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Abstract. The context of this work is the reconstruction of Petri net
models for biological systems from experimental data. Such methods
aim at generating all network alternatives fitting the given data. For
a successful reconstruction, the data need to satisfy two properties: re-
producibility and monotonicity. In this paper, we focus on a necessary
preprocessing step for a recent reconstruction approach. We test the data
for reproducibility, provide a feasibility test to detect cases where the re-
construction from the given data may fail, and provide a strategy to
cope with the infeasible cases. After having performed the preprocessing
step, it is guaranteed that the (given or modified) data are appropriate
as input for the main reconstruction algorithm.

1 Introduction

The aim of systems biology is to analyze and understand different phenomena as,
e.g., responses of cells to environmental changes, host-pathogen interactions, or
effects of gene defects. To gain the required insight into the underlying biological
systems, experiments are performed and the resulting experimental data have to
be interpreted in terms of models that reflect the observed phenomena. Depend-
ing on the biological aim and the type and quality of the available data, different
types of mathematical models are used and corresponding methods for their re-
construction have been developed. We focus on Petri nets, a framework which
turned out to coherently model both static interactions in terms of networks and
dynamic processes in terms of state changes [1–4].

In fact, a (standard) network P = (P, T,A,w) reflects the involved system
components by places p ∈ P and their interactions by transitions t ∈ T , the
arcs in A ⊂ (P × T ) ∪ (T × P ) link places and transitions, and the arc weights
w : A → N reflect stoichiometric coefficients of the corresponding reactions.
Moreover, each place p ∈ P can be marked with an integral number xp of tokens
defining a system state x ∈ Z|P |+ . If a capacity cap(p) is given for the places,
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then xp ≤ cap(p) follows and we obtain X := {x ∈ N|P | : xp ≤ cap(p)} as set of
potential states. A transition t ∈ T is enabled in a state x if xp ≥ w(p, t) for all
p with (p, t) ∈ A (and xp+w(t, p) ≤ cap(p) for all (t, p) ∈ A), switching or firing
t yields a successor state succ(x) = x′ with x′p = xp − w(p, t) for all (p, t) ∈ A
and x′p = xp + w(t, p) for all (t, p) ∈ A. Dynamic processes are represented by
sequences of such state changes.

Petri net models can be reconstructed from experimental time-series data by
means of exact, exclusively data-driven reconstruction approaches [5–10]. These
approaches take as input a set P of places and discrete time-series data X ′
given by sequences (x0;x1, . . . ,xm) of experimentally observed system states.
The goal is to determine all Petri nets (P, T,A,w) that are able to reproduce
the data, i.e., that perform for each xj ∈ X ′ the experimentally observed state
change to xj+1 ∈ X ′ in a simulation.

In general, there can be more than one transition enabled at a state. The
decision which transition switches is typically taken randomly (and the dynamic
behavior is analyzed in terms of reachability, starting from a certain initial state).
To properly predict the dynamic behavior, (standard) Petri nets have to be
equipped with additional activation rules to force the switching or firing of special
transitions, and to prevent all others from switching.

This can be done by using priority relations and control-arcs and leads to
the notion of X ′-deterministic Petri nets [11], which show a prescribed behavior
on the experimentally observed subset X ′ of states: the reconstructed Petri nets
do not only contain enough transitions to reach the experimentally observed
successors xj+1 from xj , but exactly this transition will be selected among all
enabled ones in xj which is necessary to reach xj+1 (see Section 2.2 for details).

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility (for each xj ∈ X ′ there is a unique observed successor state
succX ′(xj) = xj+1 ∈ X ′) and monotonicity (meaning that all essential responses
are indeed reported in the experiments), see Section 2.1. Having reproducible
data is clearly evident for a successful reconstruction; the necessity of monotone
data is shown in [12].

In this paper, we focus on a necessary preprocessing step for the reconstruc-
tion approach described in [8]. We test the data for reproducibility, provide a
feasibility test (based on previous works in [7]) to detect cases where the recon-
struction from the given data may fail (see Section 3.1), and provide a strategy
(based on previous works in [7,9]) to cope with infeasible cases (see Section 3.2).
We close with some concluding remarks.

2 Reconstructing Petri Nets from Experimental Data

In this section we describe the input and the desired output of the reconstruction
method from [8], whereas we refer the reader for details on the reconstruction
approach itself to [8].
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2.1 Input: Experimental Time-Series Data

First, a set of components P (later represented by the set of places) is chosen
which is expected to be crucial for the studied phenomenon and which can be
treated in terms of measurements1.

To perform an experiment, the system is stimulated in a state x0 (by external
stimuli like the change of nutrient concentrations or the exposition to some
pathogens) to generate an initial state x1 ∈ X . Then the system’s response to the
stimulation is observed and the resulting state changes are measured at certain
time points. This yields a sequence (x1, . . . ,xk) of states xi ∈ X reflecting the
time-dependent response of the system to the stimulation, denoted by

X ′(x1,xk) = (x0;x1, . . . ,xk).

Note that we also provide the state x0 as the starting point for the stimulation,
which will be needed later (see Section 3.2). Every sequence has an observed
terminal state xk ∈ X , without further changes of the system. The set of all
terminal states in X ′ is denoted by X ′term.

For technical reasons, we interpret a terminal state xk ∈ X ′term as a state
which has itself as observed successor state, i.e., xk = succX ′(xk).

Typically, several experiments starting from different initial states in a set
X ′ini ⊆ X are necessary to describe the whole phenomenon, and we obtain ex-
perimental time-series data of the form

X ′ = {X ′(x1,xk) : x1 ∈ X ′ini,xk ∈ X ′term}.

We write x ∈ X ′ to indicate that x is an element of a sequence X ′(x1,xk) ∈ X ′.

Example 1. As running example, we consider the light-induced sporulation of
Physarum polycephalum [10]. The developmental decision of P. polycephalum
plasmodia to enter the sporulation pathway is controlled by environmental fac-
tors like visible light [13]. A phytochrome-like photoreversible photoreceptor pro-
tein is involved in the control of sporulation Spo which occurs in two stages PFR

and PR. If the dark-adapted form PFR absorbs far-red light FR, the receptor is
converted into its red-absorbing form PR, which causes sporulation [14]. If PR is
exposed to red light R, it is photo-converted back to the initial stage PFR, which
can prevent sporulation in an early stage, but does not prevent sporulation in a
later stage. Figure 1 gives an example of experimental time-series data reflect-
ing this behavior, containing three time-series: X (x1,x4) = (x0;x1,x2,x3,x4),
X (x5,x0) = (x2;x5,x0) and X (x6,x8) = (x3;x6,x7,x8).

In the best case, two consecutively measured states xj ,xj+1 ∈ X ′ are also
consecutive system states, i.e., xj+1 can be obtained from xj by switching a
single transition. This is, however, in general not the case (and depends on the
chosen time points to measure the states in X ′), but xj+1 is obtained from xj

1 Possibly, it is known that a certain component plays a crucial role, but it is not
possible to measure the values of that component experimentally.
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Fig. 1. This figure shows experimental time-series data X ′ for the light-induced
sporulation of Physarum polycephalum. The experimental setting uses the set P =
{FR,R, Pfr, Pr, Sp} of studied components, observed states are represented by vec-
tors of the form x = (xFR, xR, xPfr , xPr , xSp)

T having 0/1-entries only. Dashed arrows
represent stimulations to the system and solid arrows represent the observed responses.

by a switching sequence of some length, where the intermediate states are not
reported in X ′.

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility and monotonicity. The data X ′ are reproducible if for each xj ∈
X ′ there is a unique observed successor state succX ′(xj) = xj+1 ∈ X ′. Moreover,
the data X ′ are monotone if for each such pair (xj ,xj+1) ∈ X ′, the possible
intermediate states xj = y1,y2, ...,ym+1 = xj+1 satisfy

y1p ≤ y2p ≤ . . . ≤ ymp ≤ ym+1
p for all p ∈ P with xjp ≤ xj+1

p and
y1p ≥ y2p ≥ . . . ≥ ymp ≥ ym+1

p for all p ∈ P with xjp ≥ xj+1
p .

Whereas reproducibility is obviously necessary, it was shown in [12] that mono-
tonicity has to be required or, equivalently, that all essential responses are indeed
reported in the experiments.

Remark 1. When continuous data is discretized for the reconstruction approach,
all local minima and maxima of the measured values have to be kept for each
p ∈ P to ensure monotonicity.

2.2 Output: X ′-Deterministic Extended Petri Nets

A standard Petri net P = (P, T,A,w) fits the given data X ′ when it is able to
perform every observed state change from xj ∈ X ′ to succX ′(xj) = xj+1 ∈ X ′.
This can be interpreted as follows. With P, an incidence matrix M ∈ Z|P |×|T |
is associated, where each row corresponds to a place p ∈ P of the network, and
each column M·t to the update vector rt of a transition t ∈ T :

rtp =Mpt :=





−w(p, t) if (p, t) ∈ A,
+w(t, p) if (t, p) ∈ A,
0 otherwise.
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Reaching xj+1 from xj by a switching sequence using the transitions from a
subset T ′ ⊆ T is equivalent to obtain the state vector xj+1 from xj by adding
the corresponding columns M·t of M for all t ∈ T ′:

xj +
∑

t∈T ′
M·t = xj+1. (1)

Hence, T has to contain enough transitions to perform all experimentally ob-
served switching sequences. The network P = (P, T,A,w) is conformal with X ′
if, for any two consecutive states xj , succX ′(xj) = xj+1 ∈ X ′, the linear equa-
tion system xj+1 − xj = Mλ has an integral solution λ ∈ N|T | such that λ is
the incidence vector of a sequence (t1, ..., tm) of transition switches, i.e., there
are intermediate states xj = y1,y2, ...,ym+1 = xj+1 with yl + M·tl = yl+1

for 1 ≤ l ≤ m. Hereby, monotonicity avoids unnecessary solutions, since no
homogeneous solutions of equation (1) have to be considered, see [10,12].

To also force that the networks exhibit the experimentally observed dynamic
behavior in a simulation, we equip standard networks with additional activation
rules to further control the switching of enabled transitions, see [5, 6, 8, 11].

On the one hand, the concept of control-arcs can be used to represent cat-
alytic or inhibitory dependencies. An extended Petri net P = (P, T, (A ∪ AR ∪
AI), w) is a Petri net which has, besides the (standard) arcs in A, two additional
sets of so-called control-arcs: the set of read-arcs AR ⊂ P × T and the set of
inhibitor-arcs AI ⊂ P × T . We denote the set of all arcs by A = A ∪ AR ∪ AI .
Here, an enabled transition t ∈ T coupled with a read-arc (resp. an inhibitor-
arc) to a place p ∈ P can switch in a state x only if a token (resp. no token) is
present in p; we denote by TA(x) the set of all such transitions.

On the other hand, in [9, 10, 15] the concept of priority relations among
the transitions of a network was introduced in order to allow the modeling of
deterministic systems. In Marwan et al. [9] it is proposed to model such priorities
with the help of partial orders O on the transitions in order to reflect the rates of
the corresponding reactions where the fastest reaction has highest priority and,
thus, is taken. For each state x, only a transition is allowed to switch if it is
enabled and there is no other enabled transition with higher priority according
to O; we denote by TA,O(x) the set of all such transitions. We call (P,O) a Petri
net with priorities if P = (P, T,A, w) is a (standard or extended) Petri net and
O a priority relation on T .

For a deterministic behavior, TA,O(x) must contain at most one element for
each state x to enforce that x has a unique successor state succX (x), see [15]
for more details. For our purpose we consider a relaxed condition, namely that
TA,O(x) contains at most one element for each experimentally observed state
x ∈ X ′, but TA,O(x) may contain several elements for non-observed states x ∈
X \ X ′. We call such Petri nets X ′-deterministic (see [11]).

The extended Petri net P = (P, T,A, w) is catalytically conformal with X ′ if
tl ∈ TA(yl) for each intermediate state yl of any pair (xj ,xj+1) ∈ X ′, and the
extended Petri net with priorities (P,O) is X ′-deterministic if {tl} = TA,O(yl)
holds for all yl.
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The desired output of the reconstruction approach consists of the set of all X ′-
deterministic extended Petri nets (P, cap,O) (all having the same set P of places
and the same capacities cap deduced from X ′ by cap(p) = max{xp : x ∈ X ′}).

Figure 2 shows an X ′-deterministic extended Petri net fitting the experimen-
tal data from Example 1.

FR R

SpPfr

Pr commited

t1

t2

t3

t4

Fig. 2. This figure shows an X ′-deterministic extended Petri net fitting
the experimental data from Example 1. The set of components is P =
{FR,R, Pfr, Pr, Sp, committed}, where FR,R, Pfr, Pr and Sp have been measured
directly in the experiment. The here added component committed cannot be measured
directly, but only indirectly by the behavior of Physarum polycephalum observed in
the experiment. The here shown network corresponds to solution (a) from Figure 4.
In this X ′-deterministic extended Petri net there is a read-arc from Pr to t2 and one
from committed to t3. Furthermore, we have the set of priorities O = {t2 < t4, t3 < t4}.
The control-arcs and priorities ensure |TA,O(x)| = 1 for every state x ∈ X ′.

3 Feasibility Test and Handling Infeasibility

Before the reconstruction is started, a preprocessing step is necessary in order
to verify or falsify whether the experimental time-series data X ′ is suitable for
reconstructing X ′-deterministic extended Petri nets (see Section 3.1). If the test
is successful, the reconstruction algorithm can be applied. For the case that the
given data are not suitable for the reconstruction, we provide a method to handle
the infeasible cases (see Section 3.2).

For that, we interpret (as in [7]) the experimental time-series data X ′ as a
directed graph D(X ′) = (VX ′ , AD ∪ AS) having the measured states x ∈ X ′ as
nodes and two kinds of arcs:

• AD := {(xj ,xj+1) : xj+1 = succX ′(xj)} for the observed responses,
• AS := {(x0,x1) : X ′(x1,xk) = (x0;x1, . . . ,xk)} for the stimulations.

We call D(X ′) the experiment graph of X ′. It can be interpreted as a minor
of the reachability graph, where observed responses may correspond to directed
paths with intermediate states.

Our main objective is to test the given experimental time-series data X ′ for
reproducibility, i.e., whether each state x ∈ X ′ has a unique successor state
succX ′(x) ∈ X ′. We provide a feasibility test to ensure this property (based
on previous tests for standard Petri nets [7] and extended Petri nets [5], see
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Section 3.1). If this test fails, we have a state x ∈ X ′ with at least two successors
in X ′, and it is not possible to reconstruct an X ′-deterministic extended Petri
net from X ′ in its current form. As proposed in [7, 9, 10], this situation can be
resolved by adding further components2 to P with the goal to split any state
x ∈ X ′ with two successors into different states each having a unique successor.
We present in Section 3.2 an approach for this step (based on previous works for
standard Petri nets [7, 9]).

3.1 X ′-Determinism Conflicts and Feasibility Test

Definition 1. Let X ′ be experimental time-series data. We say that two time-
series Xi = X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m) are in X ′-determinism conflict,
when there exists a state x ∈ X ′ with succXi(x) 6= succX`

(x) and call x the
corresponding X ′-determinism conflict state. We have

• a strong X ′-determinism conflict if xik 6= x`m or Xi = X`;
• a weak X ′-determinism conflict if xik = x`m and Xi 6= X`.

The definition of strong X ′-determinism conflicts includes the case discussed
in [5, 7] that there must not exist a terminal state xj ∈ X ′term that occurs as
intermediate state in an experiment. Furthermore, it includes the case that a
state xj ∈ X ′ \ X ′term has itself as successor, i.e., succX ′(xj) = xj , which would
result in dj = 0 (see Example 2).

Example 2. In the experimental time-series data X ′ shown in Figure 1 we have
no weak but two strong X ′-determinism conflicts:

• in the sequence X ′(x1,x4) the states x2 and x3 are equal but have different
successor states,

• the sequences X ′(x5,x0) and X ′(x6,x8) have equal initial state x5 = x6,
but different terminal states. Besides the initial states, the states x0 and x7

are X ′-determinism conflict states.

Obviously, every X ′-determinism conflict violates the condition of the data
being reproducible, and the reconstruction of X ′-deterministic extended Petri
nets from X ′ is not possible. However, the converse is true:

Lemma 1. Let X ′ be experimental time-series data. If every state x ∈ X ′ has
a unique successor state succX ′(x) ∈ X ′ then there exists an X ′-deterministic
extended Petri net.

Sketch of the proof. The pre-condition that every state has a unique successor
in X ′ includes the cases that no non-terminal state has itself as successor and that
no terminal state is an intermediate state of any experiment. This guarantees
2 Since P is only a projection from the real world, it is possible that some components
of the system, crucial for the studied phenomenon, were not taken into account or
could not be experimentally measured.
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the existence of a standard network P = (P, T, ·, ·) being conformal with X ′.
Since every state has a unique successor state it follows for all states xj ,xl ∈ X ′
with succ(xj) 6= succ(xl) that there exists a non-empty subset P ′ ⊆ P so that
xj
p 6= xl

p holds for every p ∈ P ′. Therefore, P can be made X ′-deterministic by
adding appropriate control-arcs (p, t), where p ∈ P ′ and t ∈ T , in a way that
exactly the transition is enabled which was observed in the experiments. ut

Two time-series X ′(xi0 ,xik) and X ′(x`0 ,x`m) with xik = x`m may be in
weak X ′-determinism conflict, due to differently chosen time points of the mea-
surements. We test the data for such a situation and try to resolve the conflict
by linearizing these sequences, respecting monotonicity.

A linear order L (or total order) on a set S is a partial order where addi-
tionally (a ≤ b) ∈ L or (b ≤ a) ∈ L holds for all a, b ∈ S. In this case, we say
that the set S is totally ordered (w.r.t. L). A totally ordered subset U ⊆ S of a
partially ordered set S is called a chain of S.

On a time-series X ′(x1,xk) = (x0;x1, . . . ,xk), a linear order is induced by
the successor relation: xj ≤ xj+1 iff xj+1 = succX ′(x1,xk)(x

j), hence X ′ can be
considered as a partially ordered set (ordered by the successor relation), where
each time-series X ′(x1,xk) is a chain of X ′. Let succX ′(xj) = xj+1 and

Box(xj ,xj+1) :=

{
y ∈ X :

xjp ≤ yp ≤ xj+1
p if xjp ≤ xj+1

p

xjp ≥ yp ≥ xj+1
p if xjp ≥ xj+1

p

}
.

Note that due to monotonicity, all intermediate states y of any refined sequence
from xj to xj+1 lie in Box(xj ,xj+1). Consequently, if two time-series Xi =
X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m) with xik = x`m are in weak X ′-determinism
conflict, and x is a determinism conflict state then we have to test whether

(i) succXi(x) ∈ Box(x, succX`
(x)) or

(ii) succX`
(x) ∈ Box(x, succXi

(x)),

see Figure 3 for an illustration. If one of the two conditions holds, we conclude
succXi

(x) < succX`
(x) (resp. succX`

(x) < succXi
(x)); otherwise we cannot find a

X ′-deterministic linear order. Therefore, x is no longer a X ′-determinism conflict
state, but a new X ′-determinism conflict state x′ is detected since either

(i) x′ = succXi(x) has two successor states: succXi(succXi(x)), succX`
(x) or

(ii) x′ = succX`
(x) has two successor states: succXi

(x) and succX`
(succX`

(x)).

Hence, the procedure has to be repeated for x′ until succXi
(x′) = succX`

(x′)
holds or the test fails (see Algorithm 1). This works since in case of a weak
X ′-determinism conflict at least the terminal states xik and x`m are equal.

Whenever the test described above is successful for x and all subsequent
X ′-determinism conflict states x′, we say that it is resolvable, otherwise we say
it is an unresolvable weak X ′-determinism conflict. We further obtain:

Theorem 1. Let X ′ be experimental time-series data. There exists an X ′-deter-
ministic extended Petri net if and only if there are neither strong X ′-determinism
conflicts nor unresolvable weak X ′-determinism conflicts.
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xi0

x`0

x

succXi
(x)

succX`
(x)

xik = x`m? ?

Fig. 3. This figure shows a weak X ′-determinism conflict. To resolve this conflict we
can test if the two different successor states (resulting from two different experiments) of
the X ′-determinism conflict state x can be ordered in such a way that the monotonicity
constraint is not violated. In other words, we test if one of these successor states is an
unmeasured intermediate state of x and the other successor state.

Sketch of the proof. If neither strong X ′-determinism conflicts nor unresolv-
able weak X ′-determinism conflicts exists, the statement follows from the pro-
cedure described above and from Lemma 1.

Conversely, suppose that an unresolvable weak (or strong) X ′-determinism
conflict state exists. In the case that x = succX ′(x) holds for at least one strong
X ′-determinism conflict state x, then there does not exist any standard network
being conformal with X ′. Otherwise, there exist conformal standard networks,
but none of them can be made X ′-deterministic.

Let x be an unresolvable weak (or strong) X ′-determinism conflict state
for two time-series X ′i = X ′(xi0 ,xik) and X ′` = X ′(x`0 ,x`m). First note that x
remains an unresolvable weak (or strong) X ′-determinism conflict state for every
refined sequence (respecting the monotonicity constraint) of X ′i and X ′` . Thus,
w.l.o.g. we can assume that succX ′i (x) 6= succX ′` (x) and denote the respective
transitions by ti and t`. Since both transitions ti and t` are (and need to stay)
enabled at x, there is no way to add priorities and/or control-arcs to force
the network to deterministically show the observed behavior of X ′i and of X ′`
simultaneously. ut

3.2 Handling Infeasibility

Due to Theorem 1, it is impossible to reconstruct X ′-deterministic extended Petri
nets from experimental time-series data X ′ containing a strong X ′-determinism
conflict or an unresolvable weak X ′-determinism conflict. In this section we show
how these conflicts can be resolved by using additional components.

For that we extend, as proposed in [7,9], all the n-dimensional state vectors
x ∈ X ′ to suitable (n+ a)-dimensional vectors

xj :=

(
xj

zj

)
∈ X ′ =

{
x =

(
x
z

)
∈ Zn+a : 0 ≤ z ≤ 1, x ∈ X ′

}
.

The studied extensions xj ∈ Nn+a of the states xj ∈ X ′ correspond to suitable
labelings of the experiment graph D(X ′):
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Algorithm 1 Resolving weak X ′-determinism conflicts by linearization
Input: time-series X ′(xi0 ,xik ), X ′(x`0 ,x`m) in weak X ′-determinism conflict
Output: adjusted time-series if resolvable weak X ′-determinism conflict or false oth-

erwise
1: for all conflict states x do
2: xi ← succX ′(xi0 ,xik )(x), x

` ← succX ′(x`0 ,x`m )(x)
3: L ← ∅ . stores the linear order
4: while xi 6= x` do
5: if xi ∈ Box(x,x`) then
6: L ← L ∪ {xi < x`}
7: x← xi

8: xi ← succX ′(xi0 ,xik )(x
i)

9: else if xl ∈ Box(x,xi) then
10: L ← L ∪ {x` < xi}
11: x← x`

12: x` ← succX ′(x`0 ,x`m )(x
`)

13: else
14: return false
15: return adjusted time-series according to L

• if a = 1, to (0, 1)-labelings, where label i is assigned to node xj if xjn+1 =
zj = i is selected for i ∈ {0, 1};

• if a = 2, to (0, 1, 2, 3)-labelings, where the labels are assigned to the four
different states (0, 0)T , (1, 0)T , (0, 1)T and (1, 1)T ;

• if a ≥ 3 we use similar encodings for all 2a different 0/1-vectors.

By using appropriate additional components, states that appear equal in exper-
imental time-series data X ′ become different in X ′ (see Figure 4 for an illus-
tration). It is already stressed in [7] that not every labeling for the experiment
graph D(X ′) is reasonable, as a state xk ∈ X ′ with xk ∈ X ′term might have a suc-
cessor state, a state xj might have multiple successor states, or some stimulation
changes more than the target input component(s). To obtain suitable labelings
for X ′-deterministic extended Petri nets, we adjust Definition 15 from [7]:

Definition 2. A labeling L of X ′ is valid if it satisfies the following conditions:

(i) every state x has a unique successor state succ(x),
(ii) any stimulation preserves the values on the additional component(s),
(iii) for every d = succ(x)−x and d′ = succ(x′)−x′ with d = d′ follows d = d

′
.

From Condition (i) we can conclude that we have x = succX ′(x) if and
only if x ∈ X ′term. Condition (ii) ensures that a stimulation does not change
more than the target input component(s), and finally, Condition (iii) ensures a
minimal number of label switches, while keeping the data as close as possible
to the original measurements. Furthermore, due to symmetry reasons, we can
choose a label for one state, e.g., a conflict state.
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Example 3. Besides symmetric solutions, there are two possible valid labelings
with a = 1 for the experimental time-series data from Figure 1. These two
solutions are shown in Figure 4. The solutions are obtained by applying the
conditions of Definition 2 as follows. We start by selecting an X ′-determinism
conflict state, here x2, and choose its label as x2

z = 0. Due to Condition (ii),
x5
z = 0 follows. Condition (i) implies that x3 (resp. x6) must be different from

x2 (resp. x5). Therefore, x3
z = 1 and x6

z = 1 follows. Since we have d4 = d5,
Condition (iii) implies that the only valid labels for x0 and x7 are 0 and 1,
respectively. Condition (ii) shows x1

z = 0. Finally, we can choose a label for x4

and x8, respectively. However, since d3 = d6, if follows from (iii) that both labels
must be equal.
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Fig. 4. This figure shows values for additional components resolving the strong
X ′-determinism conflicts from Example 2 in Figure 1.

In order to find all valid labelings of a general experiment graph D(X ′) =
(VX ′ , AD ∪ AS) we set up an optimization problem encoding the conditions
for valid labelings and having as objective the minimization of the number a of
additional components. For that we introduce decision variables yji to determine
whether label i is assigned to xj .

We are interested in finding min{a ∈ N : P(a) 6= ∅}, where P(a) is given by

a∑

i=1

|yji − yli − (ypi − yqi)| ≥ 1
for all(xj ,xl), (xp,xq) ∈ AD,

with xj = xp,xl 6= xq
(2a)

yji − yli = 0 for all (xj ,xl) ∈ AS (2b)

yji − yli = ypi − yqi
for all (xj ,xl), (xp,xq) ∈ AD,

with xl − xj = xp − xq
(2c)

yj1, . . . , yj2a ∈ {0, 1} for all (xj ,xl) ∈ AD, i = 1, . . . , 2a, (2d)

where equations (2a) ensure that every state has a unique successor state (Con-
dition (i) from Definition 2), equations (2b) that no stimulation changes the state



Preprocessing for Network Reconstruction 445

of additional components (Condition (ii)), and equations (2c) preserve equal dif-
ference vectors (Condition (iii)). The conditions (2d) ensure that we have binary
decision variables yij . Each valid labeling corresponds to a vector in P(a).

Note, due to inequalities (2a) the optimization problem is non-linear and has
a non-convex set of feasible solutions. However, it is only necessary to find the
minimal a so that P(a) 6= ∅. We can consider the set P(a) as the union of 2a
convex sets (see Figure 5 for an illustration). Therefore, we can split the problem
into 2a linear subproblems, each having a convex (=polyhedral) feasible region.
For that, we define two sets for each subproblem 1 ≤ k ≤ 2a, namely P+(k)
and P−(k), so that P+(k) ∪ P−(k) = {1, . . . , a} and P+(k) ∩ P−(k) = ∅ and
P+(p) 6= P+(q), P−(p) 6= P−(q) for all p 6= q. The sets induce the indices i
so that yji − yli − (ypi − yqi) ≥ 0 and yji − yli − (ypi − yqi) ≤ 0, respectively.
Hereby, we have all possible combinations. For the sake of readability let zjlpqi =
yji−yli−(ypi−yqi). Then we replace inequalities (2a) by the following constraints

∑

i+∈P+(k)

zjlpqi+ −
∑

i−∈P−(k)
zjlpqi− ≥ 1 for all (xj ,xl), (xp,xq) ∈ AD, (3a)

zjlpqi+ ≥ 0
for all i+ ∈ P+(k),

for all (xj ,xl), (xp,xq) ∈ AD,
(3b)

zjlpqi− ≤ 0
for all i+ ∈ P+(k),

for all (xj ,xl), (xp,xq) ∈ AD,
(3c)

where AD := {(xj ,xl), (xp,xq) ∈ AD with xj = xp,xl 6= xq}. These linear
subproblems can be solved by standard solvers, and the optimal solution a of
the original problem is obtained if one subproblem turns out to be feasible. All
(minimal) valid labelings are then in P(a).

Fig. 5. In this figure the division of (2a) into 2a subproblems is illustrated within the
2-dimensional space (i.e., a = 2). Each of the resulting 4 subproblems has a convex
feasible region (highlighted by the dotted regions) whose union corresponds to the
feasible region of the original problem.
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4 Conclusion

In this work, we give a preprocessing step for a reconstruction algorithm from [8]
that reconstructs extended Petri nets with priorities from experimental time-
series data X ′, so-called X ′-deterministic extended Petri nets. For a successful
reconstruction the data must be reproducible and monotone. While reproducibil-
ity is clearly evident, the necessity of monotone data is shown in [12]. In this
paper we give a feasibility test for the data and a strategy for handling infeasible
cases.

Firstly, the preprocessing step examines the given experimental time-series
data for reproducibility, i.e., it tests if all measured states x ∈ X ′ have a unique
successor state (see Section 3.1). If this test is successful we can reconstruct an
X ′-deterministic extended Petri net (Lemma 1).

Whenever two time-series Xi and X` have a common state x but different
successor states in each of these sequences (i.e., succXi

(x) 6= succX`
(x)) we have

an X ′-determinism conflict. Depending on whether the terminal states of these
conflicts are equal or not, we have a weak or a strong X ′-determinism conflict.

When we encounter a weak X ′-determinism conflict we try to linearize the
two sequences by the induced order of the successor relation. This is done in the
second step of the preprocessing (see Section 3.1).

If linearizing the time-series is not possible or when there are strong X ′-de-
terminism conflicts, we cannot reproduce X ′-deterministic extended Petri nets
(Theorem 1). In this case we extend the data by adding additional components
to every state of X ′ (see Section 3.2). Finally, in order to compute valid vectors
of additional components, we solve an optimization problem.

After having performed the preprocessing step, the reproducibility of the
(given or modified) data X ′ can be guaranteed such that X ′ can serve as appro-
priate input for the main reconstruction algorithm.
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