish the number of queried FCB2 
transition paths, in a 5x5 pixel grid window, with center 
pixel each black pixel of signature’s image, to the sixteen 
independent transition paths presented in Fig. 2. In this case 
study only the FCB2 paths have been taken into account. It is 
advantageous in our case to explicitly treat the notion of the 
signature pixels indexes (i,j) as a transformation of 
sequences produced by the source. As a consequence, the 
feature extraction grid can be identified as a discrete space – 
discrete alphabet source. 

D. Ordered Event Modeling 

Let the triad ( , Β, P) indicate the probability space on 
which all the potential outcomes are identified. By definition 
 is the sample space upon which a discrete digital source 
transmits alphabet symbols. The source may transmit either 
single symbols or sets of them (events) from a 16 symbol 
alphabet as figure 2 illustrates. Let B a sigma field (the event 
space) that encloses all potential occurrences of symbols 
combinations from the FCB2 alphabet. That is, B is the largest 
possible  -field [23] which is the collection of all subsets of 
 and is called the power set. Finally, let P be the 
corresponding distributions of the  -field.  

In order to evade the problem of 216 space management 
 is grouped into T subsets 1, ,{ }t t T   and we define the 

sub-s-fields Bt as the power sets for each t . In this work 
we choose to group the 16-FCB2(i) components into 
ensembles of four tetrads (call it hereafter F4-collection) thus 
resulting to an early set of 4  24=64 possible event 
combinations. From the complete set of all the possible 
ensembles of the F4 collection only 87 orthogonal cases shall 
be enabled along with their corresponding probabilities. 
From a mathematical point of view the signature image is 
analyzed into four major subspaces where each of them is 
composed of 16 orthogonal dimensions. The term orthogonal 
denotes that each symbol in a sub-alphabet space of a F4 
tetrad cannot be derived as any combination of the same 
subspace F4 symbols. This constraint provides each signature 
with 87 different F4 orthogonal tetrad event sets, found 
through exhaustive search. Fig. 3 provides the FCB2 alphabet 
along with a F4 orthogonal collection. As a proof of concept, 
the orthogonal F4 collection #44, selected randomly is 
illustrated in figure 3.  

 
Figure 2.  FCB2 alphabet set which forms the probability space   . 



 
Figure 3.  One F4 collection of tetrads (#44). Each horizontal tetrad is 
considered to form a subspace in the original 16-dimnensional feature 

space and consequently generates a powerset of events 

Finally, each one of the four F4 power-sets of figure 3b is 
evaluated by ordering the elements of the powerset with 
respect to inclusion. Fig. 4 provides a graphical explanation 
of one powerset in line with the proposed modeling. In order 
to illustrate the method with clarity, figure 4 has been created 
which shows the powerset of the #44 F4 collection with 
respect to inclusion. The indexes x, y, z, w are associated 
with one tetrad’s elements of the F4 collection. For each 
arrow in figure 4 there is a corresponding probability 
evaluated for every segmented image. Thus, the overall 
dimensionality of the feature vector for one F4 collection is 
equal to 32 (4+12+12+4) for each image segment. 

According to the exposed material, a discrete source, 
designated as Sn, can be defined by its transmitted set of 
symbols-events which are now members of an ordered F4 
collection. This novel modeling of the feature generation 
process is an evolution of the previous method as it was 
described in [20]. It attempts to model the distribution of the 
signature pixel paths as an information source and to 
associate events of ordered paths (arrows as seen in fig. 4) 
along with their corresponding first order probabilities.  

E. Creation of the ordered feature vector 

To make this work robust a short description is provided 
for generating the ordered feature components. According to 
the material exposed in sections IIC, IID, each one of the 
preprocessed image segments is scanned top-down and left-
right to identify its signature pixels. Let us denote with the 
labels One (O) and Two (T) a conjugated pair of 5  5 
moving grids with the property that their topological centers 
are distant by a Euclidean distance of one. Then for each 
signature pixel the {O, T} grids are imposed. Next, detection 
of discrete events at both {O, T} grids is performed followed 
by the evaluation of the corresponding ordered probabilities, 
as described in fig. 4. In addition, fig. 5 presents in a 
graphical manner the generation of a feature component 
namely the {X, XY}. In this work the overall feature 
dimensionality is 128 due to the selection of the 
segmentation preprocessing steps.  

III. CLASSIFICATION PROTOCOL 

On the grounds of proofing the proposed concept and 
according to the discussion exposed in section II the training  

 
Figure 4.  Power set for one subspace (the first horizontal line of fig. 3) of 

the #44 F4 collection ordered with respect to inclusion 

phase of the WD verification scheme follows: for each 
writer, #nref reference samples of genuine along with an 
equal number of simulated-forgery signature samples are 
randomly chosen in order to train the classifier. The “S2” 
image segmentation scheme combines the features calculated 
on the whole signature image as well as the relevant 2x2 
equimass segmentation grid [20]. These features supply the 
classifier training section without assuming any additional 
processing. The classifier used is a hard-margin two class 
support vector machine (SVM) classifier using radial basis 
kernel. Selection of the training samples for the genuine class 
was accomplished using randomly chosen samples according 
to the hold-out validation method. The remaining genuine 
and simulated forgery signatures feature vectors, drawn 
using the same F4 collection, feed the SVM classifier directly 
for testing. The SVM output apart from the binary class 
decision provides a score value which is equal to the distance 
of the tested sample from the SVM separating hyperplane. 
The operating parameters of the SVM have been determined 
through exhaustive search. It is noted that there is a wide 
area of rbf sigma values that the system has the reported 
results. 

Evaluation of the verification efficiency of the system is 
accomplished with the use of a global threshold on the 
overall SVM output score distribution. This is achieved by 
providing the system’s False Acceptance Rate (FAR: 
samples not belonging to genuine writers, yet assigned to 
them) and the False Rejection Rate (FRR: samples belonging 
to genuine writers, yet not classified) functions. With these 
two rates, the receiver operator characteristics (ROC) are 
drawn by means of their FAR/FRR plot. Then, classification 
performance is measured with the utilization of the system 
Equal Error Rate (EER: the point which FAR equals FRR). 

IV. RESULTS 

According to the discussion presented above, FAR, FRR 
and the relevant EER rates, are evaluated for (a) CORPUS 1 
and and (b) CORPUS 2 with five and twelve reference  



 
Figure 5.  (A) One set of the #44 F4 collection as depicted in fig. 3b. (B) 
left and right grids labeled as One (O) and Two (T) respectively imposed 

on a signature trace (mark with green shadowed pixels) and corresponding 
events activated. For illustration purposes the topological grids have a 

distance of 7 instead of 1 that is followed at the actual feature extraction 
method. (C) Ordered event detection is designated between the red circles 

and feature component update along red line. 

samples for both genuine and forger class. The 
corresponding results are presented in Table I by means of 
the mean FAR, FRR and EER values. The letters G and F in 
Table I designate the genuine and skilled forgery samples 
respectively. In addition, the ROC curves are presented for 
both databases in fig. 6 along with their corresponding EER 
defined as the cross section of the ROC curves and the 
diagonal.  

Our results are compared to recently published relevant 
figures. The reported results for CORPUS 1 are compared 
with the results relevant to those reported in [12] for feature 
level simulated forgery verification tests using ‘S2’ scheme 
using (a) nref=5 and (b) the mean value of nref=10 and 
nref=15 tests for comparison with our test using nref=12. 
The comparison results are presented in Table II. Concerning 
CORPUS 2, we present in Table III, the results of recently 
reported research work using nref=5 and nref=12, along with 
the results of the current approach.  

V. CONCLUSIONS 

In this work a handwritten model based on the powerset 
of an ordered event topology with respect to inclusion is 
considered as a tool for offline signature verification. A 
number of verification experiments based on an SVM 
classifier have been carried out in two signature databases 
namely the GPDS and a proprietary one. Primary verification 
results indicate that the proposed feature extraction method 
has an appealing aspect; As a comment on the efficiency of 
the method one can state that in the case of the Corpus 1 a 
substantial improvement is observed while in the case of 
Corpus 2 the results are comparable with those of the  

 

 
Figure 6.  ROC curves with the corresponding EER for corpuses 1, 2. 

literature. Since the approach described in this case study is 
preliminary it is anticipated that further exhaustive research 
will unveil important conclusions with respect to the 
modeling of handwriting. However a number of various 
other models and experimental setups including i.e. the 
dissimilarity framework [10] need to be examined in order to 
verify the effectiveness of the proposed approach.  

TABLE I.  VERIFICATION EFFICIENCY (%) 

Experimental Set FAR FRR EER 
CORPUS 1, #nref=5   (GF) 2.18 3.29 2.79 
CORPUS 2, #nref=5   (GF) 13.03 5.23 9.04 
CORPUS 1, #nref=12 (GF) 1.13 1.60 1.45 
CORPUS 2, #nref=12 (GF)  7.73 3.45 5.53 

TABLE II.  COMPARING EER WITH APPROACH [20]  

Experimental Set EER (%) 
[20] #nref=5   (GF) 9.16 
Proposed #nref=5   (GF) 2.79 
[20] #nref=12 (GF) 4.65 
Proposed #nref=12 (GF) 1.45 

TABLE III.  COMPARING EER WITH VARIOUS APPROACHES (%) 

Method EER   EER  
[20] #nref=5  (GF) 12.32 
[12] GPDS-100 nref=5 (GF) 12.02 
[19] #nref=13 (only G) 4.21 

Proposed  
#nref=5 

9.04 

[20] for nref=12 (GF) 6.2 
[12] # ref = {10G, 15F} 8.26 
[13] #refn=12 (GF)  13.76 
[24] #nref=12 (GF) 15.11 
[25] # nref=12 (only G) 15.4 

Proposed  
 #nref=12 

5.53 
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